Properties

Label 110.3.c.b.109.2
Level $110$
Weight $3$
Character 110.109
Analytic conductor $2.997$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,3,Mod(109,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 110.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.130897030168576.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 169x^{4} - 112x^{2} + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.2
Root \(-1.41421 - 1.08854i\) of defining polynomial
Character \(\chi\) \(=\) 110.109
Dual form 110.3.c.b.109.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} -1.08854i q^{3} +2.00000 q^{4} +(1.40754 + 4.79780i) q^{5} +1.53943i q^{6} -2.82843 q^{7} -2.82843 q^{8} +7.81507 q^{9} +(-1.99056 - 6.78511i) q^{10} +(2.81507 + 10.6337i) q^{11} -2.17709i q^{12} +11.0522 q^{13} +4.00000 q^{14} +(5.22261 - 1.53216i) q^{15} +4.00000 q^{16} +21.8428 q^{17} -11.0522 q^{18} +5.87305i q^{19} +(2.81507 + 9.59559i) q^{20} +3.07887i q^{21} +(-3.98111 - 15.0383i) q^{22} +22.4568i q^{23} +3.07887i q^{24} +(-21.0377 + 13.5061i) q^{25} -15.6301 q^{26} -18.3039i q^{27} -5.65685 q^{28} -36.3770i q^{29} +(-7.38588 + 2.16681i) q^{30} -37.7055 q^{31} -5.65685 q^{32} +(11.5752 - 3.06433i) q^{33} -30.8904 q^{34} +(-3.98111 - 13.5702i) q^{35} +15.6301 q^{36} -52.3321i q^{37} -8.30575i q^{38} -12.0308i q^{39} +(-3.98111 - 13.5702i) q^{40} +51.2020i q^{41} -4.35417i q^{42} -26.7151 q^{43} +(5.63015 + 21.2674i) q^{44} +(11.0000 + 37.4951i) q^{45} -31.7587i q^{46} -49.4691i q^{47} -4.35417i q^{48} -41.0000 q^{49} +(29.7518 - 19.1006i) q^{50} -23.7769i q^{51} +22.1044 q^{52} +42.7365i q^{53} +25.8857i q^{54} +(-47.0560 + 28.4735i) q^{55} +8.00000 q^{56} +6.39307 q^{57} +51.4449i q^{58} +29.7055 q^{59} +(10.4452 - 3.06433i) q^{60} -12.3155i q^{61} +53.3236 q^{62} -22.1044 q^{63} +8.00000 q^{64} +(15.5563 + 53.0261i) q^{65} +(-16.3699 + 4.33362i) q^{66} -5.84532i q^{67} +43.6857 q^{68} +24.4452 q^{69} +(5.63015 + 19.1912i) q^{70} +86.4452 q^{71} -22.1044 q^{72} +49.0810 q^{73} +74.0088i q^{74} +(14.7020 + 22.9004i) q^{75} +11.7461i q^{76} +(-7.96223 - 30.0766i) q^{77} +17.0141i q^{78} -147.733i q^{79} +(5.63015 + 19.1912i) q^{80} +50.4110 q^{81} -72.4106i q^{82} -105.911 q^{83} +6.15773i q^{84} +(30.7446 + 104.797i) q^{85} +37.7809 q^{86} -39.5980 q^{87} +(-7.96223 - 30.0766i) q^{88} +45.7055 q^{89} +(-15.5563 - 53.0261i) q^{90} -31.2603 q^{91} +44.9136i q^{92} +41.0441i q^{93} +69.9599i q^{94} +(-28.1777 + 8.26653i) q^{95} +6.15773i q^{96} +35.7206i q^{97} +57.9828 q^{98} +(22.0000 + 83.1031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 10 q^{5} + 20 q^{9} - 20 q^{11} + 32 q^{14} - 22 q^{15} + 32 q^{16} - 20 q^{20} - 62 q^{25} - 40 q^{26} - 4 q^{31} + 8 q^{34} + 40 q^{36} - 40 q^{44} + 88 q^{45} - 328 q^{49} + 138 q^{55}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 1.08854i 0.362848i −0.983405 0.181424i \(-0.941929\pi\)
0.983405 0.181424i \(-0.0580706\pi\)
\(4\) 2.00000 0.500000
\(5\) 1.40754 + 4.79780i 0.281507 + 0.959559i
\(6\) 1.53943i 0.256572i
\(7\) −2.82843 −0.404061 −0.202031 0.979379i \(-0.564754\pi\)
−0.202031 + 0.979379i \(0.564754\pi\)
\(8\) −2.82843 −0.353553
\(9\) 7.81507 0.868341
\(10\) −1.99056 6.78511i −0.199056 0.678511i
\(11\) 2.81507 + 10.6337i 0.255916 + 0.966699i
\(12\) 2.17709i 0.181424i
\(13\) 11.0522 0.850168 0.425084 0.905154i \(-0.360245\pi\)
0.425084 + 0.905154i \(0.360245\pi\)
\(14\) 4.00000 0.285714
\(15\) 5.22261 1.53216i 0.348174 0.102144i
\(16\) 4.00000 0.250000
\(17\) 21.8428 1.28487 0.642436 0.766339i \(-0.277924\pi\)
0.642436 + 0.766339i \(0.277924\pi\)
\(18\) −11.0522 −0.614010
\(19\) 5.87305i 0.309108i 0.987984 + 0.154554i \(0.0493940\pi\)
−0.987984 + 0.154554i \(0.950606\pi\)
\(20\) 2.81507 + 9.59559i 0.140754 + 0.479780i
\(21\) 3.07887i 0.146613i
\(22\) −3.98111 15.0383i −0.180960 0.683559i
\(23\) 22.4568i 0.976383i 0.872736 + 0.488192i \(0.162343\pi\)
−0.872736 + 0.488192i \(0.837657\pi\)
\(24\) 3.07887i 0.128286i
\(25\) −21.0377 + 13.5061i −0.841507 + 0.540246i
\(26\) −15.6301 −0.601159
\(27\) 18.3039i 0.677924i
\(28\) −5.65685 −0.202031
\(29\) 36.3770i 1.25438i −0.778866 0.627190i \(-0.784205\pi\)
0.778866 0.627190i \(-0.215795\pi\)
\(30\) −7.38588 + 2.16681i −0.246196 + 0.0722269i
\(31\) −37.7055 −1.21631 −0.608153 0.793820i \(-0.708089\pi\)
−0.608153 + 0.793820i \(0.708089\pi\)
\(32\) −5.65685 −0.176777
\(33\) 11.5752 3.06433i 0.350765 0.0928585i
\(34\) −30.8904 −0.908542
\(35\) −3.98111 13.5702i −0.113746 0.387720i
\(36\) 15.6301 0.434171
\(37\) 52.3321i 1.41438i −0.707023 0.707191i \(-0.749962\pi\)
0.707023 0.707191i \(-0.250038\pi\)
\(38\) 8.30575i 0.218572i
\(39\) 12.0308i 0.308482i
\(40\) −3.98111 13.5702i −0.0995279 0.339255i
\(41\) 51.2020i 1.24883i 0.781093 + 0.624415i \(0.214662\pi\)
−0.781093 + 0.624415i \(0.785338\pi\)
\(42\) 4.35417i 0.103671i
\(43\) −26.7151 −0.621282 −0.310641 0.950527i \(-0.600544\pi\)
−0.310641 + 0.950527i \(0.600544\pi\)
\(44\) 5.63015 + 21.2674i 0.127958 + 0.483350i
\(45\) 11.0000 + 37.4951i 0.244444 + 0.833225i
\(46\) 31.7587i 0.690407i
\(47\) 49.4691i 1.05253i −0.850319 0.526267i \(-0.823591\pi\)
0.850319 0.526267i \(-0.176409\pi\)
\(48\) 4.35417i 0.0907120i
\(49\) −41.0000 −0.836735
\(50\) 29.7518 19.1006i 0.595036 0.382011i
\(51\) 23.7769i 0.466213i
\(52\) 22.1044 0.425084
\(53\) 42.7365i 0.806350i 0.915123 + 0.403175i \(0.132093\pi\)
−0.915123 + 0.403175i \(0.867907\pi\)
\(54\) 25.8857i 0.479364i
\(55\) −47.0560 + 28.4735i −0.855563 + 0.517699i
\(56\) 8.00000 0.142857
\(57\) 6.39307 0.112159
\(58\) 51.4449i 0.886981i
\(59\) 29.7055 0.503483 0.251742 0.967794i \(-0.418997\pi\)
0.251742 + 0.967794i \(0.418997\pi\)
\(60\) 10.4452 3.06433i 0.174087 0.0510722i
\(61\) 12.3155i 0.201893i −0.994892 0.100946i \(-0.967813\pi\)
0.994892 0.100946i \(-0.0321871\pi\)
\(62\) 53.3236 0.860059
\(63\) −22.1044 −0.350863
\(64\) 8.00000 0.125000
\(65\) 15.5563 + 53.0261i 0.239328 + 0.815786i
\(66\) −16.3699 + 4.33362i −0.248028 + 0.0656609i
\(67\) 5.84532i 0.0872436i −0.999048 0.0436218i \(-0.986110\pi\)
0.999048 0.0436218i \(-0.0138897\pi\)
