Properties

Label 110.2.a.d.1.1
Level $110$
Weight $2$
Character 110.1
Self dual yes
Analytic conductor $0.878$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,2,Mod(1,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 110.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.37228 q^{3} +1.00000 q^{4} +1.00000 q^{5} +3.37228 q^{6} +3.37228 q^{7} -1.00000 q^{8} +8.37228 q^{9} -1.00000 q^{10} -1.00000 q^{11} -3.37228 q^{12} +2.00000 q^{13} -3.37228 q^{14} -3.37228 q^{15} +1.00000 q^{16} +1.37228 q^{17} -8.37228 q^{18} +0.627719 q^{19} +1.00000 q^{20} -11.3723 q^{21} +1.00000 q^{22} +2.74456 q^{23} +3.37228 q^{24} +1.00000 q^{25} -2.00000 q^{26} -18.1168 q^{27} +3.37228 q^{28} +1.37228 q^{29} +3.37228 q^{30} +3.37228 q^{31} -1.00000 q^{32} +3.37228 q^{33} -1.37228 q^{34} +3.37228 q^{35} +8.37228 q^{36} +9.37228 q^{37} -0.627719 q^{38} -6.74456 q^{39} -1.00000 q^{40} -11.4891 q^{41} +11.3723 q^{42} -4.00000 q^{43} -1.00000 q^{44} +8.37228 q^{45} -2.74456 q^{46} +2.74456 q^{47} -3.37228 q^{48} +4.37228 q^{49} -1.00000 q^{50} -4.62772 q^{51} +2.00000 q^{52} -4.11684 q^{53} +18.1168 q^{54} -1.00000 q^{55} -3.37228 q^{56} -2.11684 q^{57} -1.37228 q^{58} -2.74456 q^{59} -3.37228 q^{60} -5.37228 q^{61} -3.37228 q^{62} +28.2337 q^{63} +1.00000 q^{64} +2.00000 q^{65} -3.37228 q^{66} +8.00000 q^{67} +1.37228 q^{68} -9.25544 q^{69} -3.37228 q^{70} +10.1168 q^{71} -8.37228 q^{72} -15.4891 q^{73} -9.37228 q^{74} -3.37228 q^{75} +0.627719 q^{76} -3.37228 q^{77} +6.74456 q^{78} -1.25544 q^{79} +1.00000 q^{80} +35.9783 q^{81} +11.4891 q^{82} -2.74456 q^{83} -11.3723 q^{84} +1.37228 q^{85} +4.00000 q^{86} -4.62772 q^{87} +1.00000 q^{88} -1.37228 q^{89} -8.37228 q^{90} +6.74456 q^{91} +2.74456 q^{92} -11.3723 q^{93} -2.74456 q^{94} +0.627719 q^{95} +3.37228 q^{96} -12.7446 q^{97} -4.37228 q^{98} -8.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} + q^{6} + q^{7} - 2 q^{8} + 11 q^{9} - 2 q^{10} - 2 q^{11} - q^{12} + 4 q^{13} - q^{14} - q^{15} + 2 q^{16} - 3 q^{17} - 11 q^{18} + 7 q^{19} + 2 q^{20} - 17 q^{21}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −3.37228 −1.94699 −0.973494 0.228714i \(-0.926548\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 3.37228 1.37673
\(7\) 3.37228 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(8\) −1.00000 −0.353553
\(9\) 8.37228 2.79076
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) −3.37228 −0.973494
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −3.37228 −0.901280
\(15\) −3.37228 −0.870719
\(16\) 1.00000 0.250000
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) −8.37228 −1.97337
\(19\) 0.627719 0.144009 0.0720043 0.997404i \(-0.477060\pi\)
