Properties

Label 110.3.d.a
Level $110$
Weight $3$
Character orbit 110.d
Analytic conductor $2.997$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,3,Mod(21,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.21");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 110.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4956160000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 19x^{4} - 30x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + (\beta_{3} + \beta_1 - 1) q^{3} - 2 q^{4} - \beta_1 q^{5} + ( - \beta_{6} + \beta_{5} + \cdots + \beta_{2}) q^{6} + (\beta_{7} - 2 \beta_{6} + \cdots - 2 \beta_{2}) q^{7} + 2 \beta_{2} q^{8}+ \cdots + (5 \beta_{7} + 15 \beta_{5} + \cdots + 88) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 16 q^{4} + 40 q^{9} + 16 q^{12} - 32 q^{14} - 40 q^{15} + 32 q^{16} - 136 q^{23} + 40 q^{25} + 80 q^{26} + 64 q^{27} - 64 q^{31} + 88 q^{33} + 112 q^{34} - 80 q^{36} - 48 q^{37} - 208 q^{42}+ \cdots + 704 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{6} + 19x^{4} - 30x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{4} - 4\nu^{2} + 15 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{7} + 7\nu^{5} - 37\nu^{3} + 20\nu ) / 25 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} + 17\nu^{5} - 57\nu^{3} + 120\nu ) / 25 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 3\nu^{5} + 17\nu^{3} - 10\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 5\nu^{6} + 4\nu^{5} - 15\nu^{4} - 24\nu^{3} + 85\nu^{2} + 65\nu - 75 ) / 25 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{7} - 5\nu^{6} + 4\nu^{5} + 15\nu^{4} - 24\nu^{3} - 85\nu^{2} + 65\nu + 75 ) / 25 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{6} + 6\nu^{4} - 24\nu^{2} + 20 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{5} + \beta_{4} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - \beta_{6} + \beta_{5} + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{6} - \beta_{5} + 5\beta_{4} + 2\beta_{3} + 7\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{7} - 2\beta_{6} + 2\beta_{5} + 5\beta _1 - 11 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -6\beta_{6} - 6\beta_{5} + 7\beta_{3} - 3\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -11\beta_{7} + 6\beta_{6} - 6\beta_{5} + 15\beta _1 - 37 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -9\beta_{6} - 9\beta_{5} - 55\beta_{4} + 8\beta_{3} - 127\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
21.1
1.51954 + 1.14412i
−1.09132 0.437016i
−1.51954 + 1.14412i
1.09132 0.437016i
1.51954 1.14412i
−1.09132 + 0.437016i
−1.51954 1.14412i
1.09132 + 0.437016i
1.41421i −5.11433 −2.00000 2.23607 7.23275i 6.78202i 2.82843i 17.1564 3.16228i
21.2 1.41421i −2.29552 −2.00000 −2.23607 3.24636i 4.07370i 2.82843i −3.73057 3.16228i
21.3 1.41421i −1.35781 −2.00000 2.23607 1.92023i 12.4389i 2.82843i −7.15636 3.16228i
21.4 1.41421i 4.76766 −2.00000 −2.23607 6.74249i 9.73055i 2.82843i 13.7306 3.16228i
21.5 1.41421i −5.11433 −2.00000 2.23607 7.23275i 6.78202i 2.82843i 17.1564 3.16228i
21.6 1.41421i −2.29552 −2.00000 −2.23607 3.24636i 4.07370i 2.82843i −3.73057 3.16228i
21.7 1.41421i −1.35781 −2.00000 2.23607 1.92023i 12.4389i 2.82843i −7.15636 3.16228i
21.8 1.41421i 4.76766 −2.00000 −2.23607 6.74249i 9.73055i 2.82843i 13.7306 3.16228i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 21.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.3.d.a 8
3.b odd 2 1 990.3.b.b 8
4.b odd 2 1 880.3.j.c 8
5.b even 2 1 550.3.d.f 8
5.c odd 4 2 550.3.c.b 16
11.b odd 2 1 inner 110.3.d.a 8
33.d even 2 1 990.3.b.b 8
44.c even 2 1 880.3.j.c 8
55.d odd 2 1 550.3.d.f 8
55.e even 4 2 550.3.c.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.3.d.a 8 1.a even 1 1 trivial
110.3.d.a 8 11.b odd 2 1 inner
550.3.c.b 16 5.c odd 4 2
550.3.c.b 16 55.e even 4 2
550.3.d.f 8 5.b even 2 1
550.3.d.f 8 55.d odd 2 1
880.3.j.c 8 4.b odd 2 1
880.3.j.c 8 44.c even 2 1
990.3.b.b 8 3.b odd 2 1
990.3.b.b 8 33.d even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(110, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + 4 T^{3} - 20 T^{2} + \cdots - 76)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 312 T^{6} + \cdots + 11182336 \) Copy content Toggle raw display
$11$ \( T^{8} - 132 T^{6} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( T^{8} + 896 T^{6} + \cdots + 23001616 \) Copy content Toggle raw display
$17$ \( T^{8} + 1056 T^{6} + \cdots + 50069776 \) Copy content Toggle raw display
$19$ \( T^{8} + 1664 T^{6} + \cdots + 52070656 \) Copy content Toggle raw display
$23$ \( (T^{4} + 68 T^{3} + \cdots - 1209164)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 2498400256 \) Copy content Toggle raw display
$31$ \( (T^{4} + 32 T^{3} + \cdots + 378176)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 24 T^{3} + \cdots - 31856)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 32472856662016 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 506465648896 \) Copy content Toggle raw display
$47$ \( (T^{4} - 76 T^{3} + \cdots + 111764)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 176 T^{3} + \cdots - 188144)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 40 T^{3} + \cdots - 456896)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 288073767325696 \) Copy content Toggle raw display
$67$ \( (T^{4} - 12 T^{3} + \cdots + 571796)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 128 T^{3} + \cdots + 7774976)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 50\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{8} + 25984 T^{6} + \cdots + 516925696 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 45563364004096 \) Copy content Toggle raw display
$89$ \( (T^{4} + 184 T^{3} + \cdots - 101033216)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 16 T^{3} + \cdots + 139413776)^{2} \) Copy content Toggle raw display
show more
show less