\(68\) 43.6857 0.642436
\(69\) 24.4452 0.354279
\(70\) 5.63015 + 19.1912i 0.0804307 + 0.274160i
\(71\) 86.4452 1.21754 0.608769 0.793347i \(-0.291664\pi\)
0.608769 + 0.793347i \(0.291664\pi\)
\(72\) −22.1044 −0.307005
\(73\) 49.0810 0.672343 0.336171 0.941801i \(-0.390868\pi\)
0.336171 + 0.941801i \(0.390868\pi\)
\(74\) 74.0088i 1.00012i
\(75\) 14.7020 + 22.9004i 0.196027 + 0.305339i
\(76\) 11.7461i 0.154554i
\(77\) −7.96223 30.0766i −0.103406 0.390605i
\(78\) 17.0141i 0.218129i
\(79\) 147.733i 1.87004i −0.354599 0.935019i \(-0.615383\pi\)
0.354599 0.935019i \(-0.384617\pi\)
\(80\) 5.63015 + 19.1912i 0.0703768 + 0.239890i
\(81\) 50.4110 0.622358
\(82\) 72.4106i 0.883056i
\(83\) −105.911 −1.27604 −0.638019 0.770021i \(-0.720246\pi\)
−0.638019 + 0.770021i \(0.720246\pi\)
\(84\) 6.15773i 0.0733063i
\(85\) 30.7446 + 104.797i 0.361701 + 1.23291i
\(86\) 37.7809 0.439312
\(87\) −39.5980 −0.455149
\(88\) −7.96223 30.0766i −0.0904799 0.341780i
\(89\) 45.7055 0.513545 0.256773 0.966472i \(-0.417341\pi\)
0.256773 + 0.966472i \(0.417341\pi\)
\(90\) −15.5563 53.0261i −0.172848 0.589179i
\(91\) −31.2603 −0.343520
\(92\) 44.9136i 0.488192i
\(93\) 41.0441i 0.441334i
\(94\) 69.9599i 0.744254i
\(95\) −28.1777 + 8.26653i −0.296607 + 0.0870161i
\(96\) 6.15773i 0.0641430i
\(97\) 35.7206i 0.368254i 0.982902 + 0.184127i \(0.0589458\pi\)
−0.982902 + 0.184127i \(0.941054\pi\)
\(98\) 57.9828 0.591661
\(99\) 22.0000 + 83.1031i 0.222222 + 0.839425i
\(100\) −42.0754 + 27.0123i −0.420754 + 0.270123i
\(101\) 172.079i 1.70375i −0.523742 0.851877i \(-0.675464\pi\)
0.523742 0.851877i \(-0.324536\pi\)
\(102\) 33.6256i 0.329663i
\(103\) 91.4004i 0.887383i −0.896180 0.443691i \(-0.853669\pi\)
0.896180 0.443691i \(-0.146331\pi\)
\(104\) −31.2603 −0.300580
\(105\) −14.7718 + 4.33362i −0.140684 + 0.0412725i
\(106\) 60.4386i 0.570175i
\(107\) −83.4968 −0.780344 −0.390172 0.920742i \(-0.627584\pi\)
−0.390172 + 0.920742i \(0.627584\pi\)
\(108\) 36.6079i 0.338962i
\(109\) 11.1767i 0.102539i 0.998685 + 0.0512694i \(0.0163267\pi\)
−0.998685 + 0.0512694i \(0.983673\pi\)
\(110\) 66.5472 40.2675i 0.604974 0.366069i
\(111\) −56.9658 −0.513205
\(112\) −11.3137 −0.101015
\(113\) 77.6520i 0.687186i −0.939119 0.343593i \(-0.888356\pi\)
0.939119 0.343593i \(-0.111644\pi\)
\(114\) −9.04117 −0.0793085
\(115\) −107.743 + 31.6088i −0.936897 + 0.274859i
\(116\) 72.7541i 0.627190i
\(117\) 86.3736 0.738236
\(118\) −42.0099 −0.356016
\(119\) −61.7809 −0.519167
\(120\) −14.7718 + 4.33362i −0.123098 + 0.0361135i
\(121\) −105.151 + 59.8692i −0.869014 + 0.494787i
\(122\) 17.4167i 0.142760i
\(123\) 55.7356 0.453135
\(124\) −75.4110 −0.608153
\(125\) −94.4110 81.9241i −0.755288 0.655393i
\(126\) 31.2603 0.248098
\(127\) 132.936 1.04674 0.523370 0.852105i \(-0.324674\pi\)
0.523370 + 0.852105i \(0.324674\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 29.0806i 0.225431i
\(130\) −22.0000 74.9902i −0.169231 0.576848i
\(131\) 148.018i 1.12991i 0.825123 + 0.564953i \(0.191106\pi\)
−0.825123 + 0.564953i \(0.808894\pi\)
\(132\) 23.1505 6.12866i 0.175382 0.0464292i
\(133\) 16.6115i 0.124898i
\(134\) 8.26653i 0.0616905i
\(135\) 87.8186 25.7635i 0.650508 0.190840i
\(136\) −61.7809 −0.454271
\(137\) 212.795i 1.55325i 0.629962 + 0.776626i \(0.283070\pi\)
−0.629962 + 0.776626i \(0.716930\pi\)
\(138\) −34.5708 −0.250513
\(139\) 246.541i 1.77368i −0.462078 0.886839i \(-0.652896\pi\)
0.462078 0.886839i \(-0.347104\pi\)
\(140\) −7.96223 27.1404i −0.0568731 0.193860i
\(141\) −53.8493 −0.381910
\(142\) −122.252 −0.860930
\(143\) 31.1127 + 117.525i 0.217571 + 0.821856i
\(144\) 31.2603 0.217085
\(145\) 174.530 51.2020i 1.20365 0.353117i
\(146\) −69.4110 −0.475418
\(147\) 44.6303i 0.303607i
\(148\) 104.664i 0.707191i
\(149\) 13.6862i 0.0918539i −0.998945 0.0459270i \(-0.985376\pi\)
0.998945 0.0459270i \(-0.0146241\pi\)
\(150\) −20.7918 32.3861i −0.138612 0.215907i
\(151\) 170.139i 1.12675i 0.826202 + 0.563374i \(0.190497\pi\)
−0.826202 + 0.563374i \(0.809503\pi\)
\(152\) 16.6115i 0.109286i
\(153\) 170.703 1.11571
\(154\) 11.2603 + 42.5348i 0.0731188 + 0.276200i
\(155\) −53.0719 180.903i −0.342399 1.16712i
\(156\) 24.0616i 0.154241i
\(157\) 36.5258i 0.232649i 0.993211 + 0.116324i \(0.0371112\pi\)
−0.993211 + 0.116324i \(0.962889\pi\)
\(158\) 208.926i 1.32232i
\(159\) 46.5206 0.292582
\(160\) −7.96223 27.1404i −0.0497639 0.169628i
\(161\) 63.5175i 0.394518i
\(162\) −71.2919 −0.440074
\(163\) 100.914i 0.619104i −0.950882 0.309552i \(-0.899821\pi\)
0.950882 0.309552i \(-0.100179\pi\)
\(164\) 102.404i 0.624415i
\(165\) 30.9946 + 51.2225i 0.187846 + 0.310439i
\(166\) 149.781 0.902294
\(167\) −104.652 −0.626658 −0.313329 0.949645i \(-0.601444\pi\)
−0.313329 + 0.949645i \(0.601444\pi\)
\(168\) 8.70835i 0.0518354i
\(169\) −46.8493 −0.277215
\(170\) −43.4794 148.206i −0.255761 0.871800i
\(171\) 45.8983i 0.268411i
\(172\) −53.4302 −0.310641
\(173\) −206.640 −1.19445 −0.597225 0.802073i \(-0.703730\pi\)
−0.597225 + 0.802073i \(0.703730\pi\)
\(174\) 56.0000 0.321839
\(175\) 59.5036 38.2011i 0.340020 0.218292i
\(176\) 11.2603 + 42.5348i 0.0639789 + 0.241675i
\(177\) 32.3357i 0.182688i
\(178\) −64.6374 −0.363131
\(179\) 125.117 0.698975 0.349488 0.936941i \(-0.386356\pi\)
0.349488 + 0.936941i \(0.386356\pi\)
\(180\) 22.0000 + 74.9902i 0.122222 + 0.416612i
\(181\) 91.6232 0.506205 0.253103 0.967439i \(-0.418549\pi\)
0.253103 + 0.967439i \(0.418549\pi\)
\(182\) 44.2087 0.242905
\(183\) −13.4059 −0.0732564
\(184\) 63.5175i 0.345204i
\(185\) 251.079 73.6594i 1.35718 0.398159i
\(186\) 58.0451i 0.312070i
\(187\) 61.4892 + 232.270i 0.328819 + 1.24209i
\(188\) 98.9382i 0.526267i
\(189\) 51.7714i 0.273923i
\(190\) 39.8493 11.6906i 0.209733 0.0615297i
\(191\) 90.2945 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(192\) 8.70835i 0.0453560i
\(193\) 153.113 0.793332 0.396666 0.917963i \(-0.370167\pi\)
0.396666 + 0.917963i \(0.370167\pi\)
\(194\) 50.5166i 0.260395i
\(195\) 57.7212 16.9338i 0.296006 0.0868398i
\(196\) −82.0000 −0.418367
\(197\) −321.869 −1.63385 −0.816927 0.576741i \(-0.804324\pi\)
