Properties

Label 110.3.c.b.109.1
Level $110$
Weight $3$
Character 110.109
Analytic conductor $2.997$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,3,Mod(109,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.109"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 110.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.99728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.130897030168576.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 169x^{4} - 112x^{2} + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.1
Root \(-1.41421 - 3.43731i\) of defining polynomial
Character \(\chi\) \(=\) 110.109
Dual form 110.3.c.b.109.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} -3.43731i q^{3} +2.00000 q^{4} +(-3.90754 - 3.11948i) q^{5} +4.86108i q^{6} -2.82843 q^{7} -2.82843 q^{8} -2.81507 q^{9} +(5.52609 + 4.41161i) q^{10} +(-7.81507 + 7.74110i) q^{11} -6.87461i q^{12} -3.98111 q^{13} +4.00000 q^{14} +(-10.7226 + 13.4314i) q^{15} +4.00000 q^{16} -23.2571 q^{17} +3.98111 q^{18} -33.1286i q^{19} +(-7.81507 - 6.23896i) q^{20} +9.72217i q^{21} +(11.0522 - 10.9476i) q^{22} -2.16600i q^{23} +9.72217i q^{24} +(5.53768 + 24.3790i) q^{25} +5.63015 q^{26} -21.2595i q^{27} -5.65685 q^{28} -11.5201i q^{29} +(15.1641 - 18.9949i) q^{30} +36.7055 q^{31} -5.65685 q^{32} +(26.6085 + 26.8628i) q^{33} +32.8904 q^{34} +(11.0522 + 8.82322i) q^{35} -5.63015 q^{36} +17.4456i q^{37} +46.8510i q^{38} +13.6843i q^{39} +(11.0522 + 8.82322i) q^{40} -45.0151i q^{41} -13.7492i q^{42} +63.4847 q^{43} +(-15.6301 + 15.4822i) q^{44} +(11.0000 + 8.78157i) q^{45} +3.06319i q^{46} -46.5919i q^{47} -13.7492i q^{48} -41.0000 q^{49} +(-7.83147 - 34.4771i) q^{50} +79.9416i q^{51} -7.96223 q^{52} -11.2066i q^{53} +30.0655i q^{54} +(54.6859 - 5.86966i) q^{55} +8.00000 q^{56} -113.873 q^{57} +16.2918i q^{58} -44.7055 q^{59} +(-21.4452 + 26.8628i) q^{60} -38.8887i q^{61} -51.9094 q^{62} +7.96223 q^{63} +8.00000 q^{64} +(15.5563 + 12.4190i) q^{65} +(-37.6301 - 37.9897i) q^{66} -91.5360i q^{67} -46.5141 q^{68} -7.44522 q^{69} +(-15.6301 - 12.4779i) q^{70} +54.5548 q^{71} +7.96223 q^{72} -56.1521 q^{73} -24.6718i q^{74} +(83.7980 - 19.0347i) q^{75} -66.2573i q^{76} +(22.1044 - 21.8951i) q^{77} -19.3525i q^{78} +101.917i q^{79} +(-15.6301 - 12.4779i) q^{80} -98.4110 q^{81} +63.6609i q^{82} -15.7113 q^{83} +19.4443i q^{84} +(90.8778 + 72.5499i) q^{85} -89.7809 q^{86} -39.5980 q^{87} +(22.1044 - 21.8951i) q^{88} -28.7055 q^{89} +(-15.5563 - 12.4190i) q^{90} +11.2603 q^{91} -4.33201i q^{92} -126.168i q^{93} +65.8909i q^{94} +(-103.344 + 129.451i) q^{95} +19.4443i q^{96} +76.2564i q^{97} +57.9828 q^{98} +(22.0000 - 21.7918i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 10 q^{5} + 20 q^{9} - 20 q^{11} + 32 q^{14} - 22 q^{15} + 32 q^{16} - 20 q^{20} - 62 q^{25} - 40 q^{26} - 4 q^{31} + 8 q^{34} + 40 q^{36} - 40 q^{44} + 88 q^{45} - 328 q^{49} + 138 q^{55}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 3.43731i 1.14577i −0.819636 0.572884i \(-0.805824\pi\)
0.819636 0.572884i \(-0.194176\pi\)
\(4\) 2.00000 0.500000
\(5\) −3.90754 3.11948i −0.781507 0.623896i
\(6\) 4.86108i 0.810181i
\(7\) −2.82843 −0.404061 −0.202031 0.979379i \(-0.564754\pi\)
−0.202031 + 0.979379i \(0.564754\pi\)
\(8\) −2.82843 −0.353553
\(9\) −2.81507 −0.312786
\(10\) 5.52609 + 4.41161i 0.552609 + 0.441161i
\(11\) −7.81507 + 7.74110i −0.710461 + 0.703736i
\(12\) 6.87461i 0.572884i
\(13\) −3.98111 −0.306240 −0.153120 0.988208i \(-0.548932\pi\)
−0.153120 + 0.988208i \(0.548932\pi\)
\(14\) 4.00000 0.285714
\(15\) −10.7226 + 13.4314i −0.714841 + 0.895427i
\(16\) 4.00000 0.250000
\(17\) −23.2571 −1.36806 −0.684031 0.729453i \(-0.739775\pi\)
−0.684031 + 0.729453i \(0.739775\pi\)
\(18\) 3.98111 0.221173
\(19\) 33.1286i 1.74361i −0.489850 0.871807i \(-0.662949\pi\)
0.489850 0.871807i \(-0.337051\pi\)
\(20\) −7.81507 6.23896i −0.390754 0.311948i
\(21\) 9.72217i 0.462960i
\(22\) 11.0522 10.9476i 0.502372 0.497617i
\(23\) 2.16600i 0.0941741i −0.998891 0.0470870i \(-0.985006\pi\)
0.998891 0.0470870i \(-0.0149938\pi\)
\(24\) 9.72217i 0.405090i
\(25\) 5.53768 + 24.3790i 0.221507 + 0.975159i
\(26\) 5.63015 0.216544
\(27\) 21.2595i 0.787388i
\(28\) −5.65685 −0.202031
\(29\) 11.5201i 0.397244i −0.980076 0.198622i \(-0.936353\pi\)
0.980076 0.198622i \(-0.0636465\pi\)
\(30\) 15.1641 18.9949i 0.505469 0.633162i
\(31\) 36.7055 1.18405 0.592024 0.805920i \(-0.298329\pi\)
0.592024 + 0.805920i \(0.298329\pi\)
\(32\) −5.65685 −0.176777
\(33\) 26.6085 + 26.8628i 0.806319 + 0.814024i
\(34\) 32.8904 0.967366
\(35\) 11.0522 + 8.82322i 0.315777 + 0.252092i
\(36\) −5.63015 −0.156393
\(37\) 17.4456i 0.471502i 0.971813 + 0.235751i \(0.0757550\pi\)
−0.971813 + 0.235751i \(0.924245\pi\)
\(38\) 46.8510i 1.23292i
\(39\) 13.6843i 0.350880i
\(40\) 11.0522 + 8.82322i 0.276305 + 0.220581i
\(41\) 45.0151i 1.09793i −0.835846 0.548964i \(-0.815022\pi\)
0.835846 0.548964i \(-0.184978\pi\)
\(42\) 13.7492i 0.327362i
\(43\) 63.4847 1.47639 0.738194 0.674589i \(-0.235679\pi\)
0.738194 + 0.674589i \(0.235679\pi\)
\(44\) −15.6301 + 15.4822i −0.355231 + 0.351868i
\(45\) 11.0000 + 8.78157i 0.244444 + 0.195146i
\(46\) 3.06319i 0.0665911i
\(47\) 46.5919i 0.991318i −0.868517 0.495659i \(-0.834927\pi\)
0.868517 0.495659i \(-0.165073\pi\)
\(48\) 13.7492i 0.286442i
\(49\) −41.0000 −0.836735
\(50\) −7.83147 34.4771i −0.156629 0.689541i
\(51\) 79.9416i 1.56748i
\(52\) −7.96223 −0.153120
\(53\) 11.2066i 0.211446i −0.994396 0.105723i \(-0.966284\pi\)
0.994396 0.105723i \(-0.0337156\pi\)
\(54\) 30.0655i 0.556768i
\(55\) 54.6859 5.86966i 0.994289 0.106721i
\(56\) 8.00000 0.142857
\(57\) −113.873 −1.99778
\(58\) 16.2918i 0.280894i
\(59\) −44.7055 −0.757721 −0.378860 0.925454i \(-0.623684\pi\)
−0.378860 + 0.925454i \(0.623684\pi\)
\(60\) −21.4452 + 26.8628i −0.357420 + 0.447713i
\(61\) 38.8887i 0.637519i −0.947836 0.318760i \(-0.896734\pi\)
0.947836 0.318760i \(-0.103266\pi\)
\(62\) −51.9094 −0.837249
\(63\) 7.96223 0.126385
\(64\) 8.00000 0.125000
\(65\) 15.5563 + 12.4190i 0.239328 + 0.191062i
\(66\) −37.6301 37.9897i −0.570154 0.575602i
