Properties

Label 110.2.b.a.89.1
Level $110$
Weight $2$
Character 110.89
Analytic conductor $0.878$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,2,Mod(89,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 110.89
Dual form 110.2.b.a.89.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +(-2.00000 - 1.00000i) q^{5} -1.00000 q^{6} -3.00000i q^{7} +1.00000i q^{8} +2.00000 q^{9} +(-1.00000 + 2.00000i) q^{10} +1.00000 q^{11} +1.00000i q^{12} +4.00000i q^{13} -3.00000 q^{14} +(-1.00000 + 2.00000i) q^{15} +1.00000 q^{16} -3.00000i q^{17} -2.00000i q^{18} +5.00000 q^{19} +(2.00000 + 1.00000i) q^{20} -3.00000 q^{21} -1.00000i q^{22} +4.00000i q^{23} +1.00000 q^{24} +(3.00000 + 4.00000i) q^{25} +4.00000 q^{26} -5.00000i q^{27} +3.00000i q^{28} -5.00000 q^{29} +(2.00000 + 1.00000i) q^{30} +7.00000 q^{31} -1.00000i q^{32} -1.00000i q^{33} -3.00000 q^{34} +(-3.00000 + 6.00000i) q^{35} -2.00000 q^{36} +7.00000i q^{37} -5.00000i q^{38} +4.00000 q^{39} +(1.00000 - 2.00000i) q^{40} -8.00000 q^{41} +3.00000i q^{42} -6.00000i q^{43} -1.00000 q^{44} +(-4.00000 - 2.00000i) q^{45} +4.00000 q^{46} -8.00000i q^{47} -1.00000i q^{48} -2.00000 q^{49} +(4.00000 - 3.00000i) q^{50} -3.00000 q^{51} -4.00000i q^{52} +9.00000i q^{53} -5.00000 q^{54} +(-2.00000 - 1.00000i) q^{55} +3.00000 q^{56} -5.00000i q^{57} +5.00000i q^{58} +(1.00000 - 2.00000i) q^{60} -13.0000 q^{61} -7.00000i q^{62} -6.00000i q^{63} -1.00000 q^{64} +(4.00000 - 8.00000i) q^{65} -1.00000 q^{66} +12.0000i q^{67} +3.00000i q^{68} +4.00000 q^{69} +(6.00000 + 3.00000i) q^{70} -3.00000 q^{71} +2.00000i q^{72} -6.00000i q^{73} +7.00000 q^{74} +(4.00000 - 3.00000i) q^{75} -5.00000 q^{76} -3.00000i q^{77} -4.00000i q^{78} +(-2.00000 - 1.00000i) q^{80} +1.00000 q^{81} +8.00000i q^{82} +4.00000i q^{83} +3.00000 q^{84} +(-3.00000 + 6.00000i) q^{85} -6.00000 q^{86} +5.00000i q^{87} +1.00000i q^{88} +15.0000 q^{89} +(-2.00000 + 4.00000i) q^{90} +12.0000 q^{91} -4.00000i q^{92} -7.00000i q^{93} -8.00000 q^{94} +(-10.0000 - 5.00000i) q^{95} -1.00000 q^{96} +12.0000i q^{97} +2.00000i q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{5} - 2 q^{6} + 4 q^{9} - 2 q^{10} + 2 q^{11} - 6 q^{14} - 2 q^{15} + 2 q^{16} + 10 q^{19} + 4 q^{20} - 6 q^{21} + 2 q^{24} + 6 q^{25} + 8 q^{26} - 10 q^{29} + 4 q^{30} + 14 q^{31} - 6 q^{34}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) −1.00000 −0.408248
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.00000 0.666667
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) 1.00000 0.301511
\(12\) 1.00000i 0.288675i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) −3.00000 −0.801784
\(15\) −1.00000 + 2.00000i −0.258199 + 0.516398i
\(16\) 1.00000 0.250000
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 2.00000i 0.471405i
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) −3.00000 −0.654654
\(22\) 1.00000i 0.213201i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 1.00000 0.204124
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 4.00000 0.784465
\(27\) 5.00000i 0.962250i
\(28\) 3.00000i 0.566947i
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 2.00000 + 1.00000i 0.365148 + 0.182574i
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.00000i 0.174078i
\(34\) −3.00000 −0.514496
\(35\) −3.00000 + 6.00000i −0.507093 + 1.01419i
\(36\) −2.00000 −0.333333
\(37\) 7.00000i 1.15079i 0.817875 + 0.575396i \(0.195152\pi\)
−0.817875 + 0.575396i \(0.804848\pi\)
\(38\) 5.00000i 0.811107i
\(39\) 4.00000 0.640513
\(40\) 1.00000 2.00000i 0.158114 0.316228i
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 3.00000i 0.462910i
\(43\) 6.00000i 0.914991i −0.889212 0.457496i \(-0.848747\pi\)
0.889212 0.457496i \(-0.151253\pi\)
\(44\) −1.00000 −0.150756
\(45\) −4.00000 2.00000i −0.596285 0.298142i
\(46\) 4.00000 0.589768
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.00000 −0.285714
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) −3.00000 −0.420084
\(52\) 4.00000i 0.554700i
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) −5.00000 −0.680414
\(55\) −2.00000 1.00000i −0.269680 0.134840i
\(56\) 3.00000 0.400892
\(57\) 5.00000i 0.662266i
\(58\) 5.00000i 0.656532i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 2.00000i 0.129099 0.258199i
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 7.00000i 0.889001i
\(63\) 6.00000i 0.755929i
\(64\) −1.00000 −0.125000
\(65\) 4.00000 8.00000i 0.496139 0.992278i
\(66\) −1.00000 −0.123091
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 3.00000i 0.363803i
\(69\) 4.00000 0.481543
\(70\) 6.00000 + 3.00000i 0.717137 + 0.358569i
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 2.00000i 0.235702i
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 7.00000 0.813733
\(75\) 4.00000 3.00000i 0.461880 0.346410i
\(76\) −5.00000 −0.573539
\(77\) 3.00000i 0.341882i
\(78\) 4.00000i 0.452911i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.00000 1.00000i −0.223607 0.111803i
\(81\) 1.00000 0.111111
\(82\) 8.00000i 0.883452i
