gp: [N,k,chi] = [110,2,Mod(31,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 10 \zeta_{10} ζ 1 0 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 110 Z ) × \left(\mathbb{Z}/110\mathbb{Z}\right)^\times ( Z / 1 1 0 Z ) × .
n n n
67 67 6 7
101 101 1 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 10 3 -\zeta_{10}^{3} − ζ 1 0 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 − 4 T 3 3 + 16 T 3 2 − 24 T 3 + 16 T_{3}^{4} - 4T_{3}^{3} + 16T_{3}^{2} - 24T_{3} + 16 T 3 4 − 4 T 3 3 + 1 6 T 3 2 − 2 4 T 3 + 1 6
T3^4 - 4*T3^3 + 16*T3^2 - 24*T3 + 16
acting on S 2 n e w ( 110 , [ χ ] ) S_{2}^{\mathrm{new}}(110, [\chi]) S 2 n e w ( 1 1 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + T 3 + T 2 + ⋯ + 1 T^{4} + T^{3} + T^{2} + \cdots + 1 T 4 + T 3 + T 2 + ⋯ + 1
T^4 + T^3 + T^2 + T + 1
3 3 3
T 4 − 4 T 3 + ⋯ + 16 T^{4} - 4 T^{3} + \cdots + 16 T 4 − 4 T 3 + ⋯ + 1 6
T^4 - 4*T^3 + 16*T^2 - 24*T + 16
5 5 5
T 4 − T 3 + T 2 + ⋯ + 1 T^{4} - T^{3} + T^{2} + \cdots + 1 T 4 − T 3 + T 2 + ⋯ + 1
T^4 - T^3 + T^2 - T + 1
7 7 7
T 4 − T 3 + 6 T 2 + ⋯ + 1 T^{4} - T^{3} + 6 T^{2} + \cdots + 1 T 4 − T 3 + 6 T 2 + ⋯ + 1
T^4 - T^3 + 6*T^2 + 4*T + 1
11 11 1 1
T 4 − T 3 + ⋯ + 121 T^{4} - T^{3} + \cdots + 121 T 4 − T 3 + ⋯ + 1 2 1
T^4 - T^3 - 9*T^2 - 11*T + 121
13 13 1 3
T 4 − 3 T 3 + ⋯ + 1 T^{4} - 3 T^{3} + \cdots + 1 T 4 − 3 T 3 + ⋯ + 1
T^4 - 3*T^3 + 4*T^2 - 2*T + 1
17 17 1 7
T 4 − 8 T 3 + ⋯ + 16 T^{4} - 8 T^{3} + \cdots + 16 T 4 − 8 T 3 + ⋯ + 1 6
T^4 - 8*T^3 + 24*T^2 + 8*T + 16
19 19 1 9
T 4 + 14 T 3 + ⋯ + 841 T^{4} + 14 T^{3} + \cdots + 841 T 4 + 1 4 T 3 + ⋯ + 8 4 1
T^4 + 14*T^3 + 96*T^2 + 319*T + 841
23 23 2 3
( T 2 − 7 T + 1 ) 2 (T^{2} - 7 T + 1)^{2} ( T 2 − 7 T + 1 ) 2
(T^2 - 7*T + 1)^2
29 29 2 9
T 4 + 6 T 3 + ⋯ + 16 T^{4} + 6 T^{3} + \cdots + 16 T 4 + 6 T 3 + ⋯ + 1 6
T^4 + 6*T^3 + 16*T^2 + 16*T + 16
31 31 3 1
T 4 − 10 T 3 + ⋯ + 400 T^{4} - 10 T^{3} + \cdots + 400 T 4 − 1 0 T 3 + ⋯ + 4 0 0
T^4 - 10*T^3 + 40*T^2 + 400
37 37 3 7
T 4 + 10 T 3 + ⋯ + 25 T^{4} + 10 T^{3} + \cdots + 25 T 4 + 1 0 T 3 + ⋯ + 2 5
T^4 + 10*T^3 + 40*T^2 + 25*T + 25
41 41 4 1
T 4 + 9 T 3 + ⋯ + 81 T^{4} + 9 T^{3} + \cdots + 81 T 4 + 9 T 3 + ⋯ + 8 1
T^4 + 9*T^3 + 36*T^2 + 54*T + 81
43 43 4 3
( T 2 + 14 T + 44 ) 2 (T^{2} + 14 T + 44)^{2} ( T 2 + 1 4 T + 4 4 ) 2
(T^2 + 14*T + 44)^2
47 47 4 7
T 4 − 14 T 3 + ⋯ + 2401 T^{4} - 14 T^{3} + \cdots + 2401 T 4 − 1 4 T 3 + ⋯ + 2 4 0 1
T^4 - 14*T^3 + 196*T^2 - 1029*T + 2401
53 53 5 3
T 4 − 6 T 3 + ⋯ + 121 T^{4} - 6 T^{3} + \cdots + 121 T 4 − 6 T 3 + ⋯ + 1 2 1
T^4 - 6*T^3 + 136*T^2 + 209*T + 121
59 59 5 9
T 4 + 6 T 3 + ⋯ + 121 T^{4} + 6 T^{3} + \cdots + 121 T 4 + 6 T 3 + ⋯ + 1 2 1
T^4 + 6*T^3 + 16*T^2 + 11*T + 121
61 61 6 1
T 4 + 20 T 3 + ⋯ + 6400 T^{4} + 20 T^{3} + \cdots + 6400 T 4 + 2 0 T 3 + ⋯ + 6 4 0 0
T^4 + 20*T^3 + 240*T^2 + 1600*T + 6400
67 67 6 7
( T 2 − 6 T + 4 ) 2 (T^{2} - 6 T + 4)^{2} ( T 2 − 6 T + 4 ) 2
(T^2 - 6*T + 4)^2
71 71 7 1
T 4 + 16 T 3 + ⋯ + 13456 T^{4} + 16 T^{3} + \cdots + 13456 T 4 + 1 6 T 3 + ⋯ + 1 3 4 5 6
T^4 + 16*T^3 + 136*T^2 + 696*T + 13456
73 73 7 3
T 4 + 20 T 3 + ⋯ + 400 T^{4} + 20 T^{3} + \cdots + 400 T 4 + 2 0 T 3 + ⋯ + 4 0 0
T^4 + 20*T^3 + 160*T^2 + 200*T + 400
79 79 7 9
T 4 + 4 T 3 + ⋯ + 256 T^{4} + 4 T^{3} + \cdots + 256 T 4 + 4 T 3 + ⋯ + 2 5 6
T^4 + 4*T^3 + 96*T^2 - 256*T + 256
83 83 8 3
T 4 + 24 T 3 + ⋯ + 1296 T^{4} + 24 T^{3} + \cdots + 1296 T 4 + 2 4 T 3 + ⋯ + 1 2 9 6
T^4 + 24*T^3 + 216*T^2 - 216*T + 1296
89 89 8 9
( T 2 − 5 T − 205 ) 2 (T^{2} - 5 T - 205)^{2} ( T 2 − 5 T − 2 0 5 ) 2
(T^2 - 5*T - 205)^2
97 97 9 7
T 4 − 12 T 3 + ⋯ + 20736 T^{4} - 12 T^{3} + \cdots + 20736 T 4 − 1 2 T 3 + ⋯ + 2 0 7 3 6
T^4 - 12*T^3 + 144*T^2 - 1728*T + 20736
show more
show less