Properties

Label 110.2.g.a
Level 110110
Weight 22
Character orbit 110.g
Analytic conductor 0.8780.878
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,2,Mod(31,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 110=2511 110 = 2 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 110.g (of order 55, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8783544222340.878354422234
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ103ζ102+1)q2+(2ζ103+2ζ10)q3ζ103q4+ζ10q5+(2ζ1022)q6+(2ζ103ζ10+1)q7++(12ζ103+15ζ102++18)q99+O(q100) q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \cdots - 1) q^{2} + (2 \zeta_{10}^{3} + 2 \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + \zeta_{10} q^{5} + ( - 2 \zeta_{10}^{2} - 2) q^{6} + ( - 2 \zeta_{10}^{3} - \zeta_{10} + 1) q^{7} + \cdots + ( - 12 \zeta_{10}^{3} + 15 \zeta_{10}^{2} + \cdots + 18) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq2+4q3q4+q56q6+q7q813q94q10+q11+4q12+3q13+q144q15q16+8q17+7q1814q19+q20+16q21++43q99+O(q100) 4 q - q^{2} + 4 q^{3} - q^{4} + q^{5} - 6 q^{6} + q^{7} - q^{8} - 13 q^{9} - 4 q^{10} + q^{11} + 4 q^{12} + 3 q^{13} + q^{14} - 4 q^{15} - q^{16} + 8 q^{17} + 7 q^{18} - 14 q^{19} + q^{20} + 16 q^{21}+ \cdots + 43 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/110Z)×\left(\mathbb{Z}/110\mathbb{Z}\right)^\times.

nn 6767 101101
χ(n)\chi(n) 11 ζ103-\zeta_{10}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
0.309017 0.951057i 1.00000 0.726543i −0.809017 0.587785i −0.309017 0.951057i −0.381966 1.17557i −0.309017 0.224514i −0.809017 + 0.587785i −0.454915 + 1.40008i −1.00000
71.1 0.309017 + 0.951057i 1.00000 + 0.726543i −0.809017 + 0.587785i −0.309017 + 0.951057i −0.381966 + 1.17557i −0.309017 + 0.224514i −0.809017 0.587785i −0.454915 1.40008i −1.00000
81.1 −0.809017 0.587785i 1.00000 3.07768i 0.309017 + 0.951057i 0.809017 0.587785i −2.61803 + 1.90211i 0.809017 + 2.48990i 0.309017 0.951057i −6.04508 4.39201i −1.00000
91.1 −0.809017 + 0.587785i 1.00000 + 3.07768i 0.309017 0.951057i 0.809017 + 0.587785i −2.61803 1.90211i 0.809017 2.48990i 0.309017 + 0.951057i −6.04508 + 4.39201i −1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.2.g.a 4
3.b odd 2 1 990.2.n.f 4
4.b odd 2 1 880.2.bo.a 4
5.b even 2 1 550.2.h.f 4
5.c odd 4 2 550.2.ba.a 8
11.c even 5 1 inner 110.2.g.a 4
11.c even 5 1 1210.2.a.t 2
11.d odd 10 1 1210.2.a.p 2
33.h odd 10 1 990.2.n.f 4
44.g even 10 1 9680.2.a.bi 2
44.h odd 10 1 880.2.bo.a 4
44.h odd 10 1 9680.2.a.bh 2
55.h odd 10 1 6050.2.a.cm 2
55.j even 10 1 550.2.h.f 4
55.j even 10 1 6050.2.a.bu 2
55.k odd 20 2 550.2.ba.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.a 4 1.a even 1 1 trivial
110.2.g.a 4 11.c even 5 1 inner
550.2.h.f 4 5.b even 2 1
550.2.h.f 4 55.j even 10 1
550.2.ba.a 8 5.c odd 4 2
550.2.ba.a 8 55.k odd 20 2
880.2.bo.a 4 4.b odd 2 1
880.2.bo.a 4 44.h odd 10 1
990.2.n.f 4 3.b odd 2 1
990.2.n.f 4 33.h odd 10 1
1210.2.a.p 2 11.d odd 10 1
1210.2.a.t 2 11.c even 5 1
6050.2.a.bu 2 55.j even 10 1
6050.2.a.cm 2 55.h odd 10 1
9680.2.a.bh 2 44.h odd 10 1
9680.2.a.bi 2 44.g even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T344T33+16T3224T3+16 T_{3}^{4} - 4T_{3}^{3} + 16T_{3}^{2} - 24T_{3} + 16 acting on S2new(110,[χ])S_{2}^{\mathrm{new}}(110, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
33 T44T3++16 T^{4} - 4 T^{3} + \cdots + 16 Copy content Toggle raw display
55 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
77 T4T3+6T2++1 T^{4} - T^{3} + 6 T^{2} + \cdots + 1 Copy content Toggle raw display
1111 T4T3++121 T^{4} - T^{3} + \cdots + 121 Copy content Toggle raw display
1313 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
1717 T48T3++16 T^{4} - 8 T^{3} + \cdots + 16 Copy content Toggle raw display
1919 T4+14T3++841 T^{4} + 14 T^{3} + \cdots + 841 Copy content Toggle raw display
2323 (T27T+1)2 (T^{2} - 7 T + 1)^{2} Copy content Toggle raw display
2929 T4+6T3++16 T^{4} + 6 T^{3} + \cdots + 16 Copy content Toggle raw display
3131 T410T3++400 T^{4} - 10 T^{3} + \cdots + 400 Copy content Toggle raw display
3737 T4+10T3++25 T^{4} + 10 T^{3} + \cdots + 25 Copy content Toggle raw display
4141 T4+9T3++81 T^{4} + 9 T^{3} + \cdots + 81 Copy content Toggle raw display
4343 (T2+14T+44)2 (T^{2} + 14 T + 44)^{2} Copy content Toggle raw display
4747 T414T3++2401 T^{4} - 14 T^{3} + \cdots + 2401 Copy content Toggle raw display
5353 T46T3++121 T^{4} - 6 T^{3} + \cdots + 121 Copy content Toggle raw display
5959 T4+6T3++121 T^{4} + 6 T^{3} + \cdots + 121 Copy content Toggle raw display
6161 T4+20T3++6400 T^{4} + 20 T^{3} + \cdots + 6400 Copy content Toggle raw display
6767 (T26T+4)2 (T^{2} - 6 T + 4)^{2} Copy content Toggle raw display
7171 T4+16T3++13456 T^{4} + 16 T^{3} + \cdots + 13456 Copy content Toggle raw display
7373 T4+20T3++400 T^{4} + 20 T^{3} + \cdots + 400 Copy content Toggle raw display
7979 T4+4T3++256 T^{4} + 4 T^{3} + \cdots + 256 Copy content Toggle raw display
8383 T4+24T3++1296 T^{4} + 24 T^{3} + \cdots + 1296 Copy content Toggle raw display
8989 (T25T205)2 (T^{2} - 5 T - 205)^{2} Copy content Toggle raw display
9797 T412T3++20736 T^{4} - 12 T^{3} + \cdots + 20736 Copy content Toggle raw display
show more
show less