−0.816927 + 0.576741i \(0.804324\pi\)
\(198\) −31.1127 117.525i −0.157135 0.593563i
\(199\) −48.5890 −0.244166 −0.122083 0.992520i \(-0.538957\pi\)
−0.122083 + 0.992520i \(0.538957\pi\)
\(200\) 59.5036 38.2011i 0.297518 0.191006i
\(201\) −6.36289 −0.0316561
\(202\) 243.357i 1.20474i
\(203\) 102.890i 0.506846i
\(204\) 47.5538i 0.233107i
\(205\) −245.657 + 72.0687i −1.19833 + 0.351554i
\(206\) 129.260i 0.627474i
\(207\) 175.502i 0.847834i
\(208\) 44.2087 0.212542
\(209\) −62.4522 + 16.5331i −0.298814 + 0.0791056i
\(210\) 20.8904 6.12866i 0.0994783 0.0291841i
\(211\) 145.508i 0.689612i 0.938674 + 0.344806i \(0.112055\pi\)
−0.938674 + 0.344806i \(0.887945\pi\)
\(212\) 85.4731i 0.403175i
\(213\) 94.0994i 0.441781i
\(214\) 118.082 0.551787
\(215\) −37.6025 128.174i −0.174895 0.596156i
\(216\) 51.7714i 0.239682i
\(217\) 106.647 0.491462
\(218\) 15.8063i 0.0725059i
\(219\) 53.4268i 0.243958i
\(220\) −94.1119 + 56.9469i −0.427781 + 0.258850i
\(221\) 241.411 1.09236
\(222\) 80.5618 0.362891
\(223\) 78.0918i 0.350187i −0.984552 0.175094i \(-0.943977\pi\)
0.984552 0.175094i \(-0.0560228\pi\)
\(224\) 16.0000 0.0714286
\(225\) −164.411 + 105.551i −0.730716 + 0.469118i
\(226\) 109.816i 0.485914i
\(227\) 268.701 1.18370 0.591851 0.806047i \(-0.298397\pi\)
0.591851 + 0.806047i \(0.298397\pi\)
\(228\) 12.7861 0.0560796
\(229\) 166.528 0.727195 0.363597 0.931556i \(-0.381548\pi\)
0.363597 + 0.931556i \(0.381548\pi\)
\(230\) 152.372 44.7016i 0.662486 0.194355i
\(231\) −32.7397 + 8.66723i −0.141730 + 0.0375205i
\(232\) 102.890i 0.443490i
\(233\) −42.0682 −0.180550 −0.0902750 0.995917i \(-0.528775\pi\)
−0.0902750 + 0.995917i \(0.528775\pi\)
\(234\) −122.151 −0.522012
\(235\) 237.343 69.6296i 1.00997 0.296296i
\(236\) 59.4110 0.251742
\(237\) −160.814 −0.678539
\(238\) 87.3714 0.367107
\(239\) 10.0906i 0.0422203i −0.999777 0.0211101i \(-0.993280\pi\)
0.999777 0.0211101i \(-0.00672007\pi\)
\(240\) 20.8904 6.12866i 0.0870435 0.0255361i
\(241\) 157.254i 0.652507i −0.945282 0.326254i \(-0.894214\pi\)
0.945282 0.326254i \(-0.105786\pi\)
\(242\) 148.706 84.6679i 0.614486 0.349867i
\(243\) 219.610i 0.903745i
\(244\) 24.6309i 0.100946i
\(245\) −57.7090 196.710i −0.235547 0.802896i
\(246\) −78.8220 −0.320415
\(247\) 64.9100i 0.262794i
\(248\) 106.647 0.430029
\(249\) 115.289i 0.463007i
\(250\) 133.517 + 115.858i 0.534069 + 0.463433i
\(251\) −415.939 −1.65713 −0.828563 0.559896i \(-0.810841\pi\)
−0.828563 + 0.559896i \(0.810841\pi\)
\(252\) −44.2087 −0.175431
\(253\) −238.799 + 63.2176i −0.943869 + 0.249872i
\(254\) −188.000 −0.740157
\(255\) 114.077 33.4668i 0.447359 0.131242i
\(256\) 16.0000 0.0625000
\(257\) 129.015i 0.502003i −0.967987 0.251002i \(-0.919240\pi\)
0.967987 0.251002i \(-0.0807599\pi\)
\(258\) 41.1261i 0.159404i
\(259\) 148.018i 0.571497i
\(260\) 31.1127 + 106.052i 0.119664 + 0.407893i
\(261\) 284.289i 1.08923i
\(262\) 209.329i 0.798964i
\(263\) 229.103 0.871113 0.435556 0.900162i \(-0.356552\pi\)
0.435556 + 0.900162i \(0.356552\pi\)
\(264\) −32.7397 + 8.66723i −0.124014 + 0.0328304i
\(265\) −205.041 + 60.1532i −0.773740 + 0.226993i
\(266\) 23.4922i 0.0883165i
\(267\) 49.7524i 0.186339i
\(268\) 11.6906i 0.0436218i
\(269\) −370.836 −1.37857 −0.689286 0.724489i \(-0.742076\pi\)
−0.689286 + 0.724489i \(0.742076\pi\)
\(270\) −124.194 + 36.4350i −0.459978 + 0.134945i
\(271\) 234.226i 0.864302i 0.901801 + 0.432151i \(0.142245\pi\)
−0.901801 + 0.432151i \(0.857755\pi\)
\(272\) 87.3714 0.321218
\(273\) 34.0282i 0.124645i
\(274\) 300.938i 1.09831i
\(275\) −202.843 185.687i −0.737610 0.675227i
\(276\) 48.8904 0.177139
\(277\) −478.169 −1.72624 −0.863121 0.504997i \(-0.831493\pi\)
−0.863121 + 0.504997i \(0.831493\pi\)
\(278\) 348.662i 1.25418i
\(279\) −294.671 −1.05617
\(280\) 11.2603 + 38.3824i 0.0402153 + 0.137080i
\(281\) 340.847i 1.21298i −0.795091 0.606490i \(-0.792577\pi\)
0.795091 0.606490i \(-0.207423\pi\)
\(282\) 76.1544 0.270051
\(283\) 289.875 1.02429 0.512147 0.858898i \(-0.328850\pi\)
0.512147 + 0.858898i \(0.328850\pi\)
\(284\) 172.890 0.608769
\(285\) 8.99848 + 30.6726i 0.0315736 + 0.107623i
\(286\) −44.0000 166.206i −0.153846 0.581140i
\(287\) 144.821i 0.504603i
\(288\) −44.2087 −0.153503
\(289\) 188.110 0.650898
\(290\) −246.822 + 72.4106i −0.851110 + 0.249692i
\(291\) 38.8835 0.133620
\(292\) 98.1620 0.336171
\(293\) −373.944 −1.27626 −0.638129 0.769930i \(-0.720291\pi\)
−0.638129 + 0.769930i \(0.720291\pi\)
\(294\) 63.1168i 0.214683i
\(295\) 41.8116 + 142.521i 0.141734 + 0.483122i
\(296\) 148.018i 0.500060i
\(297\) 194.638 51.5269i 0.655348 0.173491i
\(298\) 19.3553i 0.0649505i
\(299\) 248.197i 0.830090i
\(300\) 29.4041 + 45.8009i 0.0980135 + 0.152670i
\(301\) 75.5617 0.251036
\(302\) 240.613i 0.796732i
\(303\) −187.316 −0.618204
\(304\) 23.4922i 0.0772770i
\(305\) 59.0871 17.3345i 0.193728 0.0568343i
\(306\) −241.411 −0.788925
\(307\) −366.959 −1.19531 −0.597654 0.801754i \(-0.703900\pi\)
−0.597654 + 0.801754i \(0.703900\pi\)
\(308\) −15.9245 60.1532i −0.0517028 0.195303i
\(309\) −99.4934 −0.321985
\(310\) 75.0550 + 255.836i 0.242113 + 0.825277i
\(311\) −272.589 −0.876492 −0.438246 0.898855i \(-0.644400\pi\)
−0.438246 + 0.898855i \(0.644400\pi\)
\(312\) 34.0282i 0.109065i
\(313\) 83.9447i 0.268194i 0.990968 + 0.134097i \(0.0428134\pi\)
−0.990968 + 0.134097i \(0.957187\pi\)
\(314\) 51.6553i 0.164507i
\(315\) −31.1127 106.052i −0.0987705 0.336674i
\(316\) 295.466i 0.935019i
\(317\) 276.170i 0.871197i −0.900141 0.435599i \(-0.856537\pi\)
0.900141 0.435599i \(-0.143463\pi\)
\(318\) −65.7900 −0.206887
\(319\) 386.822 102.404i 1.21261 0.321016i
\(320\) 11.2603 + 38.3824i 0.0351884 + 0.119945i
\(321\) 90.8899i 0.283146i
\(322\) 89.8272i 0.278967i
\(323\) 128.284i 0.397164i
\(324\) 100.822 0.311179
\(325\) −232.512 + 149.272i −0.715422 + 0.459300i
\(326\) 142.714i 0.437773i
\(327\) 12.1664 0.0372060
\(328\) 144.821i 0.441528i
\(329\) 139.920i 0.425288i
\(330\) −43.8330 72.4395i −0.132827 0.219514i
\(331\) 421.117 1.27226 0.636128 0.771584i \(-0.280535\pi\)
0.636128 + 0.771584i \(0.280535\pi\)