\(83\) 4.00000i 0.439057i 0.975606 + 0.219529i \(0.0704519\pi\)
−0.975606 + 0.219529i \(0.929548\pi\)
\(84\) 3.00000 0.327327
\(85\) −3.00000 + 6.00000i −0.325396 + 0.650791i
\(86\) −6.00000 −0.646997
\(87\) 5.00000i 0.536056i
\(88\) 1.00000i 0.106600i
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) −2.00000 + 4.00000i −0.210819 + 0.421637i
\(91\) 12.0000 1.25794
\(92\) 4.00000i 0.417029i
\(93\) 7.00000i 0.725866i
\(94\) −8.00000 −0.825137
\(95\) −10.0000 5.00000i −1.02598 0.512989i
\(96\) −1.00000 −0.102062
\(97\) 12.0000i 1.21842i 0.793011 + 0.609208i \(0.208512\pi\)
−0.793011 + 0.609208i \(0.791488\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 2.00000 0.201008
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 3.00000i 0.297044i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −4.00000 −0.392232
\(105\) 6.00000 + 3.00000i 0.585540 + 0.292770i
\(106\) 9.00000 0.874157
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 5.00000i 0.481125i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) −1.00000 + 2.00000i −0.0953463 + 0.190693i
\(111\) 7.00000 0.664411
\(112\) 3.00000i 0.283473i
\(113\) 6.00000i 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) −5.00000 −0.468293
\(115\) 4.00000 8.00000i 0.373002 0.746004i
\(116\) 5.00000 0.464238
\(117\) 8.00000i 0.739600i
\(118\) 0 0
\(119\) −9.00000 −0.825029
\(120\) −2.00000 1.00000i −0.182574 0.0912871i
\(121\) 1.00000 0.0909091
\(122\) 13.0000i 1.17696i
\(123\) 8.00000i 0.721336i
\(124\) −7.00000 −0.628619
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) −6.00000 −0.534522
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −6.00000 −0.528271
\(130\) −8.00000 4.00000i −0.701646 0.350823i
\(131\) 7.00000 0.611593 0.305796 0.952097i \(-0.401077\pi\)
0.305796 + 0.952097i \(0.401077\pi\)
\(132\) 1.00000i 0.0870388i
\(133\) 15.0000i 1.30066i
\(134\) 12.0000 1.03664
\(135\) −5.00000 + 10.0000i −0.430331 + 0.860663i
\(136\) 3.00000 0.257248
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 3.00000 6.00000i 0.253546 0.507093i
\(141\) −8.00000 −0.673722
\(142\) 3.00000i 0.251754i
\(143\) 4.00000i 0.334497i
\(144\) 2.00000 0.166667
\(145\) 10.0000 + 5.00000i 0.830455 + 0.415227i
\(146\) −6.00000 −0.496564
\(147\) 2.00000i 0.164957i
\(148\) 7.00000i 0.575396i
\(149\) 5.00000 0.409616 0.204808 0.978802i \(-0.434343\pi\)
0.204808 + 0.978802i \(0.434343\pi\)
\(150\) −3.00000 4.00000i −0.244949 0.326599i
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 5.00000i 0.405554i
\(153\) 6.00000i 0.485071i
\(154\) −3.00000 −0.241747
\(155\) −14.0000 7.00000i −1.12451 0.562254i
\(156\) −4.00000 −0.320256
\(157\) 13.0000i 1.03751i −0.854922 0.518756i \(-0.826395\pi\)
0.854922 0.518756i \(-0.173605\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 12.0000 0.945732
\(162\) 1.00000i 0.0785674i
\(163\) 21.0000i 1.64485i −0.568876 0.822423i \(-0.692621\pi\)
0.568876 0.822423i \(-0.307379\pi\)
\(164\) 8.00000 0.624695
\(165\) −1.00000 + 2.00000i −0.0778499 + 0.155700i
\(166\) 4.00000 0.310460
\(167\) 23.0000i 1.77979i −0.456162 0.889897i \(-0.650776\pi\)
0.456162 0.889897i \(-0.349224\pi\)
\(168\) 3.00000i 0.231455i
\(169\) −3.00000 −0.230769
\(170\) 6.00000 + 3.00000i 0.460179 + 0.230089i
\(171\) 10.0000 0.764719
\(172\) 6.00000i 0.457496i
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 5.00000 0.379049
\(175\) 12.0000 9.00000i 0.907115 0.680336i
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 15.0000i 1.12430i
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 4.00000 + 2.00000i 0.298142 + 0.149071i
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 12.0000i 0.889499i
\(183\) 13.0000i 0.960988i
\(184\) −4.00000 −0.294884
\(185\) 7.00000 14.0000i 0.514650 1.02930i
\(186\) −7.00000 −0.513265
\(187\) 3.00000i 0.219382i
\(188\) 8.00000i 0.583460i
\(189\) −15.0000 −1.09109
\(190\) −5.00000 + 10.0000i −0.362738 + 0.725476i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 1.00000i 0.0719816i −0.999352 0.0359908i \(-0.988541\pi\)
0.999352 0.0359908i \(-0.0114587\pi\)
\(194\) 12.0000 0.861550
\(195\) −8.00000 4.00000i −0.572892 0.286446i
\(196\) 2.00000 0.142857
\(197\) 22.0000i 1.56744i 0.621117 + 0.783718i \(0.286679\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −25.0000 −1.77220 −0.886102 0.463491i \(-0.846597\pi\)
−0.886102 + 0.463491i \(0.846597\pi\)
\(200\) −4.00000 + 3.00000i −0.282843 + 0.212132i
\(201\) 12.0000 0.846415
\(202\) 2.00000i 0.140720i
\(203\) 15.0000i 1.05279i
\(204\) 3.00000 0.210042
\(205\) 16.0000 + 8.00000i 1.11749 + 0.558744i
\(206\) 4.00000 0.278693
\(207\) 8.00000i 0.556038i
\(208\) 4.00000i 0.277350i
\(209\) 5.00000 0.345857
\(210\) 3.00000 6.00000i 0.207020 0.414039i
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 9.00000i 0.618123i
\(213\) 3.00000i 0.205557i
\(214\) 12.0000 0.820303
\(215\) −6.00000 + 12.0000i −0.409197 + 0.818393i
\(216\) 5.00000 0.340207
\(217\) 21.0000i 1.42557i
\(218\) 10.0000i 0.677285i
\(219\) −6.00000 −0.405442
\(220\) 2.00000 + 1.00000i 0.134840 + 0.0674200i
\(221\) 12.0000 0.807207