0.0720043 + 0.997404i \(0.477060\pi\)
\(20\) 1.00000 0.223607
\(21\) −11.3723 −2.48164
\(22\) 1.00000 0.213201
\(23\) 2.74456 0.572281 0.286140 0.958188i \(-0.407628\pi\)
0.286140 + 0.958188i \(0.407628\pi\)
\(24\) 3.37228 0.688364
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) −18.1168 −3.48659
\(28\) 3.37228 0.637301
\(29\) 1.37228 0.254826 0.127413 0.991850i \(-0.459333\pi\)
0.127413 + 0.991850i \(0.459333\pi\)
\(30\) 3.37228 0.615692
\(31\) 3.37228 0.605680 0.302840 0.953041i \(-0.402065\pi\)
0.302840 + 0.953041i \(0.402065\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.37228 0.587039
\(34\) −1.37228 −0.235344
\(35\) 3.37228 0.570020
\(36\) 8.37228 1.39538
\(37\) 9.37228 1.54079 0.770397 0.637565i \(-0.220058\pi\)
0.770397 + 0.637565i \(0.220058\pi\)
\(38\) −0.627719 −0.101829
\(39\) −6.74456 −1.07999
\(40\) −1.00000 −0.158114
\(41\) −11.4891 −1.79430 −0.897150 0.441726i \(-0.854366\pi\)
−0.897150 + 0.441726i \(0.854366\pi\)
\(42\) 11.3723 1.75478
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −1.00000 −0.150756
\(45\) 8.37228 1.24807
\(46\) −2.74456 −0.404664
\(47\) 2.74456 0.400336 0.200168 0.979762i \(-0.435851\pi\)
0.200168 + 0.979762i \(0.435851\pi\)
\(48\) −3.37228 −0.486747
\(49\) 4.37228 0.624612
\(50\) −1.00000 −0.141421
\(51\) −4.62772 −0.648010
\(52\) 2.00000 0.277350
\(53\) −4.11684 −0.565492 −0.282746 0.959195i \(-0.591245\pi\)
−0.282746 + 0.959195i \(0.591245\pi\)
\(54\) 18.1168 2.46539
\(55\) −1.00000 −0.134840
\(56\) −3.37228 −0.450640
\(57\) −2.11684 −0.280383
\(58\) −1.37228 −0.180189
\(59\) −2.74456 −0.357312 −0.178656 0.983912i \(-0.557175\pi\)
−0.178656 + 0.983912i \(0.557175\pi\)
\(60\) −3.37228 −0.435360
\(61\) −5.37228 −0.687850 −0.343925 0.938997i \(-0.611757\pi\)
−0.343925 + 0.938997i \(0.611757\pi\)
\(62\) −3.37228 −0.428280
\(63\) 28.2337 3.55711
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) −3.37228 −0.415099
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 1.37228 0.166414
\(69\) −9.25544 −1.11422
\(70\) −3.37228 −0.403065
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) −8.37228 −0.986683
\(73\) −15.4891 −1.81286 −0.906432 0.422351i \(-0.861205\pi\)
−0.906432 + 0.422351i \(0.861205\pi\)
\(74\) −9.37228 −1.08951
\(75\) −3.37228 −0.389398
\(76\) 0.627719 0.0720043
\(77\) −3.37228 −0.384307
\(78\) 6.74456 0.763671
\(79\) −1.25544 −0.141248 −0.0706239 0.997503i \(-0.522499\pi\)
−0.0706239 + 0.997503i \(0.522499\pi\)
\(80\) 1.00000 0.111803
\(81\) 35.9783 3.99758
\(82\) 11.4891 1.26876
\(83\) −2.74456 −0.301255 −0.150627 0.988591i \(-0.548129\pi\)
−0.150627 + 0.988591i \(0.548129\pi\)
\(84\) −11.3723 −1.24082
\(85\) 1.37228 0.148845
\(86\) 4.00000 0.431331