\(332\) −211.822 −0.638019
\(333\) 408.979i 1.22817i
\(334\) 148.000 0.443114
\(335\) 28.0447 8.22750i 0.0837154 0.0245597i
\(336\) 12.3155i 0.0366532i
\(337\) 601.361 1.78445 0.892226 0.451589i \(-0.149143\pi\)
0.892226 + 0.451589i \(0.149143\pi\)
\(338\) 66.2549 0.196020
\(339\) −84.5276 −0.249344
\(340\) 61.4892 + 209.595i 0.180851 + 0.616456i
\(341\) −106.144 400.949i −0.311272 1.17580i
\(342\) 64.9100i 0.189795i
\(343\) 254.558 0.742153
\(344\) 75.5617 0.219656
\(345\) 34.4075 + 117.283i 0.0997320 + 0.339951i
\(346\) 292.233 0.844604
\(347\) 531.241 1.53095 0.765477 0.643463i \(-0.222503\pi\)
0.765477 + 0.643463i \(0.222503\pi\)
\(348\) −79.1960 −0.227575
\(349\) 242.556i 0.695002i −0.937680 0.347501i \(-0.887030\pi\)
0.937680 0.347501i \(-0.112970\pi\)
\(350\) −84.1507 + 54.0246i −0.240431 + 0.154356i
\(351\) 202.298i 0.576349i
\(352\) −15.9245 60.1532i −0.0452399 0.170890i
\(353\) 643.382i 1.82261i 0.411731 + 0.911305i \(0.364924\pi\)
−0.411731 + 0.911305i \(0.635076\pi\)
\(354\) 45.7296i 0.129180i
\(355\) 121.675 + 414.746i 0.342746 + 1.16830i
\(356\) 91.4110 0.256773
\(357\) 67.2512i 0.188379i
\(358\) −176.941 −0.494250
\(359\) 597.374i 1.66399i 0.554780 + 0.831997i \(0.312803\pi\)
−0.554780 + 0.831997i \(0.687197\pi\)
\(360\) −31.1127 106.052i −0.0864242 0.294589i
\(361\) 326.507 0.904452
\(362\) −129.575 −0.357941
\(363\) 65.1703 + 114.461i 0.179532 + 0.315320i
\(364\) −62.5206 −0.171760
\(365\) 69.0833 + 235.481i 0.189269 + 0.645152i
\(366\) 18.9588 0.0518001
\(367\) 680.355i 1.85383i −0.375274 0.926914i \(-0.622451\pi\)
0.375274 0.926914i \(-0.377549\pi\)
\(368\) 89.8272i 0.244096i
\(369\) 400.147i 1.08441i
\(370\) −355.079 + 104.170i −0.959673 + 0.281541i
\(371\) 120.877i 0.325815i
\(372\) 82.0882i 0.220667i
\(373\) 79.3608 0.212763 0.106382 0.994325i \(-0.466073\pi\)
0.106382 + 0.994325i \(0.466073\pi\)
\(374\) −86.9588 328.479i −0.232510 0.878287i
\(375\) −89.1780 + 102.771i −0.237808 + 0.274055i
\(376\) 139.920i 0.372127i
\(377\) 402.046i 1.06643i
\(378\) 73.2158i 0.193692i
\(379\) −86.7327 −0.228846 −0.114423 0.993432i \(-0.536502\pi\)
−0.114423 + 0.993432i \(0.536502\pi\)
\(380\) −56.3554 + 16.5331i −0.148304 + 0.0435081i
\(381\) 144.707i 0.379808i
\(382\) −127.696 −0.334282
\(383\) 734.141i 1.91682i 0.285400 + 0.958409i \(0.407874\pi\)
−0.285400 + 0.958409i \(0.592126\pi\)
\(384\) 12.3155i 0.0320715i
\(385\) 133.094 80.5351i 0.345700 0.209182i
\(386\) −216.535 −0.560970
\(387\) −208.781 −0.539485
\(388\) 71.4413i 0.184127i
\(389\) 287.939 0.740202 0.370101 0.928992i \(-0.379323\pi\)
0.370101 + 0.928992i \(0.379323\pi\)
\(390\) −81.6301 + 23.9480i −0.209308 + 0.0614050i
\(391\) 490.521i 1.25453i
\(392\) 115.966 0.295830
\(393\) 161.124 0.409984
\(394\) 455.192 1.15531
\(395\) 708.792 207.939i 1.79441 0.526429i
\(396\) 44.0000 + 166.206i 0.111111 + 0.419712i
\(397\) 193.045i 0.486260i 0.969994 + 0.243130i \(0.0781741\pi\)
−0.969994 + 0.243130i \(0.921826\pi\)
\(398\) 68.7152 0.172651
\(399\) −18.0823 −0.0453191
\(400\) −84.1507 + 54.0246i −0.210377 + 0.135061i
\(401\) 354.233 0.883374 0.441687 0.897169i \(-0.354380\pi\)
0.441687 + 0.897169i \(0.354380\pi\)
\(402\) 8.99848 0.0223843
\(403\) −416.728 −1.03406
\(404\) 344.158i 0.851877i
\(405\) 70.9553 + 241.862i 0.175198 + 0.597190i
\(406\) 145.508i 0.358394i
\(407\) 556.484 147.319i 1.36728 0.361963i
\(408\) 67.2512i 0.164831i
\(409\) 586.482i 1.43394i 0.697103 + 0.716971i \(0.254472\pi\)
−0.697103 + 0.716971i \(0.745528\pi\)
\(410\) 347.411 101.920i 0.847344 0.248587i
\(411\) 231.637 0.563594
\(412\) 182.801i 0.443691i
\(413\) −84.0199 −0.203438
\(414\) 248.197i 0.599509i
\(415\) −149.074 508.140i −0.359214 1.22443i
\(416\) −62.5206 −0.150290
\(417\) −268.371 −0.643575
\(418\) 88.3207 23.3813i 0.211294 0.0559361i
\(419\) 36.1507 0.0862786 0.0431393 0.999069i \(-0.486264\pi\)
0.0431393 + 0.999069i \(0.486264\pi\)
\(420\) −29.5435 + 8.66723i −0.0703418 + 0.0206363i
\(421\) −295.644 −0.702242 −0.351121 0.936330i \(-0.614200\pi\)
−0.351121 + 0.936330i \(0.614200\pi\)
\(422\) 205.780i 0.487629i
\(423\) 386.605i 0.913959i
\(424\) 120.877i 0.285088i
\(425\) −459.523 + 295.013i −1.08123 + 0.694147i
\(426\) 133.077i 0.312386i
\(427\) 34.8334i 0.0815770i
\(428\) −166.994 −0.390172
\(429\) 127.932 33.8675i 0.298209 0.0789453i
\(430\) 53.1780 + 181.265i 0.123670 + 0.421546i
\(431\) 290.732i 0.674551i 0.941406 + 0.337276i \(0.109505\pi\)
−0.941406 + 0.337276i \(0.890495\pi\)
\(432\) 73.2158i 0.169481i
\(433\) 212.960i 0.491823i −0.969292 0.245912i \(-0.920913\pi\)
0.969292 0.245912i \(-0.0790873\pi\)
\(434\) −150.822 −0.347516
\(435\) −55.7356 189.983i −0.128128 0.436743i
\(436\) 22.3535i 0.0512694i
\(437\) −131.890 −0.301808
\(438\) 75.5569i 0.172504i
\(439\) 157.824i 0.359507i −0.983712 0.179754i \(-0.942470\pi\)
0.983712 0.179754i \(-0.0575300\pi\)
\(440\) 133.094 80.5351i 0.302487 0.183034i
\(441\) −320.418 −0.726571
\(442\) −341.407 −0.772413
\(443\) 218.723i 0.493731i 0.969050 + 0.246865i \(0.0794006\pi\)
−0.969050 + 0.246865i \(0.920599\pi\)
\(444\) −113.932 −0.256603
\(445\) 64.3322 + 219.286i 0.144567 + 0.492777i
\(446\) 110.438i 0.247620i
\(447\) −14.8981 −0.0333290
\(448\) −22.6274 −0.0505076
\(449\) −824.610 −1.83655 −0.918274 0.395946i \(-0.870417\pi\)
−0.918274 + 0.395946i \(0.870417\pi\)
\(450\) 232.512 149.272i 0.516694 0.331716i
\(451\) −544.466 + 144.137i −1.20724 + 0.319595i
\(452\) 155.304i 0.343593i
\(453\) 185.204 0.408838
\(454\) −380.000 −0.837004
\(455\) −44.0000 149.980i −0.0967033 0.329627i
\(456\) −18.0823 −0.0396542
\(457\) 304.472 0.666242 0.333121 0.942884i \(-0.391898\pi\)
0.333121 + 0.942884i \(0.391898\pi\)
\(458\) −235.506 −0.514204
\(459\) 399.810i 0.871046i
\(460\) −215.486 + 63.2176i −0.468449 + 0.137429i
\(461\) 254.639i 0.552363i −0.961106 0.276181i \(-0.910931\pi\)
0.961106 0.276181i \(-0.0890690\pi\)
\(462\) 46.3009 12.2573i 0.100218 0.0265310i
\(463\) 151.472i 0.327153i −0.986531 0.163576i \(-0.947697\pi\)
0.986531 0.163576i \(-0.0523030\pi\)
\(464\) 145.508i 0.313595i
\(465\) −196.921 + 57.7711i −0.423486 + 0.124239i