\(222\) 7.00000i 0.469809i
\(223\) 14.0000i 0.937509i 0.883328 + 0.468755i \(0.155297\pi\)
−0.883328 + 0.468755i \(0.844703\pi\)
\(224\) −3.00000 −0.200446
\(225\) 6.00000 + 8.00000i 0.400000 + 0.533333i
\(226\) −6.00000 −0.399114
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 5.00000i 0.331133i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) −8.00000 4.00000i −0.527504 0.263752i
\(231\) −3.00000 −0.197386
\(232\) 5.00000i 0.328266i
\(233\) 19.0000i 1.24473i 0.782727 + 0.622366i \(0.213828\pi\)
−0.782727 + 0.622366i \(0.786172\pi\)
\(234\) 8.00000 0.522976
\(235\) −8.00000 + 16.0000i −0.521862 + 1.04372i
\(236\) 0 0
\(237\) 0 0
\(238\) 9.00000i 0.583383i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −1.00000 + 2.00000i −0.0645497 + 0.129099i
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 16.0000i 1.02640i
\(244\) 13.0000 0.832240
\(245\) 4.00000 + 2.00000i 0.255551 + 0.127775i
\(246\) 8.00000 0.510061
\(247\) 20.0000i 1.27257i
\(248\) 7.00000i 0.444500i
\(249\) 4.00000 0.253490
\(250\) −11.0000 + 2.00000i −0.695701 + 0.126491i
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 6.00000i 0.377964i
\(253\) 4.00000i 0.251478i
\(254\) −8.00000 −0.501965
\(255\) 6.00000 + 3.00000i 0.375735 + 0.187867i
\(256\) 1.00000 0.0625000
\(257\) 28.0000i 1.74659i −0.487190 0.873296i \(-0.661978\pi\)
0.487190 0.873296i \(-0.338022\pi\)
\(258\) 6.00000i 0.373544i
\(259\) 21.0000 1.30488
\(260\) −4.00000 + 8.00000i −0.248069 + 0.496139i
\(261\) −10.0000 −0.618984
\(262\) 7.00000i 0.432461i
\(263\) 9.00000i 0.554964i 0.960731 + 0.277482i \(0.0894999\pi\)
−0.960731 + 0.277482i \(0.910500\pi\)
\(264\) 1.00000 0.0615457
\(265\) 9.00000 18.0000i 0.552866 1.10573i
\(266\) −15.0000 −0.919709
\(267\) 15.0000i 0.917985i
\(268\) 12.0000i 0.733017i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 10.0000 + 5.00000i 0.608581 + 0.304290i
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 3.00000i 0.181902i
\(273\) 12.0000i 0.726273i
\(274\) 12.0000 0.724947
\(275\) 3.00000 + 4.00000i 0.180907 + 0.241209i
\(276\) −4.00000 −0.240772
\(277\) 28.0000i 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 14.0000 0.838158
\(280\) −6.00000 3.00000i −0.358569 0.179284i
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 8.00000i 0.476393i
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) 3.00000 0.178017
\(285\) −5.00000 + 10.0000i −0.296174 + 0.592349i
\(286\) 4.00000 0.236525
\(287\) 24.0000i 1.41668i
\(288\) 2.00000i 0.117851i
\(289\) 8.00000 0.470588
\(290\) 5.00000 10.0000i 0.293610 0.587220i
\(291\) 12.0000 0.703452
\(292\) 6.00000i 0.351123i
\(293\) 16.0000i 0.934730i −0.884064 0.467365i \(-0.845203\pi\)
0.884064 0.467365i \(-0.154797\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) −7.00000 −0.406867
\(297\) 5.00000i 0.290129i
\(298\) 5.00000i 0.289642i
\(299\) −16.0000 −0.925304
\(300\) −4.00000 + 3.00000i −0.230940 + 0.173205i
\(301\) −18.0000 −1.03750
\(302\) 2.00000i 0.115087i
\(303\) 2.00000i 0.114897i
\(304\) 5.00000 0.286770
\(305\) 26.0000 + 13.0000i 1.48876 + 0.744378i
\(306\) −6.00000 −0.342997
\(307\) 8.00000i 0.456584i −0.973593 0.228292i \(-0.926686\pi\)
0.973593 0.228292i \(-0.0733141\pi\)
\(308\) 3.00000i 0.170941i
\(309\) 4.00000 0.227552
\(310\) −7.00000 + 14.0000i −0.397573 + 0.795147i
\(311\) −13.0000 −0.737162 −0.368581 0.929596i \(-0.620156\pi\)
−0.368581 + 0.929596i \(0.620156\pi\)
\(312\) 4.00000i 0.226455i
\(313\) 14.0000i 0.791327i 0.918396 + 0.395663i \(0.129485\pi\)
−0.918396 + 0.395663i \(0.870515\pi\)
\(314\) −13.0000 −0.733632
\(315\) −6.00000 + 12.0000i −0.338062 + 0.676123i
\(316\) 0 0
\(317\) 23.0000i 1.29181i −0.763418 0.645904i \(-0.776480\pi\)
0.763418 0.645904i \(-0.223520\pi\)
\(318\) 9.00000i 0.504695i
\(319\) −5.00000 −0.279946
\(320\) 2.00000 + 1.00000i 0.111803 + 0.0559017i
\(321\) 12.0000 0.669775
\(322\) 12.0000i 0.668734i
\(323\) 15.0000i 0.834622i
\(324\) −1.00000 −0.0555556
\(325\) −16.0000 + 12.0000i −0.887520 + 0.665640i
\(326\) −21.0000 −1.16308
\(327\) 10.0000i 0.553001i
\(328\) 8.00000i 0.441726i
\(329\) −24.0000 −1.32316
\(330\) 2.00000 + 1.00000i 0.110096 + 0.0550482i
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 14.0000i 0.767195i
\(334\) −23.0000 −1.25850
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) −3.00000 −0.163663
\(337\) 7.00000i 0.381314i 0.981657 + 0.190657i \(0.0610619\pi\)
−0.981657 + 0.190657i \(0.938938\pi\)
\(338\) 3.00000i 0.163178i
\(339\) −6.00000 −0.325875
\(340\) 3.00000 6.00000i 0.162698 0.325396i
\(341\) 7.00000 0.379071
\(342\) 10.0000i 0.540738i
\(343\) 15.0000i 0.809924i
\(344\) 6.00000 0.323498
\(345\) −8.00000 4.00000i −0.430706 0.215353i
\(346\) 14.0000 0.752645
\(347\) 18.0000i 0.966291i −0.875540 0.483145i \(-0.839494\pi\)
0.875540 0.483145i \(-0.160506\pi\)
\(348\) 5.00000i 0.268028i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) −9.00000 12.0000i −0.481070 0.641427i
\(351\) 20.0000 1.06752
\(352\) 1.00000i 0.0533002i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 6.00000 + 3.00000i 0.318447 + 0.159223i
