Properties

Label 110.2.g.b
Level $110$
Weight $2$
Character orbit 110.g
Analytic conductor $0.878$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,2,Mod(31,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{2} + (\zeta_{10}^{3} - 2 \zeta_{10}^{2} + \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + \zeta_{10} q^{5} + (\zeta_{10}^{2} - 2 \zeta_{10} + 1) q^{6} + \cdots + (8 \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 4 q^{3} - q^{4} + q^{5} + q^{6} + q^{8} + 7 q^{9} + 4 q^{10} - 11 q^{11} - 6 q^{12} - 12 q^{13} - 4 q^{15} - q^{16} + 12 q^{17} + 8 q^{18} + 7 q^{19} + q^{20} - 9 q^{22} - 24 q^{23}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i 2.11803 1.53884i −0.809017 0.587785i −0.309017 0.951057i 0.809017 + 2.48990i 0 0.809017 0.587785i 1.19098 3.66547i 1.00000
71.1 −0.309017 0.951057i 2.11803 + 1.53884i −0.809017 + 0.587785i −0.309017 + 0.951057i 0.809017 2.48990i 0 0.809017 + 0.587785i 1.19098 + 3.66547i 1.00000
81.1 0.809017 + 0.587785i −0.118034 + 0.363271i 0.309017 + 0.951057i 0.809017 0.587785i −0.309017 + 0.224514i 0 −0.309017 + 0.951057i 2.30902 + 1.67760i 1.00000
91.1 0.809017 0.587785i −0.118034 0.363271i 0.309017 0.951057i 0.809017 + 0.587785i −0.309017 0.224514i 0 −0.309017 0.951057i 2.30902 1.67760i 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.2.g.b 4
3.b odd 2 1 990.2.n.c 4
4.b odd 2 1 880.2.bo.b 4
5.b even 2 1 550.2.h.b 4
5.c odd 4 2 550.2.ba.b 8
11.c even 5 1 inner 110.2.g.b 4
11.c even 5 1 1210.2.a.n 2
11.d odd 10 1 1210.2.a.q 2
33.h odd 10 1 990.2.n.c 4
44.g even 10 1 9680.2.a.bw 2
44.h odd 10 1 880.2.bo.b 4
44.h odd 10 1 9680.2.a.bx 2
55.h odd 10 1 6050.2.a.ch 2
55.j even 10 1 550.2.h.b 4
55.j even 10 1 6050.2.a.cw 2
55.k odd 20 2 550.2.ba.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.b 4 1.a even 1 1 trivial
110.2.g.b 4 11.c even 5 1 inner
550.2.h.b 4 5.b even 2 1
550.2.h.b 4 55.j even 10 1
550.2.ba.b 8 5.c odd 4 2
550.2.ba.b 8 55.k odd 20 2
880.2.bo.b 4 4.b odd 2 1
880.2.bo.b 4 44.h odd 10 1
990.2.n.c 4 3.b odd 2 1
990.2.n.c 4 33.h odd 10 1
1210.2.a.n 2 11.c even 5 1
1210.2.a.q 2 11.d odd 10 1
6050.2.a.ch 2 55.h odd 10 1
6050.2.a.cw 2 55.j even 10 1
9680.2.a.bw 2 44.g even 10 1
9680.2.a.bx 2 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} + 6T_{3}^{2} + T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(110, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 11 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( T^{4} + 12 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$19$ \( T^{4} - 7 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$23$ \( (T + 6)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 12 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$37$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 11)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 5776 \) Copy content Toggle raw display
$53$ \( T^{4} + 2 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$59$ \( T^{4} - 21 T^{3} + \cdots + 9801 \) Copy content Toggle raw display
$61$ \( T^{4} - 16 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$67$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 2 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$73$ \( T^{4} + 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$79$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$83$ \( T^{4} - 11 T^{3} + \cdots + 32761 \) Copy content Toggle raw display
$89$ \( (T^{2} - 3 T - 29)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 9 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
show more
show less