Properties

Label 110.2.g
Level $110$
Weight $2$
Character orbit 110.g
Rep. character $\chi_{110}(31,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $16$
Newform subspaces $3$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(110, [\chi])\).

Total New Old
Modular forms 88 16 72
Cusp forms 56 16 40
Eisenstein series 32 0 32

Trace form

\( 16q + 2q^{2} + 4q^{3} - 4q^{4} - 6q^{6} + 2q^{8} - 12q^{9} + O(q^{10}) \) \( 16q + 2q^{2} + 4q^{3} - 4q^{4} - 6q^{6} + 2q^{8} - 12q^{9} - 8q^{10} - 8q^{11} + 4q^{12} - 8q^{13} + 2q^{14} - 12q^{15} - 4q^{16} + 8q^{17} + 16q^{18} - 14q^{19} + 48q^{21} + 10q^{22} + 16q^{23} - 6q^{24} - 4q^{25} - 16q^{26} - 26q^{27} - 40q^{29} + 4q^{30} - 4q^{31} - 8q^{32} + 34q^{33} - 12q^{34} + 8q^{35} - 2q^{36} - 16q^{37} + 16q^{38} - 32q^{39} + 2q^{40} - 30q^{41} - 16q^{42} + 12q^{43} + 2q^{44} - 8q^{46} + 24q^{47} + 4q^{48} + 30q^{49} + 2q^{50} + 10q^{51} + 12q^{52} + 16q^{54} - 8q^{55} + 12q^{56} + 70q^{57} + 28q^{58} + 54q^{59} + 8q^{60} - 24q^{61} + 4q^{62} - 44q^{63} - 4q^{64} - 20q^{65} + 28q^{66} - 12q^{67} + 8q^{68} - 20q^{69} - 12q^{71} - 14q^{72} - 24q^{73} - 4q^{74} - 6q^{75} + 16q^{76} - 32q^{78} + 2q^{81} - 18q^{82} - 34q^{83} - 12q^{84} + 28q^{85} + 22q^{86} - 48q^{87} - 10q^{88} + 48q^{89} + 26q^{90} + 50q^{91} - 24q^{92} - 16q^{93} - 26q^{94} + 4q^{96} - 10q^{97} - 8q^{98} + 76q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(110, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
110.2.g.a \(4\) \(0.878\) \(\Q(\zeta_{10})\) None \(-1\) \(4\) \(1\) \(1\) \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\)
110.2.g.b \(4\) \(0.878\) \(\Q(\zeta_{10})\) None \(1\) \(4\) \(1\) \(0\) \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(\zeta_{10}+\cdots)q^{3}+\cdots\)
110.2.g.c \(8\) \(0.878\) 8.0.682515625.5 None \(2\) \(-4\) \(-2\) \(-1\) \(q+(1-\beta _{2}+\beta _{3}-\beta _{7})q^{2}+(-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(110, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(110, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)