\(356\) −15.0000 −0.794998
\(357\) 9.00000i 0.476331i
\(358\) 10.0000i 0.528516i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 2.00000 4.00000i 0.105409 0.210819i
\(361\) 6.00000 0.315789
\(362\) 18.0000i 0.946059i
\(363\) 1.00000i 0.0524864i
\(364\) −12.0000 −0.628971
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 13.0000 0.679521
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 4.00000i 0.208514i
\(369\) −16.0000 −0.832927
\(370\) −14.0000 7.00000i −0.727825 0.363913i
\(371\) 27.0000 1.40177
\(372\) 7.00000i 0.362933i
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) −3.00000 −0.155126
\(375\) −11.0000 + 2.00000i −0.568038 + 0.103280i
\(376\) 8.00000 0.412568
\(377\) 20.0000i 1.03005i
\(378\) 15.0000i 0.771517i
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 10.0000 + 5.00000i 0.512989 + 0.256495i
\(381\) −8.00000 −0.409852
\(382\) 8.00000i 0.409316i
\(383\) 6.00000i 0.306586i −0.988181 0.153293i \(-0.951012\pi\)
0.988181 0.153293i \(-0.0489878\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.00000 + 6.00000i −0.152894 + 0.305788i
\(386\) −1.00000 −0.0508987
\(387\) 12.0000i 0.609994i
\(388\) 12.0000i 0.609208i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) −4.00000 + 8.00000i −0.202548 + 0.405096i
\(391\) 12.0000 0.606866
\(392\) 2.00000i 0.101015i
\(393\) 7.00000i 0.353103i
\(394\) 22.0000 1.10834
\(395\) 0 0
\(396\) −2.00000 −0.100504
\(397\) 22.0000i 1.10415i 0.833795 + 0.552074i \(0.186163\pi\)
−0.833795 + 0.552074i \(0.813837\pi\)
\(398\) 25.0000i 1.25314i
\(399\) −15.0000 −0.750939
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 12.0000i 0.598506i
\(403\) 28.0000i 1.39478i
\(404\) −2.00000 −0.0995037
\(405\) −2.00000 1.00000i −0.0993808 0.0496904i
\(406\) 15.0000 0.744438
\(407\) 7.00000i 0.346977i
\(408\) 3.00000i 0.148522i
\(409\) −20.0000 −0.988936 −0.494468 0.869196i \(-0.664637\pi\)
−0.494468 + 0.869196i \(0.664637\pi\)
\(410\) 8.00000 16.0000i 0.395092 0.790184i
\(411\) 12.0000 0.591916
\(412\) 4.00000i 0.197066i
\(413\) 0 0
\(414\) 8.00000 0.393179
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 4.00000 0.196116
\(417\) 20.0000i 0.979404i
\(418\) 5.00000i 0.244558i
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) −6.00000 3.00000i −0.292770 0.146385i
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 13.0000i 0.632830i
\(423\) 16.0000i 0.777947i
\(424\) −9.00000 −0.437079
\(425\) 12.0000 9.00000i 0.582086 0.436564i
\(426\) 3.00000 0.145350
\(427\) 39.0000i 1.88734i
\(428\) 12.0000i 0.580042i
\(429\) 4.00000 0.193122
\(430\) 12.0000 + 6.00000i 0.578691 + 0.289346i
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 5.00000i 0.240563i
\(433\) 14.0000i 0.672797i 0.941720 + 0.336399i \(0.109209\pi\)
−0.941720 + 0.336399i \(0.890791\pi\)
\(434\) −21.0000 −1.00803
\(435\) 5.00000 10.0000i 0.239732 0.479463i
\(436\) −10.0000 −0.478913
\(437\) 20.0000i 0.956730i
\(438\) 6.00000i 0.286691i
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 1.00000 2.00000i 0.0476731 0.0953463i
\(441\) −4.00000 −0.190476
\(442\) 12.0000i 0.570782i
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) −7.00000 −0.332205
\(445\) −30.0000 15.0000i −1.42214 0.711068i
\(446\) 14.0000 0.662919
\(447\) 5.00000i 0.236492i
\(448\) 3.00000i 0.141737i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 8.00000 6.00000i 0.377124 0.282843i
\(451\) −8.00000 −0.376705
\(452\) 6.00000i 0.282216i
\(453\) 2.00000i 0.0939682i
\(454\) 12.0000 0.563188
\(455\) −24.0000 12.0000i −1.12514 0.562569i
\(456\) 5.00000 0.234146
\(457\) 27.0000i 1.26301i 0.775373 + 0.631503i \(0.217562\pi\)
−0.775373 + 0.631503i \(0.782438\pi\)
\(458\) 0 0
\(459\) −15.0000 −0.700140
\(460\) −4.00000 + 8.00000i −0.186501 + 0.373002i
\(461\) −13.0000 −0.605470 −0.302735 0.953075i \(-0.597900\pi\)
−0.302735 + 0.953075i \(0.597900\pi\)
\(462\) 3.00000i 0.139573i
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) −5.00000 −0.232119
\(465\) −7.00000 + 14.0000i −0.324617 + 0.649234i
\(466\) 19.0000 0.880158
\(467\) 3.00000i 0.138823i −0.997588 0.0694117i \(-0.977888\pi\)
0.997588 0.0694117i \(-0.0221122\pi\)
\(468\) 8.00000i 0.369800i
\(469\) 36.0000 1.66233
\(470\) 16.0000 + 8.00000i 0.738025 + 0.369012i
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) 6.00000i 0.275880i
\(474\) 0 0
\(475\) 15.0000 + 20.0000i 0.688247 + 0.917663i
\(476\) 9.00000 0.412514
\(477\) 18.0000i 0.824163i
\(478\) 0 0
\(479\) 10.0000 0.456912 0.228456 0.973554i \(-0.426632\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(480\) 2.00000 + 1.00000i 0.0912871 + 0.0456435i
\(481\) −28.0000 −1.27669
\(482\) 8.00000i 0.364390i
\(483\) 12.0000i 0.546019i
\(484\) −1.00000 −0.0454545
\(485\) 12.0000 24.0000i 0.544892 1.08978i
\(486\) −16.0000 −0.725775
\(487\) 22.0000i 0.996915i 0.866914 + 0.498458i \(0.166100\pi\)
−0.866914 + 0.498458i \(0.833900\pi\)
\(488\) 13.0000i 0.588482i
\(489\) −21.0000 −0.949653
\(490\) 2.00000 4.00000i 0.0903508 0.180702i