\(67\) 91.5360i 1.36621i −0.730321 0.683104i \(-0.760629\pi\)
0.730321 0.683104i \(-0.239371\pi\)
\(68\) −46.5141 −0.684031
\(69\) −7.44522 −0.107902
\(70\) −15.6301 12.4779i −0.223288 0.178256i
\(71\) 54.5548 0.768377 0.384189 0.923255i \(-0.374481\pi\)
0.384189 + 0.923255i \(0.374481\pi\)
\(72\) 7.96223 0.110587
\(73\) −56.1521 −0.769206 −0.384603 0.923082i \(-0.625662\pi\)
−0.384603 + 0.923082i \(0.625662\pi\)
\(74\) 24.6718i 0.333402i
\(75\) 83.7980 19.0347i 1.11731 0.253796i
\(76\) 66.2573i 0.871807i
\(77\) 22.1044 21.8951i 0.287070 0.284352i
\(78\) 19.3525i 0.248109i
\(79\) 101.917i 1.29008i 0.764148 + 0.645041i \(0.223160\pi\)
−0.764148 + 0.645041i \(0.776840\pi\)
\(80\) −15.6301 12.4779i −0.195377 0.155974i
\(81\) −98.4110 −1.21495
\(82\) 63.6609i 0.776353i
\(83\) −15.7113 −0.189293 −0.0946463 0.995511i \(-0.530172\pi\)
−0.0946463 + 0.995511i \(0.530172\pi\)
\(84\) 19.4443i 0.231480i
\(85\) 90.8778 + 72.5499i 1.06915 + 0.853528i
\(86\) −89.7809 −1.04396
\(87\) −39.5980 −0.455149
\(88\) 22.1044 21.8951i 0.251186 0.248808i
\(89\) −28.7055 −0.322534 −0.161267 0.986911i \(-0.551558\pi\)
−0.161267 + 0.986911i \(0.551558\pi\)
\(90\) −15.5563 12.4190i −0.172848 0.137989i
\(91\) 11.2603 0.123739
\(92\) 4.33201i 0.0470870i
\(93\) 126.168i 1.35665i
\(94\) 65.8909i 0.700967i
\(95\) −103.344 + 129.451i −1.08783 + 1.36265i
\(96\) 19.4443i 0.202545i
\(97\) 76.2564i 0.786148i 0.919507 + 0.393074i \(0.128588\pi\)
−0.919507 + 0.393074i \(0.871412\pi\)
\(98\) 57.9828 0.591661
\(99\) 22.0000 21.7918i 0.222222 0.220119i
\(100\) 11.0754 + 48.7579i 0.110754 + 0.487579i
\(101\) 76.7122i 0.759526i 0.925084 + 0.379763i \(0.123995\pi\)
−0.925084 + 0.379763i \(0.876005\pi\)
\(102\) 113.054i 1.10838i
\(103\) 113.314i 1.10013i 0.835121 + 0.550066i \(0.185397\pi\)
−0.835121 + 0.550066i \(0.814603\pi\)
\(104\) 11.2603 0.108272
\(105\) 30.3281 37.9897i 0.288839 0.361807i
\(106\) 15.8486i 0.149515i
\(107\) 157.036 1.46763 0.733813 0.679352i \(-0.237739\pi\)
0.733813 + 0.679352i \(0.237739\pi\)
\(108\) 42.5190i 0.393694i
\(109\) 171.403i 1.57251i −0.617904 0.786254i \(-0.712018\pi\)
0.617904 0.786254i \(-0.287982\pi\)
\(110\) −77.3375 + 8.30096i −0.703068 + 0.0754633i
\(111\) 59.9658 0.540232
\(112\) −11.3137 −0.101015
\(113\) 83.6491i 0.740258i 0.928980 + 0.370129i \(0.120686\pi\)
−0.928980 + 0.370129i \(0.879314\pi\)
\(114\) 161.041 1.41264
\(115\) −6.75681 + 8.46374i −0.0587548 + 0.0735977i
\(116\) 23.0401i 0.198622i
\(117\) 11.2071 0.0957874
\(118\) 63.2231 0.535789
\(119\) 65.7809 0.552780
\(120\) 30.3281 37.9897i 0.252734 0.316581i
\(121\) 1.15073 120.995i 0.00951016 0.999955i
\(122\) 54.9969i 0.450794i
\(123\) −154.731 −1.25797
\(124\) 73.4110 0.592024
\(125\) 54.4110 112.536i 0.435288 0.900291i
\(126\) −11.2603 −0.0893674
\(127\) 132.936 1.04674 0.523370 0.852105i \(-0.324674\pi\)
0.523370 + 0.852105i \(0.324674\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 218.216i 1.69160i
\(130\) −22.0000 17.5631i −0.169231 0.135101i
\(131\) 49.3436i 0.376668i −0.982105 0.188334i \(-0.939691\pi\)
0.982105 0.188334i \(-0.0603088\pi\)
\(132\) 53.2171 + 53.7256i 0.403160 + 0.407012i
\(133\) 93.7020i 0.704526i
\(134\) 129.451i 0.966055i
\(135\) −66.3186 + 83.0722i −0.491249 + 0.615350i
\(136\) 65.7809 0.483683
\(137\) 22.2957i 0.162742i −0.996684 0.0813711i \(-0.974070\pi\)
0.996684 0.0813711i \(-0.0259299\pi\)
\(138\) 10.5291 0.0762980
\(139\) 261.766i 1.88321i −0.336723 0.941604i \(-0.609318\pi\)
0.336723 0.941604i \(-0.390682\pi\)
\(140\) 22.1044 + 17.6464i 0.157888 + 0.126046i
\(141\) −160.151 −1.13582
\(142\) −77.1521 −0.543325
\(143\) 31.1127 30.8182i 0.217571 0.215512i
\(144\) −11.2603 −0.0781965
\(145\) −35.9366 + 45.0151i −0.247839 + 0.310449i
\(146\) 79.4110 0.543911
\(147\) 140.930i 0.958704i
\(148\) 34.8912i 0.235751i
\(149\) 266.827i 1.79079i 0.445277 + 0.895393i \(0.353105\pi\)
−0.445277 + 0.895393i \(0.646895\pi\)
\(150\) −118.508 + 26.9191i −0.790055 + 0.179461i
\(151\) 123.858i 0.820249i 0.912030 + 0.410125i \(0.134515\pi\)
−0.912030 + 0.410125i \(0.865485\pi\)
\(152\) 93.7020i 0.616460i
\(153\) 65.4703 0.427910
\(154\) −31.2603 + 30.9644i −0.202989 + 0.201068i
\(155\) −143.428 114.502i −0.925343 0.738723i
\(156\) 27.3686i 0.175440i
\(157\) 224.955i 1.43284i 0.697671 + 0.716418i \(0.254220\pi\)
−0.697671 + 0.716418i \(0.745780\pi\)
\(158\) 144.132i 0.912226i
\(159\) −38.5206 −0.242268
\(160\) 22.1044 + 17.6464i 0.138152 + 0.110290i
\(161\) 6.12638i 0.0380521i
\(162\) 139.174 0.859100
\(163\) 62.8838i 0.385790i −0.981219 0.192895i \(-0.938212\pi\)
0.981219 0.192895i \(-0.0617877\pi\)
\(164\) 90.0301i 0.548964i
\(165\) −20.1758 187.972i −0.122278 1.13923i
\(166\) 22.2191 0.133850
\(167\) −104.652 −0.626658 −0.313329 0.949645i \(-0.601444\pi\)
−0.313329 + 0.949645i \(0.601444\pi\)
\(168\) 27.4984i 0.163681i
\(169\) −153.151 −0.906217
\(170\) −128.521 102.601i −0.756003 0.603536i
\(171\) 93.2596i 0.545378i
\(172\) 126.969 0.738194
\(173\) 109.059 0.630400 0.315200 0.949025i \(-0.397928\pi\)
0.315200 + 0.949025i \(0.397928\pi\)
\(174\) 56.0000 0.321839
\(175\) −15.6629 68.9541i −0.0895025 0.394024i
\(176\) −31.2603 + 30.9644i −0.177615 + 0.175934i
\(177\) 153.667i 0.868172i
\(178\) 40.5957 0.228066
\(179\) −98.1165 −0.548137 −0.274069 0.961710i \(-0.588370\pi\)
−0.274069 + 0.961710i \(0.588370\pi\)
\(180\) 22.0000 + 17.5631i 0.122222 + 0.0975729i
\(181\) 357.377 1.97446 0.987229 0.159309i \(-0.0509266\pi\)
0.987229 + 0.159309i \(0.0509266\pi\)
\(182\) −15.9245 −0.0874970
\(183\) −133.672 −0.730450
\(184\) 6.12638i 0.0332956i
\(185\) 54.4212 68.1692i 0.294168 0.368482i
\(186\) 178.429i 0.959294i
\(187\) 181.756 180.035i 0.971955 0.962755i
\(188\) 93.1839i 0.495659i
\(189\) 60.1309i 0.318153i
\(190\) 146.151 183.072i 0.769214 0.963536i
\(191\) 164.706 0.862333 0.431166 0.902272i \(-0.358102\pi\)
0.431166 + 0.902272i \(0.358102\pi\)
\(192\) 27.4984i 0.143221i
\(193\) −312.919 −1.62134 −0.810671 0.585501i \(-0.800898\pi\)
−0.810671 + 0.585501i \(0.800898\pi\)
\(194\) 107.843i 0.555891i
\(195\) 42.6879 53.4719i 0.218912 0.274215i