\(87\) −4.62772 −0.496144
\(88\) 1.00000 0.106600
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) −8.37228 −0.882516
\(91\) 6.74456 0.707022
\(92\) 2.74456 0.286140
\(93\) −11.3723 −1.17925
\(94\) −2.74456 −0.283080
\(95\) 0.627719 0.0644026
\(96\) 3.37228 0.344182
\(97\) −12.7446 −1.29401 −0.647007 0.762484i \(-0.723980\pi\)
−0.647007 + 0.762484i \(0.723980\pi\)
\(98\) −4.37228 −0.441667
\(99\) −8.37228 −0.841446
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 4.62772 0.458212
\(103\) −9.48913 −0.934991 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(104\) −2.00000 −0.196116
\(105\) −11.3723 −1.10982
\(106\) 4.11684 0.399863
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −18.1168 −1.74329
\(109\) −15.4891 −1.48359 −0.741795 0.670627i \(-0.766025\pi\)
−0.741795 + 0.670627i \(0.766025\pi\)
\(110\) 1.00000 0.0953463
\(111\) −31.6060 −2.99991
\(112\) 3.37228 0.318651
\(113\) 3.25544 0.306246 0.153123 0.988207i \(-0.451067\pi\)
0.153123 + 0.988207i \(0.451067\pi\)
\(114\) 2.11684 0.198261
\(115\) 2.74456 0.255932
\(116\) 1.37228 0.127413
\(117\) 16.7446 1.54804
\(118\) 2.74456 0.252657
\(119\) 4.62772 0.424222
\(120\) 3.37228 0.307846
\(121\) 1.00000 0.0909091
\(122\) 5.37228 0.486383
\(123\) 38.7446 3.49348
\(124\) 3.37228 0.302840
\(125\) 1.00000 0.0894427
\(126\) −28.2337 −2.51526
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 13.4891 1.18765
\(130\) −2.00000 −0.175412
\(131\) 22.1168 1.93236 0.966179 0.257873i \(-0.0830216\pi\)
0.966179 + 0.257873i \(0.0830216\pi\)
\(132\) 3.37228 0.293519
\(133\) 2.11684 0.183554
\(134\) −8.00000 −0.691095
\(135\) −18.1168 −1.55925
\(136\) −1.37228 −0.117672
\(137\) 8.74456 0.747098 0.373549 0.927610i \(-0.378141\pi\)
0.373549 + 0.927610i \(0.378141\pi\)
\(138\) 9.25544 0.787875
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 3.37228 0.285010
\(141\) −9.25544 −0.779448
\(142\) −10.1168 −0.848987
\(143\) −2.00000 −0.167248
\(144\) 8.37228 0.697690
\(145\) 1.37228 0.113962
\(146\) 15.4891 1.28189
\(147\) −14.7446 −1.21611
\(148\) 9.37228 0.770397
\(149\) 21.6060 1.77003 0.885015 0.465563i \(-0.154148\pi\)
0.885015 + 0.465563i \(0.154148\pi\)
\(150\) 3.37228 0.275346
\(151\) −12.2337 −0.995563 −0.497782 0.867302i \(-0.665852\pi\)
−0.497782 + 0.867302i \(0.665852\pi\)
\(152\) −0.627719 −0.0509147
\(153\) 11.4891 0.928841
\(154\) 3.37228 0.271746
\(155\) 3.37228 0.270868
\(156\) −6.74456 −0.539997
\(157\) 9.37228 0.747989 0.373995 0.927431i \(-0.377988\pi\)
0.373995 + 0.927431i \(0.377988\pi\)
\(158\) 1.25544 0.0998772
\(159\) 13.8832 1.10101
\(160\) −1.00000 −0.0790569
\(161\) 9.25544 0.729431
\(162\) −35.9783 −2.82672
\(163\) −5.88316 −0.460804 −0.230402 0.973095i \(-0.574004\pi\)
