Properties

Label 110.2.g
Level $110$
Weight $2$
Character orbit 110.g
Rep. character $\chi_{110}(31,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $16$
Newform subspaces $3$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(110, [\chi])\).

Total New Old
Modular forms 88 16 72
Cusp forms 56 16 40
Eisenstein series 32 0 32

Trace form

\( 16 q + 2 q^{2} + 4 q^{3} - 4 q^{4} - 6 q^{6} + 2 q^{8} - 12 q^{9} - 8 q^{10} - 8 q^{11} + 4 q^{12} - 8 q^{13} + 2 q^{14} - 12 q^{15} - 4 q^{16} + 8 q^{17} + 16 q^{18} - 14 q^{19} + 48 q^{21} + 10 q^{22}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(110, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
110.2.g.a 110.g 11.c $4$ $0.878$ \(\Q(\zeta_{10})\) None 110.2.g.a \(-1\) \(4\) \(1\) \(1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
110.2.g.b 110.g 11.c $4$ $0.878$ \(\Q(\zeta_{10})\) None 110.2.g.b \(1\) \(4\) \(1\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(\zeta_{10}+\cdots)q^{3}+\cdots\)
110.2.g.c 110.g 11.c $8$ $0.878$ 8.0.682515625.5 None 110.2.g.c \(2\) \(-4\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\beta _{2}+\beta _{3}-\beta _{7})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(110, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(110, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)