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 8.00000i 0.360668i
\(493\) 15.0000i 0.675566i
\(494\) 20.0000 0.899843
\(495\) −4.00000 2.00000i −0.179787 0.0898933i
\(496\) 7.00000 0.314309
\(497\) 9.00000i 0.403705i
\(498\) 4.00000i 0.179244i
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 2.00000 + 11.0000i 0.0894427 + 0.491935i
\(501\) −23.0000 −1.02756
\(502\) 2.00000i 0.0892644i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 6.00000 0.267261
\(505\) −4.00000 2.00000i −0.177998 0.0889988i
\(506\) 4.00000 0.177822
\(507\) 3.00000i 0.133235i
\(508\) 8.00000i 0.354943i
\(509\) 20.0000 0.886484 0.443242 0.896402i \(-0.353828\pi\)
0.443242 + 0.896402i \(0.353828\pi\)
\(510\) 3.00000 6.00000i 0.132842 0.265684i
\(511\) −18.0000 −0.796273
\(512\) 1.00000i 0.0441942i
\(513\) 25.0000i 1.10378i
\(514\) −28.0000 −1.23503
\(515\) 4.00000 8.00000i 0.176261 0.352522i
\(516\) 6.00000 0.264135
\(517\) 8.00000i 0.351840i
\(518\) 21.0000i 0.922687i
\(519\) 14.0000 0.614532
\(520\) 8.00000 + 4.00000i 0.350823 + 0.175412i
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 10.0000i 0.437688i
\(523\) 16.0000i 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) −7.00000 −0.305796
\(525\) −9.00000 12.0000i −0.392792 0.523723i
\(526\) 9.00000 0.392419
\(527\) 21.0000i 0.914774i
\(528\) 1.00000i 0.0435194i
\(529\) 7.00000 0.304348
\(530\) −18.0000 9.00000i −0.781870 0.390935i
\(531\) 0 0
\(532\) 15.0000i 0.650332i
\(533\) 32.0000i 1.38607i
\(534\) −15.0000 −0.649113
\(535\) 12.0000 24.0000i 0.518805 1.03761i
\(536\) −12.0000 −0.518321
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 5.00000 10.0000i 0.215166 0.430331i
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 22.0000i 0.944981i
\(543\) 18.0000i 0.772454i
\(544\) −3.00000 −0.128624
\(545\) −20.0000 10.0000i −0.856706 0.428353i
\(546\) −12.0000 −0.513553
\(547\) 8.00000i 0.342055i −0.985266 0.171028i \(-0.945291\pi\)
0.985266 0.171028i \(-0.0547087\pi\)
\(548\) 12.0000i 0.512615i
\(549\) −26.0000 −1.10965
\(550\) 4.00000 3.00000i 0.170561 0.127920i
\(551\) −25.0000 −1.06504
\(552\) 4.00000i 0.170251i
\(553\) 0 0
\(554\) −28.0000 −1.18961
\(555\) −14.0000 7.00000i −0.594267 0.297133i
\(556\) 20.0000 0.848189
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) 14.0000i 0.592667i
\(559\) 24.0000 1.01509
\(560\) −3.00000 + 6.00000i −0.126773 + 0.253546i
\(561\) −3.00000 −0.126660
\(562\) 18.0000i 0.759284i
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 8.00000 0.336861
\(565\) −6.00000 + 12.0000i −0.252422 + 0.504844i
\(566\) −16.0000 −0.672530
\(567\) 3.00000i 0.125988i
\(568\) 3.00000i 0.125877i
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 10.0000 + 5.00000i 0.418854 + 0.209427i
\(571\) −3.00000 −0.125546 −0.0627730 0.998028i \(-0.519994\pi\)
−0.0627730 + 0.998028i \(0.519994\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 8.00000i 0.334205i
\(574\) 24.0000 1.00174
\(575\) −16.0000 + 12.0000i −0.667246 + 0.500435i
\(576\) −2.00000 −0.0833333
\(577\) 8.00000i 0.333044i −0.986038 0.166522i \(-0.946746\pi\)
0.986038 0.166522i \(-0.0532537\pi\)
\(578\) 8.00000i 0.332756i
\(579\) −1.00000 −0.0415586
\(580\) −10.0000 5.00000i −0.415227 0.207614i
\(581\) 12.0000 0.497844
\(582\) 12.0000i 0.497416i
\(583\) 9.00000i 0.372742i
\(584\) 6.00000 0.248282
\(585\) 8.00000 16.0000i 0.330759 0.661519i
\(586\) −16.0000 −0.660954
\(587\) 7.00000i 0.288921i 0.989511 + 0.144460i \(0.0461446\pi\)
−0.989511 + 0.144460i \(0.953855\pi\)
\(588\) 2.00000i 0.0824786i
\(589\) 35.0000 1.44215
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 7.00000i 0.287698i
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) −5.00000 −0.205152
\(595\) 18.0000 + 9.00000i 0.737928 + 0.368964i
\(596\) −5.00000 −0.204808
\(597\) 25.0000i 1.02318i
\(598\) 16.0000i 0.654289i
\(599\) 5.00000 0.204294 0.102147 0.994769i \(-0.467429\pi\)
0.102147 + 0.994769i \(0.467429\pi\)
\(600\) 3.00000 + 4.00000i 0.122474 + 0.163299i
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 18.0000i 0.733625i
\(603\) 24.0000i 0.977356i
\(604\) −2.00000 −0.0813788
\(605\) −2.00000 1.00000i −0.0813116 0.0406558i
\(606\) −2.00000 −0.0812444
\(607\) 7.00000i 0.284121i 0.989858 + 0.142061i \(0.0453728\pi\)
−0.989858 + 0.142061i \(0.954627\pi\)
\(608\) 5.00000i 0.202777i
\(609\) 15.0000 0.607831
\(610\) 13.0000 26.0000i 0.526355 1.05271i
\(611\) 32.0000 1.29458
\(612\) 6.00000i 0.242536i
\(613\) 6.00000i 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) −8.00000 −0.322854
\(615\) 8.00000 16.0000i 0.322591 0.645182i
\(616\) 3.00000 0.120873
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 4.00000i 0.160904i
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 14.0000 + 7.00000i 0.562254 + 0.281127i
\(621\) 20.0000 0.802572
\(622\) 13.0000i 0.521253i
\(623\) 45.0000i 1.80289i
\(624\) 4.00000 0.160128
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 14.0000 0.559553
\(627\) 5.00000i 0.199681i
\(628\) 13.0000i 0.518756i
\(629\) 21.0000 0.837325
\(630\) 12.0000 + 6.00000i 0.478091 + 0.239046i