\(196\) −82.0000 −0.418367
\(197\) −126.436 −0.641809 −0.320905 0.947112i \(-0.603987\pi\)
−0.320905 + 0.947112i \(0.603987\pi\)
\(198\) −31.1127 + 30.8182i −0.157135 + 0.155648i
\(199\) −197.411 −0.992015 −0.496008 0.868318i \(-0.665201\pi\)
−0.496008 + 0.868318i \(0.665201\pi\)
\(200\) −15.6629 68.9541i −0.0783147 0.344771i
\(201\) −314.637 −1.56536
\(202\) 108.487i 0.537066i
\(203\) 32.5837i 0.160511i
\(204\) 159.883i 0.783741i
\(205\) −140.424 + 175.898i −0.684993 + 0.858039i
\(206\) 160.250i 0.777910i
\(207\) 6.09746i 0.0294563i
\(208\) −15.9245 −0.0765599
\(209\) 256.452 + 258.903i 1.22704 + 1.23877i
\(210\) −42.8904 + 53.7256i −0.204240 + 0.255836i
\(211\) 46.0802i 0.218390i 0.994020 + 0.109195i \(0.0348273\pi\)
−0.994020 + 0.109195i \(0.965173\pi\)
\(212\) 22.4132i 0.105723i
\(213\) 187.521i 0.880383i
\(214\) −222.082 −1.03777
\(215\) −248.069 198.039i −1.15381 0.921112i
\(216\) 60.1309i 0.278384i
\(217\) −103.819 −0.478428
\(218\) 242.401i 1.11193i
\(219\) 193.012i 0.881333i
\(220\) 109.372 11.7393i 0.497144 0.0533606i
\(221\) 92.5890 0.418955
\(222\) −84.8045 −0.382002
\(223\) 392.748i 1.76120i −0.473860 0.880600i \(-0.657140\pi\)
0.473860 0.880600i \(-0.342860\pi\)
\(224\) 16.0000 0.0714286
\(225\) −15.5890 68.6286i −0.0692844 0.305016i
\(226\) 118.298i 0.523441i
\(227\) 268.701 1.18370 0.591851 0.806047i \(-0.298397\pi\)
0.591851 + 0.806047i \(0.298397\pi\)
\(228\) −227.747 −0.998889
\(229\) −205.528 −0.897500 −0.448750 0.893657i \(-0.648131\pi\)
−0.448750 + 0.893657i \(0.648131\pi\)
\(230\) 9.55557 11.9695i 0.0415460 0.0520415i
\(231\) −75.2603 75.9795i −0.325802 0.328915i
\(232\) 32.5837i 0.140447i
\(233\) 303.698 1.30342 0.651712 0.758467i \(-0.274051\pi\)
0.651712 + 0.758467i \(0.274051\pi\)
\(234\) −15.8493 −0.0677319
\(235\) −145.343 + 182.060i −0.618479 + 0.774722i
\(236\) −89.4110 −0.378860
\(237\) 350.318 1.47814
\(238\) −93.0282 −0.390875
\(239\) 186.885i 0.781948i −0.920402 0.390974i \(-0.872138\pi\)
0.920402 0.390974i \(-0.127862\pi\)
\(240\) −42.8904 + 53.7256i −0.178710 + 0.223857i
\(241\) 20.1770i 0.0837222i 0.999123 + 0.0418611i \(0.0133287\pi\)
−0.999123 + 0.0418611i \(0.986671\pi\)
\(242\) −1.62738 + 171.112i −0.00672470 + 0.707075i
\(243\) 146.933i 0.604664i
\(244\) 77.7774i 0.318760i
\(245\) 160.209 + 127.899i 0.653914 + 0.522036i
\(246\) 218.822 0.889520
\(247\) 131.889i 0.533963i
\(248\) −103.819 −0.418624
\(249\) 54.0045i 0.216886i
\(250\) −76.9488 + 159.151i −0.307795 + 0.636602i
\(251\) 104.939 0.418082 0.209041 0.977907i \(-0.432966\pi\)
0.209041 + 0.977907i \(0.432966\pi\)
\(252\) 15.9245 0.0631923
\(253\) 16.7673 + 16.9275i 0.0662737 + 0.0669070i
\(254\) −188.000 −0.740157
\(255\) 249.376 312.375i 0.977946 1.22500i
\(256\) 16.0000 0.0625000
\(257\) 115.079i 0.447778i −0.974615 0.223889i \(-0.928125\pi\)
0.974615 0.223889i \(-0.0718753\pi\)
\(258\) 308.604i 1.19614i
\(259\) 49.3436i 0.190516i
\(260\) 31.1127 + 24.8380i 0.119664 + 0.0955308i
\(261\) 32.4298i 0.124252i
\(262\) 69.7823i 0.266345i
\(263\) 229.103 0.871113 0.435556 0.900162i \(-0.356552\pi\)
0.435556 + 0.900162i \(0.356552\pi\)
\(264\) −75.2603 75.9795i −0.285077 0.287801i
\(265\) −34.9588 + 43.7903i −0.131920 + 0.165246i
\(266\) 132.515i 0.498175i
\(267\) 98.6696i 0.369549i
\(268\) 183.072i 0.683104i
\(269\) 500.836 1.86184 0.930922 0.365218i \(-0.119006\pi\)
0.930922 + 0.365218i \(0.119006\pi\)
\(270\) 93.7886 117.482i 0.347365 0.435118i
\(271\) 222.877i 0.822425i 0.911539 + 0.411213i \(0.134895\pi\)
−0.911539 + 0.411213i \(0.865105\pi\)
\(272\) −93.0282 −0.342015
\(273\) 38.7051i 0.141777i
\(274\) 31.5309i 0.115076i
\(275\) −231.997 147.656i −0.843627 0.536930i
\(276\) −14.8904 −0.0539509
\(277\) −162.470 −0.586533 −0.293267 0.956031i \(-0.594742\pi\)
−0.293267 + 0.956031i \(0.594742\pi\)
\(278\) 370.193i 1.33163i
\(279\) −103.329 −0.370354
\(280\) −31.2603 24.9558i −0.111644 0.0891280i
\(281\) 352.861i 1.25573i −0.778321 0.627867i \(-0.783928\pi\)
0.778321 0.627867i \(-0.216072\pi\)
\(282\) 226.487 0.803147
\(283\) −281.390 −0.994311 −0.497155 0.867661i \(-0.665622\pi\)
−0.497155 + 0.867661i \(0.665622\pi\)
\(284\) 109.110 0.384189
\(285\) 444.964 + 355.226i 1.56128 + 1.24641i
\(286\) −44.0000 + 43.5835i −0.153846 + 0.152390i
\(287\) 127.322i 0.443630i
\(288\) 15.9245 0.0552933
\(289\) 251.890 0.871593
\(290\) 50.8220 63.6609i 0.175248 0.219520i
\(291\) 262.117 0.900744
\(292\) −112.304 −0.384603
\(293\) 242.422 0.827378 0.413689 0.910418i \(-0.364240\pi\)
0.413689 + 0.910418i \(0.364240\pi\)
\(294\) 199.304i 0.677906i
\(295\) 174.688 + 139.458i 0.592164 + 0.472739i
\(296\) 49.3436i 0.166701i
\(297\) 164.572 + 166.144i 0.554114 + 0.559409i
\(298\) 377.350i 1.26628i
\(299\) 8.62311i 0.0288398i
\(300\) 167.596 38.0694i 0.558653 0.126898i
\(301\) −179.562 −0.596551
\(302\) 175.161i 0.580004i
\(303\) 263.683 0.870242
\(304\) 132.515i 0.435903i
\(305\) −121.312 + 151.959i −0.397746 + 0.498226i
\(306\) −92.5890 −0.302578
\(307\) −487.226 −1.58705 −0.793527 0.608535i \(-0.791758\pi\)
−0.793527 + 0.608535i \(0.791758\pi\)
\(308\) 44.2087 43.7903i 0.143535 0.142176i
\(309\) 389.493 1.26050
\(310\) 202.838 + 161.930i 0.654316 + 0.522356i
\(311\) −421.411 −1.35502 −0.677510 0.735514i \(-0.736941\pi\)
−0.677510 + 0.735514i \(0.736941\pi\)
\(312\) 38.7051i 0.124055i
\(313\) 502.247i 1.60462i −0.596905 0.802312i \(-0.703603\pi\)
0.596905 0.802312i \(-0.296397\pi\)
\(314\) 318.135i 1.01317i
\(315\) −31.1127 24.8380i −0.0987705 0.0788508i
\(316\) 203.833i 0.645041i
\(317\) 616.290i 1.94413i −0.234706 0.972066i \(-0.575413\pi\)
0.234706 0.972066i \(-0.424587\pi\)
\(318\) 54.4763 0.171309
\(319\) 89.1780 + 90.0301i 0.279555 + 0.282226i
\(320\) −31.2603 24.9558i −0.0976884 0.0779870i
\(321\) 539.781i 1.68156i
\(322\) 8.66402i 0.0269069i
\(323\) 770.475i 2.38537i
\(324\) −196.822 −0.607475
\(325\) −22.0461 97.0555i −0.0678343 0.298632i
\(326\) 88.9311i 0.272795i
\(327\) −589.165 −1.80173
\(328\) 127.322i 0.388176i
\(329\) 131.782i 0.400553i
\(330\) 28.5329 + 265.833i 0.0864634 + 0.805554i
\(331\) 197.883 0.597835 0.298918 0.954279i \(-0.403374\pi\)