\(466\) 59.4934 0.127668
\(467\) 719.707i 1.54113i −0.637363 0.770564i \(-0.719975\pi\)
0.637363 0.770564i \(-0.280025\pi\)
\(468\) 172.747 0.369118
\(469\) 16.5331i 0.0352517i
\(470\) −335.653 + 98.4711i −0.714156 + 0.209513i
\(471\) 39.7600 0.0844161
\(472\) −84.0199 −0.178008
\(473\) −75.2050 284.080i −0.158996 0.600592i
\(474\) 227.425 0.479799
\(475\) −79.3223 123.555i −0.166994 0.260117i
\(476\) −123.562 −0.259584
\(477\) 333.989i 0.700187i
\(478\) 14.2703i 0.0298542i
\(479\) 525.759i 1.09762i −0.835948 0.548809i \(-0.815082\pi\)
0.835948 0.548809i \(-0.184918\pi\)
\(480\) −29.5435 + 8.66723i −0.0615490 + 0.0180567i
\(481\) 578.384i 1.20246i
\(482\) 222.391i 0.461392i
\(483\) −69.1415 −0.143150
\(484\) −210.301 + 119.738i −0.434507 + 0.247393i
\(485\) −171.380 + 50.2781i −0.353361 + 0.103666i
\(486\) 310.576i 0.639044i
\(487\) 638.185i 1.31044i 0.755437 + 0.655221i \(0.227424\pi\)
−0.755437 + 0.655221i \(0.772576\pi\)
\(488\) 34.8334i 0.0713799i
\(489\) −109.849 −0.224641
\(490\) 81.6128 + 278.189i 0.166557 + 0.567733i
\(491\) 697.269i 1.42010i 0.704152 + 0.710050i \(0.251327\pi\)
−0.704152 + 0.710050i \(0.748673\pi\)
\(492\) 111.471 0.226567
\(493\) 794.578i 1.61172i
\(494\) 91.7966i 0.185823i
\(495\) −367.746 + 222.522i −0.742921 + 0.449540i
\(496\) −150.822 −0.304077
\(497\) −244.504 −0.491960
\(498\) 163.043i 0.327396i
\(499\) −363.411 −0.728279 −0.364139 0.931344i \(-0.618637\pi\)
−0.364139 + 0.931344i \(0.618637\pi\)
\(500\) −188.822 163.848i −0.377644 0.327696i
\(501\) 113.918i 0.227381i
\(502\) 588.226 1.17176
\(503\) 336.989 0.669959 0.334980 0.942225i \(-0.391271\pi\)
0.334980 + 0.942225i \(0.391271\pi\)
\(504\) 62.5206 0.124049
\(505\) 825.601 242.208i 1.63485 0.479619i
\(506\) 337.712 89.4031i 0.667416 0.176686i
\(507\) 50.9975i 0.100587i
\(508\) 265.872 0.523370
\(509\) 502.528 0.987284 0.493642 0.869665i \(-0.335665\pi\)
0.493642 + 0.869665i \(0.335665\pi\)
\(510\) −161.329 + 47.3292i −0.316331 + 0.0928024i
\(511\) −138.822 −0.271667
\(512\) −22.6274 −0.0441942
\(513\) 107.500 0.209552
\(514\) 182.455i 0.354970i
\(515\) 438.521 128.649i 0.851496 0.249805i
\(516\) 58.1611i 0.112715i
\(517\) 526.039 139.259i 1.01748 0.269360i
\(518\) 209.329i 0.404109i
\(519\) 224.937i 0.433404i
\(520\) −44.0000 149.980i −0.0846154 0.288424i
\(521\) −351.939 −0.675506 −0.337753 0.941235i \(-0.609667\pi\)
−0.337753 + 0.941235i \(0.609667\pi\)
\(522\) 402.046i 0.770202i
\(523\) −402.799 −0.770171 −0.385085 0.922881i \(-0.625828\pi\)
−0.385085 + 0.922881i \(0.625828\pi\)
\(524\) 296.035i 0.564953i
\(525\) −41.5836 64.7722i −0.0792069 0.123376i
\(526\) −324.000 −0.615970
\(527\) −823.595 −1.56280
\(528\) 46.3009 12.2573i 0.0876912 0.0232146i
\(529\) 24.6916 0.0466759
\(530\) 289.972 85.0695i 0.547117 0.160509i
\(531\) 232.151 0.437195
\(532\) 33.2230i 0.0624492i
\(533\) 565.894i 1.06171i
\(534\) 70.3606i 0.131761i
\(535\) −117.525 400.601i −0.219673 0.748786i
\(536\) 16.5331i 0.0308453i
\(537\) 136.195i 0.253622i
\(538\) 524.441 0.974798
\(539\) −115.418 435.981i −0.214134 0.808871i
\(540\) 175.637 51.5269i 0.325254 0.0954202i
\(541\) 227.499i 0.420515i 0.977646 + 0.210258i \(0.0674303\pi\)
−0.977646 + 0.210258i \(0.932570\pi\)
\(542\) 331.245i 0.611154i
\(543\) 99.7358i 0.183676i
\(544\) −123.562 −0.227136
\(545\) −53.6237 + 15.7317i −0.0983921 + 0.0288654i
\(546\) 48.1231i 0.0881376i
\(547\) −724.833 −1.32511 −0.662553 0.749015i \(-0.730527\pi\)
−0.662553 + 0.749015i \(0.730527\pi\)
\(548\) 425.591i 0.776626i
\(549\) 96.2463i 0.175312i
\(550\) 286.863 + 262.602i 0.521569 + 0.477458i
\(551\) 213.644 0.387739
\(552\) −69.1415 −0.125256
\(553\) 417.852i 0.755609i
\(554\) 676.233 1.22064
\(555\) −80.1814 273.310i −0.144471 0.492451i
\(556\) 493.083i 0.886839i
\(557\) 583.537 1.04764 0.523822 0.851828i \(-0.324506\pi\)
0.523822 + 0.851828i \(0.324506\pi\)
\(558\) 416.728 0.746825
\(559\) −295.260 −0.528194
\(560\) −15.9245 54.2809i −0.0284365 0.0969301i
\(561\) 252.836 66.9337i 0.450688 0.119311i
\(562\) 482.031i 0.857707i
\(563\) −262.211 −0.465739 −0.232869 0.972508i \(-0.574811\pi\)
−0.232869 + 0.972508i \(0.574811\pi\)
\(564\) −107.699 −0.190955
\(565\) 372.558 109.298i 0.659395 0.193448i
\(566\) −409.946 −0.724285
\(567\) −142.584 −0.251471
\(568\) −244.504 −0.430465
\(569\) 867.460i 1.52453i 0.647262 + 0.762267i \(0.275914\pi\)
−0.647262 + 0.762267i \(0.724086\pi\)
\(570\) −12.7258 43.3777i −0.0223259 0.0761012i
\(571\) 630.208i 1.10369i 0.833946 + 0.551846i \(0.186076\pi\)
−0.833946 + 0.551846i \(0.813924\pi\)
\(572\) 62.2254 + 235.051i 0.108786 + 0.410928i
\(573\) 98.2895i 0.171535i
\(574\) 204.808i 0.356808i
\(575\) −303.305 472.439i −0.527487 0.821634i
\(576\) 62.5206 0.108543
\(577\) 769.176i 1.33306i 0.745478 + 0.666530i \(0.232221\pi\)
−0.745478 + 0.666530i \(0.767779\pi\)
\(578\) −266.027 −0.460254
\(579\) 166.670i 0.287859i
\(580\) 349.059 102.404i 0.601826 0.176559i
\(581\) 299.562 0.515597
\(582\) −54.9895 −0.0944837
\(583\) −454.447 + 120.306i −0.779498 + 0.206358i
\(584\) −138.822 −0.237709
\(585\) 121.574 + 414.403i 0.207819 + 0.708381i
\(586\) 528.836 0.902450
\(587\) 523.523i 0.891861i 0.895068 + 0.445931i \(0.147127\pi\)
−0.895068 + 0.445931i \(0.852873\pi\)
\(588\) 89.2606i 0.151804i
\(589\) 221.446i 0.375970i
\(590\) −59.1305 201.555i −0.100221 0.341619i
\(591\) 350.369i 0.592840i
\(592\) 209.329i 0.353595i
\(593\) −8.65008 −0.0145870 −0.00729349 0.999973i \(-0.502322\pi\)
−0.00729349 + 0.999973i \(0.502322\pi\)
\(594\) −275.260 + 72.8701i −0.463401 + 0.122677i
\(595\) −86.9588 296.412i −0.146149 0.498171i
\(596\) 27.3725i 0.0459270i
\(597\) 52.8912i 0.0885950i
\(598\) 351.003i 0.586962i
\(599\) 1124.34 1.87703 0.938517 0.345233i \(-0.112200\pi\)
0.938517 + 0.345233i \(0.112200\pi\)
\(600\) −41.5836 64.7722i −0.0693060 0.107954i
\(601\) 533.572i 0.887807i −0.896075 0.443903i \(-0.853593\pi\)
0.896075 0.443903i \(-0.146407\pi\)
\(602\) −106.860 −0.177509
\(603\) 45.6816i 0.0757572i
\(604\) 340.278i 0.563374i
\(605\) −435.244 420.224i −0.719411 0.694584i
\(606\) 264.904 0.437136