\(631\) −43.0000 −1.71180 −0.855901 0.517139i \(-0.826997\pi\)
−0.855901 + 0.517139i \(0.826997\pi\)
\(632\) 0 0
\(633\) 13.0000i 0.516704i
\(634\) −23.0000 −0.913447
\(635\) −8.00000 + 16.0000i −0.317470 + 0.634941i
\(636\) −9.00000 −0.356873
\(637\) 8.00000i 0.316972i
\(638\) 5.00000i 0.197952i
\(639\) −6.00000 −0.237356
\(640\) 1.00000 2.00000i 0.0395285 0.0790569i
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 12.0000i 0.473602i
\(643\) 1.00000i 0.0394362i −0.999806 0.0197181i \(-0.993723\pi\)
0.999806 0.0197181i \(-0.00627687\pi\)
\(644\) −12.0000 −0.472866
\(645\) 12.0000 + 6.00000i 0.472500 + 0.236250i
\(646\) −15.0000 −0.590167
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 12.0000 + 16.0000i 0.470679 + 0.627572i
\(651\) −21.0000 −0.823055
\(652\) 21.0000i 0.822423i
\(653\) 21.0000i 0.821794i −0.911682 0.410897i \(-0.865216\pi\)
0.911682 0.410897i \(-0.134784\pi\)
\(654\) −10.0000 −0.391031
\(655\) −14.0000 7.00000i −0.547025 0.273513i
\(656\) −8.00000 −0.312348
\(657\) 12.0000i 0.468165i
\(658\) 24.0000i 0.935617i
\(659\) 35.0000 1.36341 0.681703 0.731629i \(-0.261240\pi\)
0.681703 + 0.731629i \(0.261240\pi\)
\(660\) 1.00000 2.00000i 0.0389249 0.0778499i
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 18.0000i 0.699590i
\(663\) 12.0000i 0.466041i
\(664\) −4.00000 −0.155230
\(665\) −15.0000 + 30.0000i −0.581675 + 1.16335i
\(666\) 14.0000 0.542489
\(667\) 20.0000i 0.774403i
\(668\) 23.0000i 0.889897i
\(669\) 14.0000 0.541271
\(670\) −24.0000 12.0000i −0.927201 0.463600i
\(671\) −13.0000 −0.501859
\(672\) 3.00000i 0.115728i
\(673\) 1.00000i 0.0385472i −0.999814 0.0192736i \(-0.993865\pi\)
0.999814 0.0192736i \(-0.00613535\pi\)
\(674\) 7.00000 0.269630
\(675\) 20.0000 15.0000i 0.769800 0.577350i
\(676\) 3.00000 0.115385
\(677\) 8.00000i 0.307465i −0.988113 0.153732i \(-0.950871\pi\)
0.988113 0.153732i \(-0.0491294\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 36.0000 1.38155
\(680\) −6.00000 3.00000i −0.230089 0.115045i
\(681\) 12.0000 0.459841
\(682\) 7.00000i 0.268044i
\(683\) 49.0000i 1.87493i 0.348076 + 0.937466i \(0.386835\pi\)
−0.348076 + 0.937466i \(0.613165\pi\)
\(684\) −10.0000 −0.382360
\(685\) 12.0000 24.0000i 0.458496 0.916993i
\(686\) −15.0000 −0.572703
\(687\) 0 0
\(688\) 6.00000i 0.228748i
\(689\) −36.0000 −1.37149
\(690\) −4.00000 + 8.00000i −0.152277 + 0.304555i
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 14.0000i 0.532200i
\(693\) 6.00000i 0.227921i
\(694\) −18.0000 −0.683271
\(695\) 40.0000 + 20.0000i 1.51729 + 0.758643i
\(696\) −5.00000 −0.189525
\(697\) 24.0000i 0.909065i
\(698\) 10.0000i 0.378506i
\(699\) 19.0000 0.718646
\(700\) −12.0000 + 9.00000i −0.453557 + 0.340168i
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) 20.0000i 0.754851i
\(703\) 35.0000i 1.32005i
\(704\) −1.00000 −0.0376889
\(705\) 16.0000 + 8.00000i 0.602595 + 0.301297i
\(706\) 14.0000 0.526897
\(707\) 6.00000i 0.225653i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 3.00000 6.00000i 0.112588 0.225176i
\(711\) 0 0
\(712\) 15.0000i 0.562149i
\(713\) 28.0000i 1.04861i
\(714\) 9.00000 0.336817
\(715\) 4.00000 8.00000i 0.149592 0.299183i
\(716\) 10.0000 0.373718
\(717\) 0 0
\(718\) 0 0
\(719\) −15.0000 −0.559406 −0.279703 0.960087i \(-0.590236\pi\)
−0.279703 + 0.960087i \(0.590236\pi\)
\(720\) −4.00000 2.00000i −0.149071 0.0745356i
\(721\) 12.0000 0.446903
\(722\) 6.00000i 0.223297i
\(723\) 8.00000i 0.297523i
\(724\) 18.0000 0.668965
\(725\) −15.0000 20.0000i −0.557086 0.742781i
\(726\) −1.00000 −0.0371135
\(727\) 18.0000i 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) 12.0000i 0.444750i
\(729\) −13.0000 −0.481481
\(730\) 12.0000 + 6.00000i 0.444140 + 0.222070i
\(731\) −18.0000 −0.665754
\(732\) 13.0000i 0.480494i
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) −8.00000 −0.295285
\(735\) 2.00000 4.00000i 0.0737711 0.147542i
\(736\) 4.00000 0.147442
\(737\) 12.0000i 0.442026i
\(738\) 16.0000i 0.588968i
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −7.00000 + 14.0000i −0.257325 + 0.514650i
\(741\) 20.0000 0.734718
\(742\) 27.0000i 0.991201i
\(743\) 1.00000i 0.0366864i −0.999832 0.0183432i \(-0.994161\pi\)
0.999832 0.0183432i \(-0.00583916\pi\)
\(744\) 7.00000 0.256632
\(745\) −10.0000 5.00000i −0.366372 0.183186i
\(746\) 4.00000 0.146450
\(747\) 8.00000i 0.292705i
\(748\) 3.00000i 0.109691i
\(749\) 36.0000 1.31541
\(750\) 2.00000 + 11.0000i 0.0730297 + 0.401663i
\(751\) 27.0000 0.985244 0.492622 0.870243i \(-0.336039\pi\)
0.492622 + 0.870243i \(0.336039\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 2.00000i 0.0728841i
\(754\) −20.0000 −0.728357
\(755\) −4.00000 2.00000i −0.145575 0.0727875i
\(756\) 15.0000 0.545545
\(757\) 18.0000i 0.654221i −0.944986 0.327111i \(-0.893925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) 10.0000i 0.363216i
\(759\) 4.00000 0.145191
\(760\) 5.00000 10.0000i 0.181369 0.362738i
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 8.00000i 0.289809i
\(763\) 30.0000i 1.08607i