0.298918 + 0.954279i \(0.403374\pi\)
\(332\) −31.4226 −0.0946463
\(333\) 49.1106i 0.147479i
\(334\) 148.000 0.443114
\(335\) −285.545 + 357.680i −0.852372 + 1.06770i
\(336\) 38.8887i 0.115740i
\(337\) 375.861 1.11531 0.557657 0.830071i \(-0.311700\pi\)
0.557657 + 0.830071i \(0.311700\pi\)
\(338\) 216.588 0.640792
\(339\) 287.528 0.848164
\(340\) 181.756 + 145.100i 0.534575 + 0.426764i
\(341\) −286.856 + 284.141i −0.841221 + 0.833258i
\(342\) 131.889i 0.385640i
\(343\) 254.558 0.742153
\(344\) −179.562 −0.521982
\(345\) 29.0925 + 23.2252i 0.0843260 + 0.0673195i
\(346\) −154.233 −0.445760
\(347\) −310.624 −0.895169 −0.447584 0.894242i \(-0.647716\pi\)
−0.447584 + 0.894242i \(0.647716\pi\)
\(348\) −79.1960 −0.227575
\(349\) 474.256i 1.35890i 0.733722 + 0.679450i \(0.237781\pi\)
−0.733722 + 0.679450i \(0.762219\pi\)
\(350\) 22.1507 + 97.5159i 0.0632878 + 0.278617i
\(351\) 84.6364i 0.241129i
\(352\) 44.2087 43.7903i 0.125593 0.124404i
\(353\) 460.434i 1.30434i 0.758071 + 0.652172i \(0.226142\pi\)
−0.758071 + 0.652172i \(0.773858\pi\)
\(354\) 217.317i 0.613891i
\(355\) −213.175 170.183i −0.600492 0.479388i
\(356\) −57.4110 −0.161267
\(357\) 226.109i 0.633359i
\(358\) 138.758 0.387591
\(359\) 335.649i 0.934955i −0.884005 0.467477i \(-0.845163\pi\)
0.884005 0.467477i \(-0.154837\pi\)
\(360\) −31.1127 24.8380i −0.0864242 0.0689945i
\(361\) −736.507 −2.04019
\(362\) −505.407 −1.39615
\(363\) −415.895 3.95541i −1.14572 0.0108964i
\(364\) 22.5206 0.0618697
\(365\) 219.416 + 175.165i 0.601140 + 0.479905i
\(366\) 189.041 0.516506
\(367\) 175.255i 0.477533i −0.971077 0.238767i \(-0.923257\pi\)
0.971077 0.238767i \(-0.0767431\pi\)
\(368\) 8.66402i 0.0235435i
\(369\) 126.721i 0.343416i
\(370\) −76.9631 + 96.4059i −0.208008 + 0.260556i
\(371\) 31.6971i 0.0854369i
\(372\) 252.336i 0.678323i
\(373\) −236.338 −0.633615 −0.316808 0.948490i \(-0.602611\pi\)
−0.316808 + 0.948490i \(0.602611\pi\)
\(374\) −257.041 + 254.608i −0.687276 + 0.680771i
\(375\) −386.822 187.027i −1.03153 0.498740i
\(376\) 131.782i 0.350484i
\(377\) 45.8627i 0.121652i
\(378\) 85.0379i 0.224968i
\(379\) −416.267 −1.09833 −0.549165 0.835714i \(-0.685054\pi\)
−0.549165 + 0.835714i \(0.685054\pi\)
\(380\) −206.688 + 258.903i −0.543917 + 0.681323i
\(381\) 456.942i 1.19932i
\(382\) −232.929 −0.609761
\(383\) 166.451i 0.434599i −0.976105 0.217299i \(-0.930275\pi\)
0.976105 0.217299i \(-0.0697248\pi\)
\(384\) 38.8887i 0.101273i
\(385\) −154.675 + 16.6019i −0.401753 + 0.0431219i
\(386\) 442.535 1.14646
\(387\) −178.714 −0.461793
\(388\) 152.513i 0.393074i
\(389\) −232.939 −0.598814 −0.299407 0.954126i \(-0.596789\pi\)
−0.299407 + 0.954126i \(0.596789\pi\)
\(390\) −60.3699 + 75.6207i −0.154794 + 0.193899i
\(391\) 50.3749i 0.128836i
\(392\) 115.966 0.295830
\(393\) −169.609 −0.431575
\(394\) 178.808 0.453828
\(395\) 317.927 398.243i 0.804878 1.00821i
\(396\) 44.0000 43.5835i 0.111111 0.110059i
\(397\) 705.825i 1.77790i −0.458006 0.888949i \(-0.651436\pi\)
0.458006 0.888949i \(-0.348564\pi\)
\(398\) 279.181 0.701461
\(399\) 322.082 0.807224
\(400\) 22.1507 + 97.5159i 0.0553768 + 0.243790i
\(401\) −92.2331 −0.230008 −0.115004 0.993365i \(-0.536688\pi\)
−0.115004 + 0.993365i \(0.536688\pi\)
\(402\) 444.964 1.10688
\(403\) −146.129 −0.362603
\(404\) 153.424i 0.379763i
\(405\) 384.545 + 306.991i 0.949493 + 0.758003i
\(406\) 46.0802i 0.113498i
\(407\) −135.048 136.338i −0.331813 0.334984i
\(408\) 226.109i 0.554189i
\(409\) 111.673i 0.273038i −0.990637 0.136519i \(-0.956409\pi\)
0.990637 0.136519i \(-0.0435915\pi\)
\(410\) 198.589 248.757i 0.484363 0.606725i
\(411\) −76.6371 −0.186465
\(412\) 226.627i 0.550066i
\(413\) 126.446 0.306165
\(414\) 8.62311i 0.0208288i
\(415\) 61.3925 + 49.0111i 0.147934 + 0.118099i
\(416\) 22.5206 0.0541360
\(417\) −899.769 −2.15772
\(418\) −362.678 366.144i −0.867651 0.875942i
\(419\) −70.1507 −0.167424 −0.0837121 0.996490i \(-0.526678\pi\)
−0.0837121 + 0.996490i \(0.526678\pi\)
\(420\) 60.6562 75.9795i 0.144420 0.180903i
\(421\) 299.644 0.711744 0.355872 0.934535i \(-0.384184\pi\)
0.355872 + 0.934535i \(0.384184\pi\)
\(422\) 65.1673i 0.154425i
\(423\) 131.160i 0.310070i
\(424\) 31.6971i 0.0747573i
\(425\) −128.790 566.983i −0.303036 1.33408i
\(426\) 265.195i 0.622524i
\(427\) 109.994i 0.257597i
\(428\) 314.072 0.733813
\(429\) −105.932 106.944i −0.246927 0.249286i
\(430\) 350.822 + 280.070i 0.815865 + 0.651325i
\(431\) 39.5875i 0.0918504i 0.998945 + 0.0459252i \(0.0146236\pi\)
−0.998945 + 0.0459252i \(0.985376\pi\)
\(432\) 85.0379i 0.196847i
\(433\) 387.168i 0.894153i 0.894496 + 0.447076i \(0.147535\pi\)
−0.894496 + 0.447076i \(0.852465\pi\)
\(434\) 146.822 0.338300
\(435\) 154.731 + 123.525i 0.355702 + 0.283966i
\(436\) 342.807i 0.786254i
\(437\) −71.7568 −0.164203
\(438\) 272.960i 0.623196i
\(439\) 84.9689i 0.193551i −0.995306 0.0967755i \(-0.969147\pi\)
0.995306 0.0967755i \(-0.0308529\pi\)
\(440\) −154.675 + 16.6019i −0.351534 + 0.0377316i
\(441\) 115.418 0.261719
\(442\) −130.941 −0.296246
\(443\) 113.196i 0.255521i −0.991805 0.127761i \(-0.959221\pi\)
0.991805 0.127761i \(-0.0407790\pi\)
\(444\) 119.932 0.270116
\(445\) 112.168 + 89.5463i 0.252063 + 0.201228i
\(446\) 555.429i 1.24536i
\(447\) 917.166 2.05183
\(448\) −22.6274 −0.0505076
\(449\) −112.390 −0.250312 −0.125156 0.992137i \(-0.539943\pi\)
−0.125156 + 0.992137i \(0.539943\pi\)
\(450\) 22.0461 + 97.0555i 0.0489914 + 0.215679i
\(451\) 348.466 + 351.796i 0.772652 + 0.780035i
\(452\) 167.298i 0.370129i
\(453\) 425.737 0.939816
\(454\) −380.000 −0.837004
\(455\) −44.0000 35.1263i −0.0967033 0.0772006i
\(456\) 322.082 0.706321
\(457\) 409.705 0.896511 0.448255 0.893906i \(-0.352046\pi\)
0.448255 + 0.893906i \(0.352046\pi\)
\(458\) 290.660 0.634628
\(459\) 494.433i 1.07720i
\(460\) −13.5136 + 16.9275i −0.0293774 + 0.0367989i
\(461\) 80.6404i 0.174925i −0.996168 0.0874625i \(-0.972124\pi\)
0.996168 0.0874625i \(-0.0278758\pi\)
\(462\) 106.434 + 107.451i 0.230377 + 0.232578i
\(463\) 112.913i 0.243873i −0.992538 0.121936i \(-0.961090\pi\)
0.992538 0.121936i \(-0.0389104\pi\)