−0.230402 + 0.973095i \(0.574004\pi\)
\(164\) −11.4891 −0.897150
\(165\) 3.37228 0.262532
\(166\) 2.74456 0.213019
\(167\) −4.62772 −0.358104 −0.179052 0.983840i \(-0.557303\pi\)
−0.179052 + 0.983840i \(0.557303\pi\)
\(168\) 11.3723 0.877391
\(169\) −9.00000 −0.692308
\(170\) −1.37228 −0.105249
\(171\) 5.25544 0.401893
\(172\) −4.00000 −0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 4.62772 0.350826
\(175\) 3.37228 0.254921
\(176\) −1.00000 −0.0753778
\(177\) 9.25544 0.695681
\(178\) 1.37228 0.102857
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 8.37228 0.624033
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −6.74456 −0.499940
\(183\) 18.1168 1.33924
\(184\) −2.74456 −0.202332
\(185\) 9.37228 0.689064
\(186\) 11.3723 0.833856
\(187\) −1.37228 −0.100351
\(188\) 2.74456 0.200168
\(189\) −61.0951 −4.44401
\(190\) −0.627719 −0.0455395
\(191\) −5.48913 −0.397179 −0.198590 0.980083i \(-0.563636\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(192\) −3.37228 −0.243373
\(193\) 14.8614 1.06975 0.534874 0.844932i \(-0.320359\pi\)
0.534874 + 0.844932i \(0.320359\pi\)
\(194\) 12.7446 0.915006
\(195\) −6.74456 −0.482988
\(196\) 4.37228 0.312306
\(197\) −20.7446 −1.47799 −0.738994 0.673712i \(-0.764699\pi\)
−0.738994 + 0.673712i \(0.764699\pi\)
\(198\) 8.37228 0.594992
\(199\) 18.1168 1.28427 0.642135 0.766592i \(-0.278049\pi\)
0.642135 + 0.766592i \(0.278049\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −26.9783 −1.90290
\(202\) −6.00000 −0.422159
\(203\) 4.62772 0.324802
\(204\) −4.62772 −0.324005
\(205\) −11.4891 −0.802435
\(206\) 9.48913 0.661139
\(207\) 22.9783 1.59710
\(208\) 2.00000 0.138675
\(209\) −0.627719 −0.0434202
\(210\) 11.3723 0.784762
\(211\) 6.11684 0.421101 0.210550 0.977583i \(-0.432474\pi\)
0.210550 + 0.977583i \(0.432474\pi\)
\(212\) −4.11684 −0.282746
\(213\) −34.1168 −2.33765
\(214\) 12.0000 0.820303
\(215\) −4.00000 −0.272798
\(216\) 18.1168 1.23270
\(217\) 11.3723 0.772001
\(218\) 15.4891 1.04906
\(219\) 52.2337 3.52963
\(220\) −1.00000 −0.0674200
\(221\) 2.74456 0.184619
\(222\) 31.6060 2.12125
\(223\) −18.7446 −1.25523 −0.627614 0.778524i \(-0.715969\pi\)
−0.627614 + 0.778524i \(0.715969\pi\)
\(224\) −3.37228 −0.225320
\(225\) 8.37228 0.558152
\(226\) −3.25544 −0.216548
\(227\) −2.74456 −0.182163 −0.0910815 0.995843i \(-0.529032\pi\)
−0.0910815 + 0.995843i \(0.529032\pi\)
\(228\) −2.11684 −0.140191
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) −2.74456 −0.180971
\(231\) 11.3723 0.748241
\(232\) −1.37228 −0.0900947
\(233\) 1.37228 0.0899011 0.0449506 0.998989i \(-0.485687\pi\)
0.0449506 + 0.998989i \(0.485687\pi\)
\(234\) −16.7446 −1.09463