\(607\) −933.711 −1.53824 −0.769119 0.639106i \(-0.779305\pi\)
−0.769119 + 0.639106i \(0.779305\pi\)
\(608\) 33.2230i 0.0546431i
\(609\) 112.000 0.183908
\(610\) −83.5617 + 24.5146i −0.136986 + 0.0401879i
\(611\) 546.742i 0.894831i
\(612\) 341.407 0.557854
\(613\) 216.288 0.352835 0.176417 0.984315i \(-0.443549\pi\)
0.176417 + 0.984315i \(0.443549\pi\)
\(614\) 518.959 0.845210
\(615\) 78.4499 + 267.408i 0.127561 + 0.434810i
\(616\) 22.5206 + 85.0695i 0.0365594 + 0.138100i
\(617\) 5.63643i 0.00913522i −0.999990 0.00456761i \(-0.998546\pi\)
0.999990 0.00456761i \(-0.00145392\pi\)
\(618\) 140.705 0.227678
\(619\) 278.870 0.450516 0.225258 0.974299i \(-0.427677\pi\)
0.225258 + 0.974299i \(0.427677\pi\)
\(620\) −106.144 361.807i −0.171200 0.583559i
\(621\) 411.048 0.661913
\(622\) 385.499 0.619773
\(623\) −129.275 −0.207504
\(624\) 48.1231i 0.0771204i
\(625\) 260.168 568.276i 0.416269 0.909241i
\(626\) 118.716i 0.189642i
\(627\) 17.9970 + 67.9819i 0.0287033 + 0.108424i
\(628\) 73.0517i 0.116324i
\(629\) 1143.08i 1.81730i
\(630\) 44.0000 + 149.980i 0.0698413 + 0.238064i
\(631\) −452.843 −0.717659 −0.358830 0.933403i \(-0.616824\pi\)
−0.358830 + 0.933403i \(0.616824\pi\)
\(632\) 417.852i 0.661158i
\(633\) 158.392 0.250224
\(634\) 390.563i 0.616029i
\(635\) 187.112 + 637.800i 0.294665 + 1.00441i
\(636\) 93.0412 0.146291
\(637\) −453.139 −0.711365
\(638\) −547.049 + 144.821i −0.857444 + 0.226992i
\(639\) 675.576 1.05724
\(640\) −15.9245 54.2809i −0.0248820 0.0848138i
\(641\) 457.802 0.714199 0.357100 0.934066i \(-0.383766\pi\)
0.357100 + 0.934066i \(0.383766\pi\)
\(642\) 128.538i 0.200215i
\(643\) 1242.30i 1.93203i −0.258481 0.966016i \(-0.583222\pi\)
0.258481 0.966016i \(-0.416778\pi\)
\(644\) 127.035i 0.197259i
\(645\) −139.523 + 40.9320i −0.216314 + 0.0634604i
\(646\) 181.421i 0.280838i
\(647\) 1045.87i 1.61649i 0.588848 + 0.808243i \(0.299581\pi\)
−0.588848 + 0.808243i \(0.700419\pi\)
\(648\) −142.584 −0.220037
\(649\) 83.6232 + 315.879i 0.128849 + 0.486717i
\(650\) 328.822 211.103i 0.505880 0.324774i
\(651\) 116.090i 0.178326i
\(652\) 201.828i 0.309552i
\(653\) 1051.88i 1.61085i 0.592699 + 0.805424i \(0.298062\pi\)
−0.592699 + 0.805424i \(0.701938\pi\)
\(654\) −17.2058 −0.0263086
\(655\) −710.158 + 208.340i −1.08421 + 0.318077i
\(656\) 204.808i 0.312207i
\(657\) 383.572 0.583823
\(658\) 197.876i 0.300724i
\(659\) 86.2083i 0.130817i −0.997859 0.0654084i \(-0.979165\pi\)
0.997859 0.0654084i \(-0.0208350\pi\)
\(660\) 61.9892 + 102.445i 0.0939230 + 0.155220i
\(661\) −688.664 −1.04185 −0.520926 0.853602i \(-0.674413\pi\)
−0.520926 + 0.853602i \(0.674413\pi\)
\(662\) −595.549 −0.899620
\(663\) 262.786i 0.396360i
\(664\) 299.562 0.451147
\(665\) 79.6985 23.3813i 0.119847 0.0351598i
\(666\) 578.384i 0.868445i
\(667\) 816.912 1.22476
\(668\) −209.304 −0.313329
\(669\) −85.0063 −0.127065
\(670\) −39.6611 + 11.6354i −0.0591957 + 0.0173663i
\(671\) 130.959 34.6689i 0.195170 0.0516676i
\(672\) 17.4167i 0.0259177i
\(673\) 811.827 1.20628 0.603140 0.797635i \(-0.293916\pi\)
0.603140 + 0.797635i \(0.293916\pi\)
\(674\) −850.452 −1.26180
\(675\) 247.216 + 385.072i 0.366245 + 0.570478i
\(676\) −93.6985 −0.138607
\(677\) 236.610 0.349498 0.174749 0.984613i \(-0.444089\pi\)
0.174749 + 0.984613i \(0.444089\pi\)
\(678\) 119.540 0.176313
\(679\) 101.033i 0.148797i
\(680\) −86.9588 296.412i −0.127881 0.435900i
\(681\) 292.492i 0.429504i
\(682\) 150.110 + 567.027i 0.220103 + 0.831418i
\(683\) 101.645i 0.148821i −0.997228 0.0744105i \(-0.976292\pi\)
0.997228 0.0744105i \(-0.0237075\pi\)
\(684\) 91.7966i 0.134206i
\(685\) −1020.95 + 299.517i −1.49044 + 0.437252i
\(686\) −360.000 −0.524781
\(687\) 181.272i 0.263861i
\(688\) −106.860 −0.155320
\(689\) 472.332i 0.685533i
\(690\) −48.6596 165.863i −0.0705212 0.240382i
\(691\) 150.582 0.217919 0.108959 0.994046i \(-0.465248\pi\)
0.108959 + 0.994046i \(0.465248\pi\)
\(692\) −413.280 −0.597225
\(693\) −62.2254 235.051i −0.0897913 0.339179i
\(694\) −751.288 −1.08255
\(695\) 1182.85 347.016i 1.70195 0.499303i
\(696\) 112.000 0.160920
\(697\) 1118.40i 1.60459i
\(698\) 343.026i 0.491441i
\(699\) 45.7930i 0.0655122i
\(700\) 119.007 76.4023i 0.170010 0.109146i
\(701\) 704.744i 1.00534i 0.864478 + 0.502671i \(0.167649\pi\)
−0.864478 + 0.502671i \(0.832351\pi\)
\(702\) 286.093i 0.407540i
\(703\) 307.349 0.437197
\(704\) 22.5206 + 85.0695i 0.0319895 + 0.120837i
\(705\) −75.7948 258.358i −0.107510 0.366465i
\(706\) 909.879i 1.28878i
\(707\) 486.713i 0.688421i
\(708\) 64.6715i 0.0913439i
\(709\) −885.583 −1.24906 −0.624529 0.781001i \(-0.714709\pi\)
−0.624529 + 0.781001i \(0.714709\pi\)
\(710\) −172.074 586.540i −0.242358 0.826113i
\(711\) 1154.54i 1.62383i
\(712\) −129.275 −0.181566
\(713\) 846.746i 1.18758i
\(714\) 95.1075i 0.133204i
\(715\) −520.071 + 314.694i −0.727372 + 0.440131i
\(716\) 250.233 0.349488
\(717\) −10.9841 −0.0153195
\(718\) 844.815i 1.17662i
\(719\) −1128.12 −1.56901 −0.784504 0.620123i \(-0.787083\pi\)
−0.784504 + 0.620123i \(0.787083\pi\)
\(720\) 44.0000 + 149.980i 0.0611111 + 0.208306i
\(721\) 258.519i 0.358557i
\(722\) −461.751 −0.639544
\(723\) −171.178 −0.236761
\(724\) 183.246 0.253103
\(725\) 491.313 + 765.288i 0.677674 + 1.05557i
\(726\) −92.1647 161.873i −0.126949 0.222965i
\(727\) 626.987i 0.862430i −0.902249 0.431215i \(-0.858085\pi\)
0.902249 0.431215i \(-0.141915\pi\)
\(728\) 88.4175 0.121453
\(729\) 214.644 0.294436
\(730\) −97.6985 333.020i −0.133834 0.456192i
\(731\) −583.534 −0.798268
\(732\) −26.8118 −0.0366282
\(733\) 141.276 0.192737 0.0963685 0.995346i \(-0.469277\pi\)
0.0963685 + 0.995346i \(0.469277\pi\)
\(734\) 962.167i 1.31085i
\(735\) −214.127 + 62.8188i −0.291329 + 0.0854677i
\(736\) 127.035i 0.172602i
\(737\) 62.1573 16.4550i 0.0843383 0.0223270i
\(738\) 565.894i 0.766794i
\(739\) 848.418i 1.14806i −0.818834 0.574031i \(-0.805379\pi\)
0.818834 0.574031i \(-0.194621\pi\)
\(740\) 502.158 147.319i 0.678591 0.199079i
\(741\) 70.6574 0.0953541
\(742\) 170.946i 0.230386i
\(743\) 1315.28 1.77023 0.885113 0.465376i \(-0.154081\pi\)