\(464\) 46.0802i 0.0993109i
\(465\) −393.579 + 493.006i −0.846406 + 1.06023i
\(466\) −429.493 −0.921660
\(467\) 65.8748i 0.141060i 0.997510 + 0.0705298i \(0.0224690\pi\)
−0.997510 + 0.0705298i \(0.977531\pi\)
\(468\) 22.4143 0.0478937
\(469\) 258.903i 0.552032i
\(470\) 205.546 257.471i 0.437331 0.547811i
\(471\) 773.240 1.64170
\(472\) 126.446 0.267895
\(473\) −496.137 + 491.441i −1.04892 + 1.03899i
\(474\) −495.425 −1.04520
\(475\) 807.642 183.456i 1.70030 0.386223i
\(476\) 131.562 0.276390
\(477\) 31.5475i 0.0661372i
\(478\) 264.296i 0.552920i
\(479\) 148.397i 0.309806i 0.987930 + 0.154903i \(0.0495065\pi\)
−0.987930 + 0.154903i \(0.950494\pi\)
\(480\) 60.6562 75.9795i 0.126367 0.158291i
\(481\) 69.4529i 0.144393i
\(482\) 28.5347i 0.0592005i
\(483\) 21.0583 0.0435989
\(484\) 2.30146 241.989i 0.00475508 0.499977i
\(485\) 237.880 297.975i 0.490475 0.614381i
\(486\) 207.795i 0.427562i
\(487\) 104.062i 0.213679i −0.994276 0.106840i \(-0.965927\pi\)
0.994276 0.106840i \(-0.0340731\pi\)
\(488\) 109.994i 0.225397i
\(489\) −216.151 −0.442026
\(490\) −226.570 180.876i −0.462387 0.369135i
\(491\) 330.255i 0.672617i −0.941752 0.336309i \(-0.890821\pi\)
0.941752 0.336309i \(-0.109179\pi\)
\(492\) −309.461 −0.628986
\(493\) 267.923i 0.543454i
\(494\) 186.519i 0.377569i
\(495\) −153.945 + 16.5235i −0.311000 + 0.0333809i
\(496\) 146.822 0.296012
\(497\) −154.304 −0.310471
\(498\) 76.3739i 0.153361i
\(499\) −214.589 −0.430038 −0.215019 0.976610i \(-0.568981\pi\)
−0.215019 + 0.976610i \(0.568981\pi\)
\(500\) 108.822 225.073i 0.217644 0.450146i
\(501\) 359.720i 0.718005i
\(502\) −148.406 −0.295629
\(503\) 848.122 1.68613 0.843063 0.537815i \(-0.180750\pi\)
0.843063 + 0.537815i \(0.180750\pi\)
\(504\) −22.5206 −0.0446837
\(505\) 239.302 299.756i 0.473866 0.593575i
\(506\) −23.7125 23.9391i −0.0468626 0.0473104i
\(507\) 526.426i 1.03832i
\(508\) 265.872 0.523370
\(509\) 130.472 0.256331 0.128165 0.991753i \(-0.459091\pi\)
0.128165 + 0.991753i \(0.459091\pi\)
\(510\) −352.671 + 441.765i −0.691512 + 0.866205i
\(511\) 158.822 0.310806
\(512\) −22.6274 −0.0441942
\(513\) −704.298 −1.37290
\(514\) 162.746i 0.316627i
\(515\) 353.479 442.777i 0.686368 0.859761i
\(516\) 436.432i 0.845799i
\(517\) 360.673 + 364.119i 0.697626 + 0.704293i
\(518\) 69.7823i 0.134715i
\(519\) 374.870i 0.722293i
\(520\) −44.0000 35.1263i −0.0846154 0.0675505i
\(521\) 168.939 0.324258 0.162129 0.986770i \(-0.448164\pi\)
0.162129 + 0.986770i \(0.448164\pi\)
\(522\) 45.8627i 0.0878595i
\(523\) 18.1331 0.0346713 0.0173357 0.999850i \(-0.494482\pi\)
0.0173357 + 0.999850i \(0.494482\pi\)
\(524\) 98.6871i 0.188334i
\(525\) −237.016 + 53.8383i −0.451460 + 0.102549i
\(526\) −324.000 −0.615970
\(527\) −853.662 −1.61985
\(528\) 106.434 + 107.451i 0.201580 + 0.203506i
\(529\) 524.308 0.991131
\(530\) 49.4393 61.9288i 0.0932816 0.116847i
\(531\) 125.849 0.237004
\(532\) 187.404i 0.352263i
\(533\) 179.210i 0.336229i
\(534\) 139.540i 0.261311i
\(535\) −613.624 489.871i −1.14696 0.915646i
\(536\) 258.903i 0.483028i
\(537\) 337.257i 0.628038i
\(538\) −708.289 −1.31652
\(539\) 320.418 317.385i 0.594468 0.588841i
\(540\) −132.637 + 166.144i −0.245624 + 0.307675i
\(541\) 98.2869i 0.181676i 0.995866 + 0.0908382i \(0.0289546\pi\)
−0.995866 + 0.0908382i \(0.971045\pi\)
\(542\) 315.196i 0.581542i
\(543\) 1228.41i 2.26227i
\(544\) 131.562 0.241841
\(545\) −534.689 + 669.765i −0.981081 + 1.22893i
\(546\) 54.7372i 0.100251i
\(547\) 207.231 0.378850 0.189425 0.981895i \(-0.439338\pi\)
0.189425 + 0.981895i \(0.439338\pi\)
\(548\) 44.5914i 0.0813711i
\(549\) 109.474i 0.199407i
\(550\) 328.094 + 208.817i 0.596534 + 0.379667i
\(551\) −381.644 −0.692639
\(552\) 21.0583 0.0381490
\(553\) 288.264i 0.521272i
\(554\) 229.767 0.414742
\(555\) −234.319 187.062i −0.422196 0.337049i
\(556\) 523.532i 0.941604i
\(557\) 959.370 1.72239 0.861194 0.508277i \(-0.169717\pi\)
0.861194 + 0.508277i \(0.169717\pi\)
\(558\) 146.129 0.261880
\(559\) −252.740 −0.452128
\(560\) 44.2087 + 35.2929i 0.0789442 + 0.0630230i
\(561\) −618.836 624.749i −1.10309 1.11364i
\(562\) 499.021i 0.887938i
\(563\) −51.7446 −0.0919088 −0.0459544 0.998944i \(-0.514633\pi\)
−0.0459544 + 0.998944i \(0.514633\pi\)
\(564\) −320.301 −0.567910
\(565\) 260.942 326.862i 0.461844 0.578517i
\(566\) 397.946 0.703084
\(567\) 278.348 0.490914
\(568\) −154.304 −0.271662
\(569\) 362.183i 0.636526i 0.948003 + 0.318263i \(0.103099\pi\)
−0.948003 + 0.318263i \(0.896901\pi\)
\(570\) −629.274 502.365i −1.10399 0.881342i
\(571\) 698.164i 1.22270i 0.791358 + 0.611352i \(0.209374\pi\)
−0.791358 + 0.611352i \(0.790626\pi\)
\(572\) 62.2254 61.6364i 0.108786 0.107756i
\(573\) 566.143i 0.988034i
\(574\) 180.060i 0.313694i
\(575\) 52.8049 11.9946i 0.0918347 0.0208602i
\(576\) −22.5206 −0.0390982
\(577\) 19.2829i 0.0334192i −0.999860 0.0167096i \(-0.994681\pi\)
0.999860 0.0167096i \(-0.00531908\pi\)
\(578\) −356.227 −0.616309
\(579\) 1075.60i 1.85768i
\(580\) −71.8732 + 90.0301i −0.123919 + 0.155224i
\(581\) 44.4383 0.0764858
\(582\) −370.689 −0.636922
\(583\) 86.7516 + 87.5806i 0.148802 + 0.150224i
\(584\) 158.822 0.271956
\(585\) −43.7923 34.9604i −0.0748586 0.0597614i
\(586\) −342.836 −0.585044
\(587\) 137.281i 0.233869i −0.993140 0.116934i \(-0.962693\pi\)
0.993140 0.116934i \(-0.0373068\pi\)
\(588\) 281.859i 0.479352i
\(589\) 1216.00i 2.06452i
\(590\) −247.047 197.223i −0.418723 0.334277i
\(591\) 434.601i 0.735365i
\(592\) 69.7823i 0.117876i
\(593\) 307.049 0.517789 0.258895 0.965906i \(-0.416642\pi\)
0.258895 + 0.965906i \(0.416642\pi\)
\(594\) −232.740 234.964i −0.391818 0.395562i
\(595\) −257.041 205.202i −0.432002 0.344878i
\(596\) 533.654i 0.895393i
\(597\) 678.562i 1.13662i
\(598\) 12.1949i 0.0203928i
\(599\) −810.343 −1.35283 −0.676413 0.736522i \(-0.736467\pi\)
−0.676413 + 0.736522i \(0.736467\pi\)
\(600\) −237.016 + 53.8383i −0.395027 + 0.0897305i
\(601\) 382.095i 0.635766i 0.948130 + 0.317883i \(0.102972\pi\)
−0.948130 + 0.317883i \(0.897028\pi\)
\(602\) 253.939 0.421825
\(603\) 257.680i 0.427331i
\(604\) 247.715i 0.410125i