\(235\) 2.74456 0.179036
\(236\) −2.74456 −0.178656
\(237\) 4.23369 0.275008
\(238\) −4.62772 −0.299970
\(239\) −14.7446 −0.953746 −0.476873 0.878972i \(-0.658230\pi\)
−0.476873 + 0.878972i \(0.658230\pi\)
\(240\) −3.37228 −0.217680
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −66.9783 −4.29666
\(244\) −5.37228 −0.343925
\(245\) 4.37228 0.279335
\(246\) −38.7446 −2.47026
\(247\) 1.25544 0.0798816
\(248\) −3.37228 −0.214140
\(249\) 9.25544 0.586540
\(250\) −1.00000 −0.0632456
\(251\) 2.74456 0.173235 0.0866176 0.996242i \(-0.472394\pi\)
0.0866176 + 0.996242i \(0.472394\pi\)
\(252\) 28.2337 1.77856
\(253\) −2.74456 −0.172549
\(254\) −8.00000 −0.501965
\(255\) −4.62772 −0.289799
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) −13.4891 −0.839796
\(259\) 31.6060 1.96390
\(260\) 2.00000 0.124035
\(261\) 11.4891 0.711159
\(262\) −22.1168 −1.36638
\(263\) −24.8614 −1.53302 −0.766510 0.642232i \(-0.778008\pi\)
−0.766510 + 0.642232i \(0.778008\pi\)
\(264\) −3.37228 −0.207550
\(265\) −4.11684 −0.252896
\(266\) −2.11684 −0.129792
\(267\) 4.62772 0.283212
\(268\) 8.00000 0.488678
\(269\) −8.74456 −0.533165 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(270\) 18.1168 1.10256
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 1.37228 0.0832068
\(273\) −22.7446 −1.37656
\(274\) −8.74456 −0.528278
\(275\) −1.00000 −0.0603023
\(276\) −9.25544 −0.557112
\(277\) −12.7446 −0.765747 −0.382873 0.923801i \(-0.625065\pi\)
−0.382873 + 0.923801i \(0.625065\pi\)
\(278\) 4.00000 0.239904
\(279\) 28.2337 1.69031
\(280\) −3.37228 −0.201532
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 9.25544 0.551153
\(283\) 5.25544 0.312403 0.156202 0.987725i \(-0.450075\pi\)
0.156202 + 0.987725i \(0.450075\pi\)
\(284\) 10.1168 0.600324
\(285\) −2.11684 −0.125391
\(286\) 2.00000 0.118262
\(287\) −38.7446 −2.28702
\(288\) −8.37228 −0.493341
\(289\) −15.1168 −0.889226
\(290\) −1.37228 −0.0805831
\(291\) 42.9783 2.51943
\(292\) −15.4891 −0.906432
\(293\) 23.4891 1.37225 0.686125 0.727484i \(-0.259310\pi\)
0.686125 + 0.727484i \(0.259310\pi\)
\(294\) 14.7446 0.859920
\(295\) −2.74456 −0.159795
\(296\) −9.37228 −0.544753
\(297\) 18.1168 1.05125
\(298\) −21.6060 −1.25160
\(299\) 5.48913 0.317444
\(300\) −3.37228 −0.194699
\(301\) −13.4891 −0.777500
\(302\) 12.2337 0.703970
\(303\) −20.2337 −1.16240
\(304\) 0.627719 0.0360021
\(305\) −5.37228 −0.307616
\(306\) −11.4891 −0.656790
\(307\) 5.25544 0.299944 0.149972 0.988690i \(-0.452082\pi\)
0.149972 + 0.988690i \(0.452082\pi\)
\(308\) −3.37228 −0.192154
\(309\) 32.0000 1.82042
\(310\) −3.37228 −0.191533
\(311\) 19.3723 1.09850 0.549251 0.835658i \(-0.314913\pi\)
0.549251 + 0.835658i \(0.314913\pi\)