0.885113 + 0.465376i \(0.154081\pi\)
\(744\) 116.090i 0.156035i
\(745\) 65.6637 19.2639i 0.0881393 0.0258575i
\(746\) −112.233 −0.150446
\(747\) −827.703 −1.10804
\(748\) 122.978 + 464.540i 0.164410 + 0.621043i
\(749\) 236.165 0.315307
\(750\) 126.117 145.339i 0.168156 0.193786i
\(751\) −544.405 −0.724906 −0.362453 0.932002i \(-0.618061\pi\)
−0.362453 + 0.932002i \(0.618061\pi\)
\(752\) 197.876i 0.263134i
\(753\) 452.767i 0.601285i
\(754\) 568.578i 0.754083i
\(755\) −816.292 + 239.477i −1.08118 + 0.317188i
\(756\) 103.543i 0.136961i
\(757\) 1065.19i 1.40712i −0.710634 0.703562i \(-0.751592\pi\)
0.710634 0.703562i \(-0.248408\pi\)
\(758\) 122.659 0.161819
\(759\) 68.8151 + 259.943i 0.0906654 + 0.342481i
\(760\) 79.6985 23.3813i 0.104867 0.0307648i
\(761\) 1137.39i 1.49460i −0.664488 0.747299i \(-0.731350\pi\)
0.664488 0.747299i \(-0.268650\pi\)
\(762\) 204.646i 0.268565i
\(763\) 31.6126i 0.0414319i
\(764\) 180.589 0.236373
\(765\) 240.271 + 819.000i 0.314080 + 1.07059i
\(766\) 1038.23i 1.35539i
\(767\) 328.311 0.428045
\(768\) 17.4167i 0.0226780i
\(769\) 375.854i 0.488756i 0.969680 + 0.244378i \(0.0785838\pi\)
−0.969680 + 0.244378i \(0.921416\pi\)
\(770\) −188.224 + 113.894i −0.244447 + 0.147914i
\(771\) −140.438 −0.182151
\(772\) 306.226 0.396666
\(773\) 176.434i 0.228245i −0.993467 0.114123i \(-0.963594\pi\)
0.993467 0.114123i \(-0.0364057\pi\)
\(774\) 295.260 0.381473
\(775\) 793.237 509.256i 1.02353 0.657105i
\(776\) 101.033i 0.130197i
\(777\) 161.124 0.207366
\(778\) −407.207 −0.523402
\(779\) −300.712 −0.386023
\(780\) 115.442 33.8675i 0.148003 0.0434199i
\(781\) 243.350 + 919.232i 0.311587 + 1.17699i
\(782\) 693.701i 0.887085i
\(783\) −665.843 −0.850374
\(784\) −164.000 −0.209184
\(785\) −175.244 + 51.4115i −0.223240 + 0.0654923i
\(786\) −227.863 −0.289902
\(787\) −81.8506 −0.104003 −0.0520017 0.998647i \(-0.516560\pi\)
−0.0520017 + 0.998647i \(0.516560\pi\)
\(788\) −643.739 −0.816927
\(789\) 249.388i 0.316081i
\(790\) −1002.38 + 294.071i −1.26884 + 0.372242i
\(791\) 219.633i 0.277665i
\(792\) −62.2254 235.051i −0.0785674 0.296782i
\(793\) 136.113i 0.171643i
\(794\) 273.007i 0.343838i
\(795\) 65.4794 + 223.196i 0.0823640 + 0.280750i
\(796\) −97.1780 −0.122083
\(797\) 115.706i 0.145177i 0.997362 + 0.0725886i \(0.0231260\pi\)
−0.997362 + 0.0725886i \(0.976874\pi\)
\(798\) 25.5723 0.0320455
\(799\) 1080.55i 1.35237i
\(800\) 119.007 76.4023i 0.148759 0.0955029i
\(801\) 357.192 0.445932
\(802\) −500.961 −0.624640
\(803\) 138.167 + 521.912i 0.172063 + 0.649953i
\(804\) −12.7258 −0.0158281
\(805\) 304.744 89.4031i 0.378564 0.111060i
\(806\) 589.343 0.731194
\(807\) 403.671i 0.500212i
\(808\) 486.713i 0.602368i
\(809\) 793.230i 0.980507i −0.871580 0.490254i \(-0.836904\pi\)
0.871580 0.490254i \(-0.163096\pi\)
\(810\) −100.346 342.044i −0.123884 0.422277i
\(811\) 290.394i 0.358069i 0.983843 + 0.179035i \(0.0572974\pi\)
−0.983843 + 0.179035i \(0.942703\pi\)
\(812\) 205.780i 0.253423i
\(813\) 254.965 0.313610
\(814\) −786.987 + 208.340i −0.966814 + 0.255946i
\(815\) 484.165 142.040i 0.594067 0.174282i
\(816\) 95.1075i 0.116553i
\(817\) 156.899i 0.192043i
\(818\) 829.411i 1.01395i
\(819\) −244.301 −0.298292
\(820\) −491.313 + 144.137i −0.599163 + 0.175777i
\(821\) 850.021i 1.03535i 0.855578 + 0.517674i \(0.173202\pi\)
−0.855578 + 0.517674i \(0.826798\pi\)
\(822\) −327.584 −0.398521
\(823\) 446.765i 0.542850i 0.962460 + 0.271425i \(0.0874949\pi\)
−0.962460 + 0.271425i \(0.912505\pi\)
\(824\) 258.519i 0.313737i
\(825\) −202.129 + 220.803i −0.245005 + 0.267640i
\(826\) 118.822 0.143852
\(827\) 1078.95 1.30465 0.652327 0.757938i \(-0.273793\pi\)
0.652327 + 0.757938i \(0.273793\pi\)
\(828\) 351.003i 0.423917i
\(829\) −560.883 −0.676578 −0.338289 0.941042i \(-0.609848\pi\)
−0.338289 + 0.941042i \(0.609848\pi\)
\(830\) 210.822 + 718.618i 0.254002 + 0.865805i
\(831\) 520.508i 0.626363i
\(832\) 88.4175 0.106271
\(833\) −895.556 −1.07510
\(834\) 379.534 0.455077
\(835\) −147.301 502.098i −0.176409 0.601315i
\(836\) −124.904 + 33.0661i −0.149407 + 0.0395528i
\(837\) 690.159i 0.824563i
\(838\) −51.1249 −0.0610082
\(839\) 82.8835 0.0987884 0.0493942 0.998779i \(-0.484271\pi\)
0.0493942 + 0.998779i \(0.484271\pi\)
\(840\) 41.7809 12.2573i 0.0497391 0.0145920i
\(841\) −482.288 −0.573470
\(842\) 418.104 0.496560
\(843\) −371.027 −0.440127
\(844\) 291.016i 0.344806i
\(845\) −65.9421 224.773i −0.0780379 0.266004i
\(846\) 546.742i 0.646267i
\(847\) 297.411 169.336i 0.351135 0.199924i
\(848\) 170.946i 0.201587i
\(849\) 315.542i 0.371663i
\(850\) 649.863 417.211i 0.764545 0.490836i
\(851\) 1175.21 1.38098
\(852\) 188.199i 0.220891i
\(853\) −412.282 −0.483332 −0.241666 0.970359i \(-0.577694\pi\)
−0.241666 + 0.970359i \(0.577694\pi\)
\(854\) 49.2619i 0.0576837i
\(855\) −220.211 + 64.6035i −0.257556 + 0.0755597i
\(856\) 236.165 0.275893
\(857\) −1108.08 −1.29297 −0.646485 0.762927i \(-0.723762\pi\)
−0.646485 + 0.762927i \(0.723762\pi\)
\(858\) −180.923 + 47.8959i −0.210866 + 0.0558227i
\(859\) 785.281 0.914181 0.457090 0.889420i \(-0.348892\pi\)
0.457090 + 0.889420i \(0.348892\pi\)
\(860\) −75.2050 256.347i −0.0874477 0.298078i
\(861\) −157.644 −0.183094
\(862\) 411.156i 0.476980i
\(863\) 749.791i 0.868819i −0.900716 0.434409i \(-0.856957\pi\)
0.900716 0.434409i \(-0.143043\pi\)
\(864\) 103.543i 0.119841i
\(865\) −290.853 991.416i −0.336247 1.14615i
\(866\) 301.170i 0.347772i
\(867\) 204.765i 0.236177i
\(868\) 213.295 0.245731
\(869\) 1570.95 415.879i 1.80776 0.478572i
\(870\) 78.8220 + 268.677i 0.0906000 + 0.308824i
\(871\) 64.6035i 0.0741717i
\(872\) 31.6126i 0.0362530i
\(873\) 279.159i 0.319770i
\(874\) 186.521 0.213410
\(875\) 267.035 + 231.716i 0.305183 + 0.264819i
\(876\) 106.854i 0.121979i
\(877\) −273.360 −0.311699 −0.155849 0.987781i \(-0.549811\pi\)
−0.155849 + 0.987781i \(0.549811\pi\)
\(878\) 223.196i 0.254210i
\(879\) 407.054i 0.463087i
\(880\) −188.224 + 113.894i −0.213891 + 0.129425i
\(881\) −795.076 −0.902470 −0.451235 0.892405i \(-0.649016\pi\)
−0.451235 + 0.892405i \(0.649016\pi\)
\(882\) 453.139 0.513764