\(605\) −381.937 + 469.201i −0.631300 + 0.775539i
\(606\) −372.904 −0.615354
\(607\) −302.312 −0.498043 −0.249022 0.968498i \(-0.580109\pi\)
−0.249022 + 0.968498i \(0.580109\pi\)
\(608\) 187.404i 0.308230i
\(609\) 112.000 0.183908
\(610\) 171.562 214.902i 0.281249 0.352299i
\(611\) 185.488i 0.303581i
\(612\) 130.941 0.213955
\(613\) −520.344 −0.848848 −0.424424 0.905464i \(-0.639523\pi\)
−0.424424 + 0.905464i \(0.639523\pi\)
\(614\) 689.041 1.12222
\(615\) 604.615 + 482.679i 0.983114 + 0.784844i
\(616\) −62.5206 + 61.9288i −0.101494 + 0.100534i
\(617\) 1040.89i 1.68702i −0.537113 0.843511i \(-0.680485\pi\)
0.537113 0.843511i \(-0.319515\pi\)
\(618\) −550.827 −0.891305
\(619\) 1076.13 1.73850 0.869249 0.494374i \(-0.164603\pi\)
0.869249 + 0.494374i \(0.164603\pi\)
\(620\) −286.856 229.004i −0.462671 0.369362i
\(621\) −46.0481 −0.0741516
\(622\) 595.965 0.958143
\(623\) 81.1914 0.130323
\(624\) 54.7372i 0.0877199i
\(625\) −563.668 + 270.006i −0.901869 + 0.432010i
\(626\) 710.285i 1.13464i
\(627\) 889.928 881.505i 1.41934 1.40591i
\(628\) 449.910i 0.716418i
\(629\) 405.733i 0.645044i
\(630\) 44.0000 + 35.1263i 0.0698413 + 0.0557560i
\(631\) 705.843 1.11861 0.559305 0.828962i \(-0.311068\pi\)
0.559305 + 0.828962i \(0.311068\pi\)
\(632\) 288.264i 0.456113i
\(633\) 158.392 0.250224
\(634\) 871.566i 1.37471i
\(635\) −519.453 414.691i −0.818036 0.653057i
\(636\) −77.0412 −0.121134
\(637\) 163.226 0.256241
\(638\) −126.117 127.322i −0.197675 0.199564i
\(639\) −153.576 −0.240338
\(640\) 44.2087 + 35.2929i 0.0690761 + 0.0551451i
\(641\) −530.802 −0.828084 −0.414042 0.910258i \(-0.635883\pi\)
−0.414042 + 0.910258i \(0.635883\pi\)
\(642\) 763.365i 1.18904i
\(643\) 415.065i 0.645513i −0.946482 0.322757i \(-0.895390\pi\)
0.946482 0.322757i \(-0.104610\pi\)
\(644\) 12.2528i 0.0190260i
\(645\) −680.721 + 852.688i −1.05538 + 1.32200i
\(646\) 1089.62i 1.68671i
\(647\) 890.968i 1.37708i 0.725201 + 0.688538i \(0.241747\pi\)
−0.725201 + 0.688538i \(0.758253\pi\)
\(648\) 278.348 0.429550
\(649\) 349.377 346.070i 0.538331 0.533236i
\(650\) 31.1780 + 137.257i 0.0479661 + 0.211165i
\(651\) 356.857i 0.548168i
\(652\) 125.768i 0.192895i
\(653\) 368.900i 0.564931i −0.959277 0.282465i \(-0.908848\pi\)
0.959277 0.282465i \(-0.0911522\pi\)
\(654\) 833.206 1.27402
\(655\) −153.926 + 192.812i −0.235002 + 0.294369i
\(656\) 180.060i 0.274482i
\(657\) 158.072 0.240597
\(658\) 186.368i 0.283234i
\(659\) 272.221i 0.413082i −0.978438 0.206541i \(-0.933779\pi\)
0.978438 0.206541i \(-0.0662206\pi\)
\(660\) −40.3517 375.944i −0.0611389 0.569613i
\(661\) −784.336 −1.18659 −0.593295 0.804985i \(-0.702173\pi\)
−0.593295 + 0.804985i \(0.702173\pi\)
\(662\) −279.849 −0.422733
\(663\) 318.257i 0.480025i
\(664\) 44.4383 0.0669251
\(665\) 292.301 366.144i 0.439551 0.550592i
\(666\) 69.4529i 0.104284i
\(667\) −24.9525 −0.0374100
\(668\) −209.304 −0.313329
\(669\) −1349.99 −2.01793
\(670\) 403.821 505.836i 0.602718 0.754979i
\(671\) 301.041 + 303.918i 0.448646 + 0.452933i
\(672\) 54.9969i 0.0818406i
\(673\) 165.395 0.245758 0.122879 0.992422i \(-0.460787\pi\)
0.122879 + 0.992422i \(0.460787\pi\)
\(674\) −531.548 −0.788647
\(675\) 518.284 117.728i 0.767829 0.174412i
\(676\) −306.301 −0.453109
\(677\) −469.955 −0.694173 −0.347086 0.937833i \(-0.612829\pi\)
−0.347086 + 0.937833i \(0.612829\pi\)
\(678\) −406.625 −0.599742
\(679\) 215.686i 0.317652i
\(680\) −257.041 205.202i −0.378002 0.301768i
\(681\) 923.606i 1.35625i
\(682\) 405.676 401.836i 0.594833 0.589203i
\(683\) 592.512i 0.867514i 0.901030 + 0.433757i \(0.142812\pi\)
−0.901030 + 0.433757i \(0.857188\pi\)
\(684\) 186.519i 0.272689i
\(685\) −69.5510 + 87.1212i −0.101534 + 0.127184i
\(686\) −360.000 −0.524781
\(687\) 706.461i 1.02833i
\(688\) 253.939 0.369097
\(689\) 44.6148i 0.0647530i
\(690\) −41.1430 32.8454i −0.0596275 0.0476020i
\(691\) 586.418 0.848651 0.424326 0.905510i \(-0.360511\pi\)
0.424326 + 0.905510i \(0.360511\pi\)
\(692\) 218.118 0.315200
\(693\) −62.2254 + 61.6364i −0.0897913 + 0.0889414i
\(694\) 439.288 0.632980
\(695\) −816.574 + 1022.86i −1.17493 + 1.47174i
\(696\) 112.000 0.160920
\(697\) 1046.92i 1.50203i
\(698\) 670.699i 0.960887i
\(699\) 1043.90i 1.49342i
\(700\) −31.3259 137.908i −0.0447512 0.197012i
\(701\) 1185.11i 1.69060i −0.534296 0.845298i \(-0.679423\pi\)
0.534296 0.845298i \(-0.320577\pi\)
\(702\) 119.694i 0.170504i
\(703\) 577.949 0.822117
\(704\) −62.5206 + 61.9288i −0.0888076 + 0.0879671i
\(705\) 625.795 + 499.587i 0.887652 + 0.708634i
\(706\) 651.151i 0.922311i
\(707\) 216.975i 0.306895i
\(708\) 307.333i 0.434086i
\(709\) 230.583 0.325222 0.162611 0.986690i \(-0.448008\pi\)
0.162611 + 0.986690i \(0.448008\pi\)
\(710\) 301.475 + 240.675i 0.424612 + 0.338978i
\(711\) 286.902i 0.403520i
\(712\) 81.1914 0.114033
\(713\) 79.5043i 0.111507i
\(714\) 319.766i 0.447852i
\(715\) −217.711 + 23.3678i −0.304491 + 0.0326822i
\(716\) −196.233 −0.274069
\(717\) −642.383 −0.895931
\(718\) 474.679i 0.661113i
\(719\) 647.117 0.900024 0.450012 0.893023i \(-0.351420\pi\)
0.450012 + 0.893023i \(0.351420\pi\)
\(720\) 44.0000 + 35.1263i 0.0611111 + 0.0487865i
\(721\) 320.499i 0.444520i
\(722\) 1041.58 1.44263
\(723\) 69.3547 0.0959263
\(724\) 714.754 0.987229
\(725\) 280.847 63.7944i 0.387375 0.0879923i
\(726\) 588.165 + 5.59379i 0.810144 + 0.00770495i
\(727\) 1381.75i 1.90062i 0.311304 + 0.950310i \(0.399234\pi\)
−0.311304 + 0.950310i \(0.600766\pi\)
\(728\) −31.8489 −0.0437485
\(729\) −380.644 −0.522146
\(730\) −310.301 247.721i −0.425070 0.339344i
\(731\) −1476.47 −2.01979
\(732\) −267.345 −0.365225
\(733\) −354.823 −0.484069 −0.242034 0.970268i \(-0.577815\pi\)
−0.242034 + 0.970268i \(0.577815\pi\)
\(734\) 247.848i 0.337667i
\(735\) 439.627 550.687i 0.598132 0.749234i
\(736\) 12.2528i 0.0166478i
\(737\) 708.589 + 715.360i 0.961451 + 0.970638i
\(738\) 179.210i 0.242832i
\(739\) 198.704i 0.268882i −0.990922 0.134441i \(-0.957076\pi\)
0.990922 0.134441i \(-0.0429239\pi\)
\(740\) 108.842 136.338i 0.147084 0.184241i
\(741\) 453.343 0.611798
\(742\) 44.8265i 0.0604130i
\(743\) −1120.12 −1.50756 −0.753779 0.657127i \(-0.771771\pi\)