\(764\) 8.00000 0.289430
\(765\) −6.00000 + 12.0000i −0.216930 + 0.433861i
\(766\) −6.00000 −0.216789
\(767\) 0 0
\(768\) 1.00000i 0.0360844i
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 6.00000 + 3.00000i 0.216225 + 0.108112i
\(771\) −28.0000 −1.00840
\(772\) 1.00000i 0.0359908i
\(773\) 11.0000i 0.395643i −0.980238 0.197821i \(-0.936613\pi\)
0.980238 0.197821i \(-0.0633866\pi\)
\(774\) −12.0000 −0.431331
\(775\) 21.0000 + 28.0000i 0.754342 + 1.00579i
\(776\) −12.0000 −0.430775
\(777\) 21.0000i 0.753371i
\(778\) 30.0000i 1.07555i
\(779\) −40.0000 −1.43315
\(780\) 8.00000 + 4.00000i 0.286446 + 0.143223i
\(781\) −3.00000 −0.107348
\(782\) 12.0000i 0.429119i
\(783\) 25.0000i 0.893427i
\(784\) −2.00000 −0.0714286
\(785\) −13.0000 + 26.0000i −0.463990 + 0.927980i
\(786\) −7.00000 −0.249682
\(787\) 38.0000i 1.35455i −0.735728 0.677277i \(-0.763160\pi\)
0.735728 0.677277i \(-0.236840\pi\)
\(788\) 22.0000i 0.783718i
\(789\) 9.00000 0.320408
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 2.00000i 0.0710669i
\(793\) 52.0000i 1.84657i
\(794\) 22.0000 0.780751
\(795\) −18.0000 9.00000i −0.638394 0.319197i
\(796\) 25.0000 0.886102
\(797\) 18.0000i 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) 15.0000i 0.530994i
\(799\) −24.0000 −0.849059
\(800\) 4.00000 3.00000i 0.141421 0.106066i
\(801\) 30.0000 1.06000
\(802\) 27.0000i 0.953403i
\(803\) 6.00000i 0.211735i
\(804\) −12.0000 −0.423207
\(805\) −24.0000 12.0000i −0.845889 0.422944i
\(806\) 28.0000 0.986258
\(807\) 0 0
\(808\) 2.00000i 0.0703598i
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) −1.00000 + 2.00000i −0.0351364 + 0.0702728i
\(811\) 37.0000 1.29925 0.649623 0.760257i \(-0.274927\pi\)
0.649623 + 0.760257i \(0.274927\pi\)
\(812\) 15.0000i 0.526397i
\(813\) 22.0000i 0.771574i
\(814\) 7.00000 0.245350
\(815\) −21.0000 + 42.0000i −0.735598 + 1.47120i
\(816\) −3.00000 −0.105021
\(817\) 30.0000i 1.04957i
\(818\) 20.0000i 0.699284i
\(819\) 24.0000 0.838628
\(820\) −16.0000 8.00000i −0.558744 0.279372i
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 12.0000i 0.418548i
\(823\) 26.0000i 0.906303i −0.891434 0.453152i \(-0.850300\pi\)
0.891434 0.453152i \(-0.149700\pi\)
\(824\) −4.00000 −0.139347
\(825\) 4.00000 3.00000i 0.139262 0.104447i
\(826\) 0 0
\(827\) 22.0000i 0.765015i 0.923952 + 0.382507i \(0.124939\pi\)
−0.923952 + 0.382507i \(0.875061\pi\)
\(828\) 8.00000i 0.278019i
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) −8.00000 4.00000i −0.277684 0.138842i
\(831\) −28.0000 −0.971309
\(832\) 4.00000i 0.138675i
\(833\) 6.00000i 0.207888i
\(834\) 20.0000 0.692543
\(835\) −23.0000 + 46.0000i −0.795948 + 1.59190i
\(836\) −5.00000 −0.172929
\(837\) 35.0000i 1.20978i
\(838\) 20.0000i 0.690889i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) −3.00000 + 6.00000i −0.103510 + 0.207020i
\(841\) −4.00000 −0.137931
\(842\) 28.0000i 0.964944i
\(843\) 18.0000i 0.619953i
\(844\) 13.0000 0.447478
\(845\) 6.00000 + 3.00000i 0.206406 + 0.103203i
\(846\) −16.0000 −0.550091
\(847\) 3.00000i 0.103081i
\(848\) 9.00000i 0.309061i
\(849\) −16.0000 −0.549119
\(850\) −9.00000 12.0000i −0.308697 0.411597i
\(851\) −28.0000 −0.959828
\(852\) 3.00000i 0.102778i
\(853\) 44.0000i 1.50653i 0.657716 + 0.753266i \(0.271523\pi\)
−0.657716 + 0.753266i \(0.728477\pi\)
\(854\) 39.0000 1.33455
\(855\) −20.0000 10.0000i −0.683986 0.341993i
\(856\) −12.0000 −0.410152
\(857\) 17.0000i 0.580709i 0.956919 + 0.290354i \(0.0937732\pi\)
−0.956919 + 0.290354i \(0.906227\pi\)
\(858\) 4.00000i 0.136558i
\(859\) 10.0000 0.341196 0.170598 0.985341i \(-0.445430\pi\)
0.170598 + 0.985341i \(0.445430\pi\)
\(860\) 6.00000 12.0000i 0.204598 0.409197i
\(861\) 24.0000 0.817918
\(862\) 32.0000i 1.08992i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −5.00000 −0.170103
\(865\) 14.0000 28.0000i 0.476014 0.952029i
\(866\) 14.0000 0.475739
\(867\) 8.00000i 0.271694i
\(868\) 21.0000i 0.712786i
\(869\) 0 0
\(870\) −10.0000 5.00000i −0.339032 0.169516i
\(871\) −48.0000 −1.62642
\(872\) 10.0000i 0.338643i
\(873\) 24.0000i 0.812277i
\(874\) 20.0000 0.676510
\(875\) −33.0000 + 6.00000i −1.11560 + 0.202837i
\(876\) 6.00000 0.202721
\(877\) 2.00000i 0.0675352i 0.999430 + 0.0337676i \(0.0107506\pi\)
−0.999430 + 0.0337676i \(0.989249\pi\)
\(878\) 10.0000i 0.337484i
\(879\) −16.0000 −0.539667
\(880\) −2.00000 1.00000i −0.0674200 0.0337100i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 4.00000i 0.134687i
\(883\) 9.00000i 0.302874i 0.988467 + 0.151437i \(0.0483901\pi\)
−0.988467 + 0.151437i \(0.951610\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 32.0000i 1.07445i 0.843437 + 0.537227i \(0.180528\pi\)
−0.843437 + 0.537227i \(0.819472\pi\)
\(888\) 7.00000i 0.234905i
\(889\) −24.0000 −0.804934
\(890\) −15.0000 + 30.0000i −0.502801 + 1.00560i
\(891\) 1.00000 0.0335013
\(892\) 14.0000i 0.468755i
\(893\) 40.0000i 1.33855i
\(894\) −5.00000 −0.167225
\(895\) 20.0000 + 10.0000i 0.668526 + 0.334263i
\(896\) 3.00000 0.100223
\(897\) 16.0000i 0.534224i
\(898\) 30.0000i 1.00111i
\(899\) −35.0000 −1.16732