\(883\) 1552.42i 1.75812i 0.476711 + 0.879060i \(0.341829\pi\)
−0.476711 + 0.879060i \(0.658171\pi\)
\(884\) 482.822 0.546179
\(885\) 155.140 45.5137i 0.175300 0.0514280i
\(886\) 309.321i 0.349120i
\(887\) 865.828 0.976131 0.488066 0.872807i \(-0.337703\pi\)
0.488066 + 0.872807i \(0.337703\pi\)
\(888\) 161.124 0.181446
\(889\) −376.000 −0.422947
\(890\) −90.9794 310.117i −0.102224 0.348446i
\(891\) 141.911 + 536.055i 0.159271 + 0.601633i
\(892\) 156.184i 0.175094i
\(893\) 290.534 0.325347
\(894\) 21.0690 0.0235672
\(895\) 176.106 + 600.284i 0.196767 + 0.670708i
\(896\) 32.0000 0.0357143
\(897\) 270.173 0.301196
\(898\) 1166.17 1.29864
\(899\) 1371.61i 1.52571i
\(900\) −328.822 + 211.103i −0.365358 + 0.234559i
\(901\) 933.487i 1.03606i
\(902\) 769.991 203.841i 0.853649 0.225988i
\(903\) 82.2523i 0.0910878i
\(904\) 219.633i 0.242957i
\(905\) 128.963 + 439.589i 0.142501 + 0.485734i
\(906\) −261.918 −0.289092
\(907\) 1393.40i 1.53628i −0.640284 0.768139i \(-0.721183\pi\)
0.640284 0.768139i \(-0.278817\pi\)
\(908\) 537.401 0.591851
\(909\) 1344.81i 1.47944i
\(910\) 62.2254 + 212.104i 0.0683796 + 0.233082i
\(911\) 1578.26 1.73245 0.866224 0.499655i \(-0.166540\pi\)
0.866224 + 0.499655i \(0.166540\pi\)
\(912\) 25.5723 0.0280398
\(913\) −298.147 1126.23i −0.326558 1.23354i
\(914\) −430.589 −0.471104
\(915\) −18.8693 64.3189i −0.0206222 0.0702938i
\(916\) 333.055 0.363597
\(917\) 418.657i 0.456551i
\(918\) 565.417i 0.615922i
\(919\) 249.051i 0.271002i 0.990777 + 0.135501i \(0.0432644\pi\)
−0.990777 + 0.135501i \(0.956736\pi\)
\(920\) 304.744 89.4031i 0.331243 0.0971773i
\(921\) 399.451i 0.433715i
\(922\) 360.114i 0.390579i
\(923\) 955.408 1.03511
\(924\) −65.4794 + 17.3345i −0.0708652 + 0.0187602i
\(925\) 706.805 + 1100.95i 0.764114 + 1.19021i
\(926\) 214.213i 0.231332i
\(927\) 714.301i 0.770551i
\(928\) 205.780i 0.221745i
\(929\) 604.288 0.650471 0.325235 0.945633i \(-0.394556\pi\)
0.325235 + 0.945633i \(0.394556\pi\)
\(930\) 278.489 81.7006i 0.299450 0.0878501i
\(931\) 240.795i 0.258641i
\(932\) −84.1363 −0.0902750
\(933\) 296.725i 0.318033i
\(934\) 1017.82i 1.08974i
\(935\) −1027.84 + 621.941i −1.09929 + 0.665177i
\(936\) −244.301 −0.261006
\(937\) −1248.76 −1.33272 −0.666361 0.745629i \(-0.732149\pi\)
−0.666361 + 0.745629i \(0.732149\pi\)
\(938\) 23.3813i 0.0249267i
\(939\) 91.3775 0.0973136
\(940\) 474.685 139.259i 0.504984 0.148148i
\(941\) 615.457i 0.654046i −0.945016 0.327023i \(-0.893955\pi\)
0.945016 0.327023i \(-0.106045\pi\)
\(942\) −56.2291 −0.0596912
\(943\) −1149.83 −1.21934
\(944\) 118.822 0.125871
\(945\) −248.388 + 72.8701i −0.262845 + 0.0771112i
\(946\) 106.356 + 401.750i 0.112427 + 0.424683i
\(947\) 262.503i 0.277194i 0.990349 + 0.138597i \(0.0442593\pi\)
−0.990349 + 0.138597i \(0.955741\pi\)
\(948\) −321.627 −0.339269
\(949\) 542.452 0.571604
\(950\) 112.179 + 174.734i 0.118083 + 0.183930i
\(951\) −300.623 −0.316112
\(952\) 174.743 0.183553
\(953\) −528.907 −0.554992 −0.277496 0.960727i \(-0.589504\pi\)
−0.277496 + 0.960727i \(0.589504\pi\)
\(954\) 472.332i 0.495107i
\(955\) 127.093 + 433.214i 0.133081 + 0.453628i
\(956\) 20.1813i 0.0211101i
\(957\) −111.471 421.073i −0.116480 0.439992i
\(958\) 743.535i 0.776133i
\(959\) 601.876i 0.627608i
\(960\) 41.7809 12.2573i 0.0435217 0.0127680i
\(961\) 460.706 0.479402
\(962\) 817.959i 0.850269i
\(963\) −652.534 −0.677605
\(964\) 314.508i 0.326254i
\(965\) 215.512 + 734.605i 0.223329 + 0.761249i
\(966\) 97.7809 0.101222
\(967\) 735.954 0.761069 0.380534 0.924767i \(-0.375740\pi\)
0.380534 + 0.924767i \(0.375740\pi\)
\(968\) 297.411 169.336i 0.307243 0.174934i
\(969\) 139.643 0.144110
\(970\) 242.368 71.1040i 0.249864 0.0733031i
\(971\) −1451.82 −1.49518 −0.747588 0.664163i \(-0.768788\pi\)
−0.747588 + 0.664163i \(0.768788\pi\)
\(972\) 439.220i 0.451873i
\(973\) 697.324i 0.716674i
\(974\) 902.530i 0.926622i
\(975\) 162.489 + 253.100i 0.166656 + 0.259590i
\(976\) 49.2619i 0.0504732i
\(977\) 1340.06i 1.37161i −0.727785 0.685806i \(-0.759450\pi\)
0.727785 0.685806i \(-0.240550\pi\)
\(978\) 155.350 0.158845
\(979\) 128.664 + 486.018i 0.131424 + 0.496444i
\(980\) −115.418 393.419i −0.117773 0.401448i
\(981\) 87.3470i 0.0890387i
\(982\) 986.087i 1.00416i
\(983\) 662.938i 0.674403i 0.941432 + 0.337202i \(0.109480\pi\)
−0.941432 + 0.337202i \(0.890520\pi\)
\(984\) −157.644 −0.160207
\(985\) −453.043 1544.26i −0.459942 1.56778i
\(986\) 1123.70i 1.13966i
\(987\) 152.309 0.154315
\(988\) 129.820i 0.131397i
\(989\) 599.936i 0.606609i
\(990\) 520.071 314.694i 0.525324 0.317872i
\(991\) −650.836 −0.656747 −0.328373 0.944548i \(-0.606500\pi\)
−0.328373 + 0.944548i \(0.606500\pi\)
\(992\) 213.295 0.215015
\(993\) 458.404i 0.461635i
\(994\) 345.781 0.347868
\(995\) −68.3908 233.120i −0.0687344 0.234291i
\(996\) 230.578i 0.231504i
\(997\) 189.166 0.189735 0.0948676 0.995490i \(-0.469757\pi\)
0.0948676 + 0.995490i \(0.469757\pi\)
\(998\) 513.941 0.514971
\(999\) −957.884 −0.958843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.3.c.b.109.2 8
3.2 odd 2 990.3.h.b.109.5 8
4.3 odd 2 880.3.i.g.769.6 8
5.2 odd 4 550.3.d.d.351.2 8
5.3 odd 4 550.3.d.d.351.7 8
5.4 even 2 inner 110.3.c.b.109.7 yes 8
11.10 odd 2 inner 110.3.c.b.109.6 yes 8
15.14 odd 2 990.3.h.b.109.2 8
20.19 odd 2 880.3.i.g.769.3 8
33.32 even 2 990.3.h.b.109.1 8
44.43 even 2 880.3.i.g.769.5 8
55.32 even 4 550.3.d.d.351.6 8
55.43 even 4 550.3.d.d.351.3 8
55.54 odd 2 inner 110.3.c.b.109.3 yes 8
165.164 even 2 990.3.h.b.109.6 8
220.219 even 2 880.3.i.g.769.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.3.c.b.109.2 8 1.1 even 1 trivial
110.3.c.b.109.3 yes 8 55.54 odd 2 inner
110.3.c.b.109.6 yes 8 11.10 odd 2 inner
110.3.c.b.109.7 yes 8 5.4 even 2 inner
550.3.d.d.351.2 8 5.2 odd 4
550.3.d.d.351.3 8 55.43 even 4
550.3.d.d.351.6 8 55.32 even 4
550.3.d.d.351.7 8 5.3 odd 4
880.3.i.g.769.3 8 20.19 odd 2
880.3.i.g.769.4 8 220.219 even 2
880.3.i.g.769.5 8 44.43 even 2
880.3.i.g.769.6 8 4.3 odd 2
990.3.h.b.109.1 8 33.32 even 2
990.3.h.b.109.2 8 15.14 odd 2
990.3.h.b.109.5 8 3.2 odd 2
990.3.h.b.109.6 8 165.164 even 2