−0.753779 + 0.657127i \(0.771771\pi\)
\(744\) 356.857i 0.479647i
\(745\) 832.362 1042.64i 1.11726 1.39951i
\(746\) 334.233 0.448034
\(747\) 44.2284 0.0592081
\(748\) 363.511 360.070i 0.485977 0.481377i
\(749\) −444.165 −0.593010
\(750\) 547.049 + 264.497i 0.729399 + 0.352662i
\(751\) 869.405 1.15766 0.578831 0.815447i \(-0.303509\pi\)
0.578831 + 0.815447i \(0.303509\pi\)
\(752\) 186.368i 0.247829i
\(753\) 360.706i 0.479025i
\(754\) 64.8596i 0.0860207i
\(755\) 386.371 483.978i 0.511750 0.641031i
\(756\) 120.262i 0.159076i
\(757\) 874.961i 1.15583i 0.816098 + 0.577913i \(0.196133\pi\)
−0.816098 + 0.577913i \(0.803867\pi\)
\(758\) 588.691 0.776637
\(759\) 58.1849 57.6342i 0.0766600 0.0759344i
\(760\) 292.301 366.144i 0.384607 0.481768i
\(761\) 645.727i 0.848524i 0.905539 + 0.424262i \(0.139466\pi\)
−0.905539 + 0.424262i \(0.860534\pi\)
\(762\) 646.214i 0.848049i
\(763\) 484.802i 0.635389i
\(764\) 329.411 0.431166
\(765\) −255.828 204.233i −0.334415 0.266972i
\(766\) 235.398i 0.307308i
\(767\) 177.978 0.232044
\(768\) 54.9969i 0.0716105i
\(769\) 670.097i 0.871388i 0.900095 + 0.435694i \(0.143497\pi\)
−0.900095 + 0.435694i \(0.856503\pi\)
\(770\) 218.744 23.4787i 0.284083 0.0304918i
\(771\) −395.562 −0.513050
\(772\) −625.838 −0.810671
\(773\) 612.123i 0.791880i 0.918276 + 0.395940i \(0.129581\pi\)
−0.918276 + 0.395940i \(0.870419\pi\)
\(774\) 252.740 0.326537
\(775\) 203.263 + 894.842i 0.262275 + 1.15464i
\(776\) 215.686i 0.277945i
\(777\) −169.609 −0.218287
\(778\) 329.425 0.423425
\(779\) −1491.29 −1.91436
\(780\) 85.3759 106.944i 0.109456 0.137108i
\(781\) −426.350 + 422.314i −0.545902 + 0.540735i
\(782\) 71.2408i 0.0911008i
\(783\) −244.911 −0.312785
\(784\) −164.000 −0.209184
\(785\) 701.744 879.021i 0.893941 1.11977i
\(786\) 239.863 0.305169
\(787\) 1391.41 1.76800 0.883998 0.467491i \(-0.154842\pi\)
0.883998 + 0.467491i \(0.154842\pi\)
\(788\) −252.873 −0.320905
\(789\) 787.496i 0.998093i
\(790\) −449.616 + 563.200i −0.569134 + 0.712912i
\(791\) 236.595i 0.299109i
\(792\) −62.2254 + 61.6364i −0.0785674 + 0.0778238i
\(793\) 154.820i 0.195234i
\(794\) 998.188i 1.25716i
\(795\) 150.521 + 120.164i 0.189334 + 0.151150i
\(796\) −394.822 −0.496008
\(797\) 621.140i 0.779348i 0.920953 + 0.389674i \(0.127412\pi\)
−0.920953 + 0.389674i \(0.872588\pi\)
\(798\) −455.493 −0.570793
\(799\) 1083.59i 1.35618i
\(800\) −31.3259 137.908i −0.0391573 0.172385i
\(801\) 80.8081 0.100884
\(802\) 130.437 0.162640
\(803\) 438.833 434.679i 0.546491 0.541319i
\(804\) −629.274 −0.782679
\(805\) 19.1111 23.9391i 0.0237405 0.0297380i
\(806\) 206.657 0.256399
\(807\) 1721.53i 2.13324i
\(808\) 216.975i 0.268533i
\(809\) 492.303i 0.608532i 0.952587 + 0.304266i \(0.0984112\pi\)
−0.952587 + 0.304266i \(0.901589\pi\)
\(810\) −543.828 434.151i −0.671393 0.535989i
\(811\) 581.566i 0.717098i −0.933511 0.358549i \(-0.883272\pi\)
0.933511 0.358549i \(-0.116728\pi\)
\(812\) 65.1673i 0.0802553i
\(813\) 766.097 0.942309
\(814\) 190.987 + 192.812i 0.234627 + 0.236869i
\(815\) −196.165 + 245.721i −0.240693 + 0.301498i
\(816\) 319.766i 0.391871i
\(817\) 2103.16i 2.57425i
\(818\) 157.929i 0.193067i
\(819\) −31.6985 −0.0387040
\(820\) −280.847 + 351.796i −0.342497 + 0.429020i
\(821\) 623.019i 0.758854i −0.925222 0.379427i \(-0.876121\pi\)
0.925222 0.379427i \(-0.123879\pi\)
\(822\) 108.381 0.131851
\(823\) 1073.90i 1.30486i −0.757849 0.652430i \(-0.773750\pi\)
0.757849 0.652430i \(-0.226250\pi\)
\(824\) 320.499i 0.388955i
\(825\) −507.538 + 797.446i −0.615197 + 0.966601i
\(826\) −178.822 −0.216492
\(827\) −1446.64 −1.74927 −0.874634 0.484784i \(-0.838898\pi\)
−0.874634 + 0.484784i \(0.838898\pi\)
\(828\) 12.1949i 0.0147282i
\(829\) −784.117 −0.945858 −0.472929 0.881100i \(-0.656803\pi\)
−0.472929 + 0.881100i \(0.656803\pi\)
\(830\) −86.8220 69.3121i −0.104605 0.0835086i
\(831\) 558.458i 0.672032i
\(832\) −31.8489 −0.0382799
\(833\) 953.539 1.14470
\(834\) 1272.47 1.52574
\(835\) 408.931 + 326.459i 0.489737 + 0.390969i
\(836\) 512.904 + 517.806i 0.613522 + 0.619385i
\(837\) 780.340i 0.932306i
\(838\) 99.2081 0.118387
\(839\) 306.117 0.364859 0.182429 0.983219i \(-0.441604\pi\)
0.182429 + 0.983219i \(0.441604\pi\)
\(840\) −85.7809 + 107.451i −0.102120 + 0.127918i
\(841\) 708.288 0.842198
\(842\) −423.761 −0.503279
\(843\) −1212.89 −1.43878
\(844\) 92.1605i 0.109195i
\(845\) 598.442 + 477.751i 0.708215 + 0.565385i
\(846\) 185.488i 0.219253i
\(847\) −3.25475 + 342.224i −0.00384268 + 0.404043i
\(848\) 44.8265i 0.0528614i
\(849\) 967.224i 1.13925i
\(850\) 182.137 + 801.835i 0.214279 + 0.943335i
\(851\) 37.7872 0.0444033
\(852\) 375.043i 0.440191i
\(853\) 113.883 0.133509 0.0667545 0.997769i \(-0.478736\pi\)
0.0667545 + 0.997769i \(0.478736\pi\)
\(854\) 155.555i 0.182148i
\(855\) 290.921 364.415i 0.340259 0.426217i
\(856\) −444.165 −0.518884
\(857\) −581.910 −0.679008 −0.339504 0.940605i \(-0.610259\pi\)
−0.339504 + 0.940605i \(0.610259\pi\)
\(858\) 149.810 + 151.241i 0.174604 + 0.176272i
\(859\) −118.281 −0.137696 −0.0688482 0.997627i \(-0.521932\pi\)
−0.0688482 + 0.997627i \(0.521932\pi\)
\(860\) −496.137 396.078i −0.576904 0.460556i
\(861\) 437.644 0.508297
\(862\) 55.9852i 0.0649480i
\(863\) 1030.51i 1.19410i 0.802203 + 0.597051i \(0.203661\pi\)
−0.802203 + 0.597051i \(0.796339\pi\)
\(864\) 120.262i 0.139192i
\(865\) −426.153 340.208i −0.492662 0.393304i
\(866\) 547.539i 0.632262i
\(867\) 865.825i 0.998644i
\(868\) −207.638 −0.239214
\(869\) −788.946 796.485i −0.907878 0.916554i
\(870\) −218.822 174.691i −0.251520 0.200794i
\(871\) 364.415i 0.418387i
\(872\) 484.802i 0.555965i
\(873\) 214.667i 0.245896i
\(874\) 101.479 0.116109
\(875\) −153.898 + 318.301i −0.175883 + 0.363773i
\(876\) 386.024i 0.440666i
\(877\) −378.593 −0.431691 −0.215845 0.976428i \(-0.569251\pi\)
−0.215845 + 0.976428i \(0.569251\pi\)
\(878\) 120.164i 0.136861i
\(879\) 833.277i 0.947983i
\(880\) 218.744 23.4787i 0.248572 0.0266803i
\(881\) 810.076 0.919496 0.459748 0.888049i \(-0.347940\pi\)
0.459748 + 0.888049i \(0.347940\pi\)
\(882\) −163.226 −0.185063