\(900\) −6.00000 8.00000i −0.200000 0.266667i
\(901\) 27.0000 0.899500
\(902\) 8.00000i 0.266371i
\(903\) 18.0000i 0.599002i
\(904\) 6.00000 0.199557
\(905\) 36.0000 + 18.0000i 1.19668 + 0.598340i
\(906\) −2.00000 −0.0664455
\(907\) 23.0000i 0.763702i −0.924224 0.381851i \(-0.875287\pi\)
0.924224 0.381851i \(-0.124713\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 4.00000 0.132672
\(910\) −12.0000 + 24.0000i −0.397796 + 0.795592i
\(911\) 37.0000 1.22586 0.612932 0.790135i \(-0.289990\pi\)
0.612932 + 0.790135i \(0.289990\pi\)
\(912\) 5.00000i 0.165567i
\(913\) 4.00000i 0.132381i
\(914\) 27.0000 0.893081
\(915\) 13.0000 26.0000i 0.429767 0.859533i
\(916\) 0 0
\(917\) 21.0000i 0.693481i
\(918\) 15.0000i 0.495074i
\(919\) −50.0000 −1.64935 −0.824674 0.565608i \(-0.808641\pi\)
−0.824674 + 0.565608i \(0.808641\pi\)
\(920\) 8.00000 + 4.00000i 0.263752 + 0.131876i
\(921\) −8.00000 −0.263609
\(922\) 13.0000i 0.428132i
\(923\) 12.0000i 0.394985i
\(924\) 3.00000 0.0986928
\(925\) −28.0000 + 21.0000i −0.920634 + 0.690476i
\(926\) −16.0000 −0.525793
\(927\) 8.00000i 0.262754i
\(928\) 5.00000i 0.164133i
\(929\) −15.0000 −0.492134 −0.246067 0.969253i \(-0.579138\pi\)
−0.246067 + 0.969253i \(0.579138\pi\)
\(930\) 14.0000 + 7.00000i 0.459078 + 0.229539i
\(931\) −10.0000 −0.327737
\(932\) 19.0000i 0.622366i
\(933\) 13.0000i 0.425601i
\(934\) −3.00000 −0.0981630
\(935\) −3.00000 + 6.00000i −0.0981105 + 0.196221i
\(936\) −8.00000 −0.261488
\(937\) 42.0000i 1.37208i 0.727564 + 0.686040i \(0.240653\pi\)
−0.727564 + 0.686040i \(0.759347\pi\)
\(938\) 36.0000i 1.17544i
\(939\) 14.0000 0.456873
\(940\) 8.00000 16.0000i 0.260931 0.521862i
\(941\) 17.0000 0.554184 0.277092 0.960843i \(-0.410629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(942\) 13.0000i 0.423563i
\(943\) 32.0000i 1.04206i
\(944\) 0 0
\(945\) 30.0000 + 15.0000i 0.975900 + 0.487950i
\(946\) −6.00000 −0.195077
\(947\) 53.0000i 1.72227i −0.508378 0.861134i \(-0.669755\pi\)
0.508378 0.861134i \(-0.330245\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 20.0000 15.0000i 0.648886 0.486664i
\(951\) −23.0000 −0.745826
\(952\) 9.00000i 0.291692i
\(953\) 29.0000i 0.939402i 0.882826 + 0.469701i \(0.155638\pi\)
−0.882826 + 0.469701i \(0.844362\pi\)
\(954\) 18.0000 0.582772
\(955\) 16.0000 + 8.00000i 0.517748 + 0.258874i
\(956\) 0 0
\(957\) 5.00000i 0.161627i
\(958\) 10.0000i 0.323085i
\(959\) 36.0000 1.16250
\(960\) 1.00000 2.00000i 0.0322749 0.0645497i
\(961\) 18.0000 0.580645
\(962\) 28.0000i 0.902756i
\(963\) 24.0000i 0.773389i
\(964\) 8.00000 0.257663
\(965\) −1.00000 + 2.00000i −0.0321911 + 0.0643823i
\(966\) −12.0000 −0.386094
\(967\) 13.0000i 0.418052i −0.977910 0.209026i \(-0.932971\pi\)
0.977910 0.209026i \(-0.0670293\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) −15.0000 −0.481869
\(970\) −24.0000 12.0000i −0.770594 0.385297i
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 60.0000i 1.92351i
\(974\) 22.0000 0.704925
\(975\) 12.0000 + 16.0000i 0.384308 + 0.512410i
\(976\) −13.0000 −0.416120
\(977\) 28.0000i 0.895799i −0.894084 0.447900i \(-0.852172\pi\)
0.894084 0.447900i \(-0.147828\pi\)
\(978\) 21.0000i 0.671506i
\(979\) 15.0000 0.479402
\(980\) −4.00000 2.00000i −0.127775 0.0638877i
\(981\) 20.0000 0.638551
\(982\) 33.0000i 1.05307i
\(983\) 14.0000i 0.446531i 0.974758 + 0.223265i \(0.0716716\pi\)
−0.974758 + 0.223265i \(0.928328\pi\)
\(984\) −8.00000 −0.255031
\(985\) 22.0000 44.0000i 0.700978 1.40196i
\(986\) 15.0000 0.477697
\(987\) 24.0000i 0.763928i
\(988\) 20.0000i 0.636285i
\(989\) 24.0000 0.763156
\(990\) −2.00000 + 4.00000i −0.0635642 + 0.127128i
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 7.00000i 0.222250i
\(993\) 18.0000i 0.571213i
\(994\) 9.00000 0.285463
\(995\) 50.0000 + 25.0000i 1.58511 + 0.792553i
\(996\) −4.00000 −0.126745
\(997\) 2.00000i 0.0633406i 0.999498 + 0.0316703i \(0.0100827\pi\)
−0.999498 + 0.0316703i \(0.989917\pi\)
\(998\) 40.0000i 1.26618i
\(999\) 35.0000 1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.2.b.a.89.1 2
3.2 odd 2 990.2.c.d.199.2 2
4.3 odd 2 880.2.b.a.529.2 2
5.2 odd 4 550.2.a.j.1.1 1
5.3 odd 4 550.2.a.e.1.1 1
5.4 even 2 inner 110.2.b.a.89.2 yes 2
11.10 odd 2 1210.2.b.a.969.2 2
15.2 even 4 4950.2.a.q.1.1 1
15.8 even 4 4950.2.a.ba.1.1 1
15.14 odd 2 990.2.c.d.199.1 2
20.3 even 4 4400.2.a.k.1.1 1
20.7 even 4 4400.2.a.s.1.1 1
20.19 odd 2 880.2.b.a.529.1 2
55.32 even 4 6050.2.a.f.1.1 1
55.43 even 4 6050.2.a.bk.1.1 1
55.54 odd 2 1210.2.b.a.969.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.b.a.89.1 2 1.1 even 1 trivial
110.2.b.a.89.2 yes 2 5.4 even 2 inner
550.2.a.e.1.1 1 5.3 odd 4
550.2.a.j.1.1 1 5.2 odd 4
880.2.b.a.529.1 2 20.19 odd 2
880.2.b.a.529.2 2 4.3 odd 2
990.2.c.d.199.1 2 15.14 odd 2
990.2.c.d.199.2 2 3.2 odd 2
1210.2.b.a.969.1 2 55.54 odd 2
1210.2.b.a.969.2 2 11.10 odd 2
4400.2.a.k.1.1 1 20.3 even 4
4400.2.a.s.1.1 1 20.7 even 4
4950.2.a.q.1.1 1 15.2 even 4
4950.2.a.ba.1.1 1 15.8 even 4
6050.2.a.f.1.1 1 55.32 even 4
6050.2.a.bk.1.1 1 55.43 even 4