\(883\) 188.555i 0.213540i 0.994284 + 0.106770i \(0.0340508\pi\)
−0.994284 + 0.106770i \(0.965949\pi\)
\(884\) 185.178 0.209477
\(885\) 479.360 600.458i 0.541649 0.678483i
\(886\) 160.083i 0.180681i
\(887\) 234.430 0.264295 0.132148 0.991230i \(-0.457813\pi\)
0.132148 + 0.991230i \(0.457813\pi\)
\(888\) −169.609 −0.191001
\(889\) −376.000 −0.422947
\(890\) −158.629 126.638i −0.178235 0.142289i
\(891\) 769.089 761.810i 0.863175 0.855005i
\(892\) 785.495i 0.880600i
\(893\) −1543.53 −1.72847
\(894\) −1297.07 −1.45086
\(895\) 383.394 + 306.073i 0.428373 + 0.341981i
\(896\) 32.0000 0.0357143
\(897\) 29.6403 0.0330438
\(898\) 158.944 0.176997
\(899\) 422.850i 0.470356i
\(900\) −31.1780 137.257i −0.0346422 0.152508i
\(901\) 260.633i 0.289271i
\(902\) −492.806 497.515i −0.546348 0.551568i
\(903\) 617.209i 0.683509i
\(904\) 236.595i 0.261721i
\(905\) −1396.46 1114.83i −1.54305 1.23186i
\(906\) −602.082 −0.664550
\(907\) 855.676i 0.943413i −0.881756 0.471707i \(-0.843638\pi\)
0.881756 0.471707i \(-0.156362\pi\)
\(908\) 537.401 0.591851
\(909\) 215.950i 0.237569i
\(910\) 62.2254 + 49.6760i 0.0683796 + 0.0545890i
\(911\) −16.2609 −0.0178495 −0.00892477 0.999960i \(-0.502841\pi\)
−0.00892477 + 0.999960i \(0.502841\pi\)
\(912\) −455.493 −0.499444
\(913\) 122.785 121.623i 0.134485 0.133212i
\(914\) −579.411 −0.633929
\(915\) 522.329 + 416.988i 0.570852 + 0.455725i
\(916\) −411.055 −0.448750
\(917\) 139.565i 0.152197i
\(918\) 699.234i 0.761693i
\(919\) 166.342i 0.181003i 0.995896 + 0.0905017i \(0.0288470\pi\)
−0.995896 + 0.0905017i \(0.971153\pi\)
\(920\) 19.1111 23.9391i 0.0207730 0.0260207i
\(921\) 1674.74i 1.81840i
\(922\) 114.043i 0.123691i
\(923\) −217.189 −0.235307
\(924\) −150.521 151.959i −0.162901 0.164458i
\(925\) −425.305 + 96.6081i −0.459789 + 0.104441i
\(926\) 159.683i 0.172444i
\(927\) 318.986i 0.344106i
\(928\) 65.1673i 0.0702234i
\(929\) 965.712 1.03952 0.519759 0.854313i \(-0.326022\pi\)
0.519759 + 0.854313i \(0.326022\pi\)
\(930\) 556.605 697.216i 0.598500 0.749695i
\(931\) 1358.27i 1.45894i
\(932\) 607.395 0.651712
\(933\) 1448.52i 1.55254i
\(934\) 93.1611i 0.0997442i
\(935\) −1271.83 + 136.511i −1.36025 + 0.146001i
\(936\) −31.6985 −0.0338660
\(937\) −842.861 −0.899532 −0.449766 0.893146i \(-0.648493\pi\)
−0.449766 + 0.893146i \(0.648493\pi\)
\(938\) 366.144i 0.390345i
\(939\) −1726.38 −1.83853
\(940\) −290.685 + 364.119i −0.309240 + 0.387361i
\(941\) 1467.05i 1.55903i 0.626382 + 0.779517i \(0.284535\pi\)
−0.626382 + 0.779517i \(0.715465\pi\)
\(942\) −1093.53 −1.16086
\(943\) −97.5028 −0.103396
\(944\) −178.822 −0.189430
\(945\) 187.577 234.964i 0.198494 0.248639i
\(946\) 701.644 695.003i 0.741696 0.734675i
\(947\) 463.518i 0.489460i 0.969591 + 0.244730i \(0.0786993\pi\)
−0.969591 + 0.244730i \(0.921301\pi\)
\(948\) 700.637 0.739068
\(949\) 223.548 0.235561
\(950\) −1142.18 + 259.446i −1.20229 + 0.273101i
\(951\) −2118.38 −2.22753
\(952\) −186.056 −0.195437
\(953\) 1260.06 1.32220 0.661099 0.750298i \(-0.270090\pi\)
0.661099 + 0.750298i \(0.270090\pi\)
\(954\) 44.6148i 0.0467661i
\(955\) −643.593 513.796i −0.673919 0.538006i
\(956\) 373.771i 0.390974i
\(957\) 309.461 306.532i 0.323366 0.320305i
\(958\) 209.865i 0.219066i
\(959\) 63.0617i 0.0657578i
\(960\) −85.7809 + 107.451i −0.0893551 + 0.111928i
\(961\) 386.294 0.401971
\(962\) 98.2212i 0.102101i
\(963\) −442.068 −0.459053
\(964\) 40.3541i 0.0418611i
\(965\) 1222.74 + 976.145i 1.26709 + 1.01155i
\(966\) −29.7809 −0.0308291
\(967\) −857.576 −0.886842 −0.443421 0.896314i \(-0.646235\pi\)
−0.443421 + 0.896314i \(0.646235\pi\)
\(968\) −3.25475 + 342.224i −0.00336235 + 0.353537i
\(969\) 2648.36 2.73308
\(970\) −336.414 + 421.400i −0.346818 + 0.434433i
\(971\) 110.816 0.114125 0.0570627 0.998371i \(-0.481827\pi\)
0.0570627 + 0.998371i \(0.481827\pi\)
\(972\) 293.867i 0.302332i
\(973\) 740.386i 0.760931i
\(974\) 147.166i 0.151094i
\(975\) −333.609 + 75.7794i −0.342163 + 0.0777224i
\(976\) 155.555i 0.159380i
\(977\) 687.248i 0.703427i −0.936108 0.351713i \(-0.885599\pi\)
0.936108 0.351713i \(-0.114401\pi\)
\(978\) 305.683 0.312560
\(979\) 224.336 222.212i 0.229148 0.226979i
\(980\) 320.418 + 255.797i 0.326957 + 0.261018i
\(981\) 482.513i 0.491858i
\(982\) 467.051i 0.475612i
\(983\) 120.258i 0.122338i 0.998127 + 0.0611688i \(0.0194828\pi\)
−0.998127 + 0.0611688i \(0.980517\pi\)
\(984\) 437.644 0.444760
\(985\) 494.055 + 394.416i 0.501579 + 0.400422i
\(986\) 378.900i 0.384280i
\(987\) 452.975 0.458941
\(988\) 263.778i 0.266982i
\(989\) 137.508i 0.139037i
\(990\) 217.711 23.3678i 0.219910 0.0236038i
\(991\) 220.836 0.222842 0.111421 0.993773i \(-0.464460\pi\)
0.111421 + 0.993773i \(0.464460\pi\)
\(992\) −207.638 −0.209312
\(993\) 680.186i 0.684981i
\(994\) 218.219 0.219536
\(995\) 771.391 + 615.820i 0.775267 + 0.618914i
\(996\) 108.009i 0.108443i
\(997\) −968.398 −0.971312 −0.485656 0.874150i \(-0.661419\pi\)
−0.485656 + 0.874150i \(0.661419\pi\)
\(998\) 303.475 0.304083
\(999\) 370.884 0.371255
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.3.c.b.109.1 8
3.2 odd 2 990.3.h.b.109.8 8
4.3 odd 2 880.3.i.g.769.8 8
5.2 odd 4 550.3.d.d.351.1 8
5.3 odd 4 550.3.d.d.351.8 8
5.4 even 2 inner 110.3.c.b.109.8 yes 8
11.10 odd 2 inner 110.3.c.b.109.5 yes 8
15.14 odd 2 990.3.h.b.109.3 8
20.19 odd 2 880.3.i.g.769.1 8
33.32 even 2 990.3.h.b.109.4 8
44.43 even 2 880.3.i.g.769.7 8
55.32 even 4 550.3.d.d.351.5 8
55.43 even 4 550.3.d.d.351.4 8
55.54 odd 2 inner 110.3.c.b.109.4 yes 8
165.164 even 2 990.3.h.b.109.7 8
220.219 even 2 880.3.i.g.769.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.3.c.b.109.1 8 1.1 even 1 trivial
110.3.c.b.109.4 yes 8 55.54 odd 2 inner
110.3.c.b.109.5 yes 8 11.10 odd 2 inner
110.3.c.b.109.8 yes 8 5.4 even 2 inner
550.3.d.d.351.1 8 5.2 odd 4
550.3.d.d.351.4 8 55.43 even 4
550.3.d.d.351.5 8 55.32 even 4
550.3.d.d.351.8 8 5.3 odd 4
880.3.i.g.769.1 8 20.19 odd 2
880.3.i.g.769.2 8 220.219 even 2
880.3.i.g.769.7 8 44.43 even 2
880.3.i.g.769.8 8 4.3 odd 2
990.3.h.b.109.3 8 15.14 odd 2
990.3.h.b.109.4 8 33.32 even 2
990.3.h.b.109.7 8 165.164 even 2
990.3.h.b.109.8 8 3.2 odd 2