\(312\) 6.74456 0.381836
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) −9.37228 −0.528908
\(315\) 28.2337 1.59079
\(316\) −1.25544 −0.0706239
\(317\) −24.3505 −1.36766 −0.683831 0.729640i \(-0.739687\pi\)
−0.683831 + 0.729640i \(0.739687\pi\)
\(318\) −13.8832 −0.778529
\(319\) −1.37228 −0.0768330
\(320\) 1.00000 0.0559017
\(321\) 40.4674 2.25867
\(322\) −9.25544 −0.515785
\(323\) 0.861407 0.0479299
\(324\) 35.9783 1.99879
\(325\) 2.00000 0.110940
\(326\) 5.88316 0.325838
\(327\) 52.2337 2.88853
\(328\) 11.4891 0.634381
\(329\) 9.25544 0.510269
\(330\) −3.37228 −0.185638
\(331\) 30.9783 1.70272 0.851359 0.524583i \(-0.175779\pi\)
0.851359 + 0.524583i \(0.175779\pi\)
\(332\) −2.74456 −0.150627
\(333\) 78.4674 4.29999
\(334\) 4.62772 0.253217
\(335\) 8.00000 0.437087
\(336\) −11.3723 −0.620409
\(337\) 24.1168 1.31373 0.656864 0.754009i \(-0.271883\pi\)
0.656864 + 0.754009i \(0.271883\pi\)
\(338\) 9.00000 0.489535
\(339\) −10.9783 −0.596257
\(340\) 1.37228 0.0744224
\(341\) −3.37228 −0.182619
\(342\) −5.25544 −0.284182
\(343\) −8.86141 −0.478471
\(344\) 4.00000 0.215666
\(345\) −9.25544 −0.498296
\(346\) 6.00000 0.322562
\(347\) −32.2337 −1.73040 −0.865198 0.501431i \(-0.832807\pi\)
−0.865198 + 0.501431i \(0.832807\pi\)
\(348\) −4.62772 −0.248072
\(349\) 19.4891 1.04323 0.521614 0.853181i \(-0.325330\pi\)
0.521614 + 0.853181i \(0.325330\pi\)
\(350\) −3.37228 −0.180256
\(351\) −36.2337 −1.93401
\(352\) 1.00000 0.0533002
\(353\) −0.510875 −0.0271911 −0.0135956 0.999908i \(-0.504328\pi\)
−0.0135956 + 0.999908i \(0.504328\pi\)
\(354\) −9.25544 −0.491921
\(355\) 10.1168 0.536946
\(356\) −1.37228 −0.0727308
\(357\) −15.6060 −0.825955
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −8.37228 −0.441258
\(361\) −18.6060 −0.979262
\(362\) 10.0000 0.525588
\(363\) −3.37228 −0.176999
\(364\) 6.74456 0.353511
\(365\) −15.4891 −0.810738
\(366\) −18.1168 −0.946983
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 2.74456 0.143070
\(369\) −96.1902 −5.00746
\(370\) −9.37228 −0.487242
\(371\) −13.8832 −0.720778
\(372\) −11.3723 −0.589625
\(373\) 31.4891 1.63045 0.815223 0.579148i \(-0.196615\pi\)
0.815223 + 0.579148i \(0.196615\pi\)
\(374\) 1.37228 0.0709590
\(375\) −3.37228 −0.174144
\(376\) −2.74456 −0.141540
\(377\) 2.74456 0.141352
\(378\) 61.0951 3.14239
\(379\) −0.233688 −0.0120037 −0.00600187 0.999982i \(-0.501910\pi\)
−0.00600187 + 0.999982i \(0.501910\pi\)
\(380\) 0.627719 0.0322013
\(381\) −26.9783 −1.38214
\(382\) 5.48913 0.280848
\(383\) 32.2337 1.64706 0.823532 0.567269i \(-0.192000\pi\)
0.823532 + 0.567269i \(0.192000\pi\)
\(384\) 3.37228 0.172091
\(385\) −3.37228 −0.171867
\(386\) −14.8614 −0.756426
\(387\) −33.4891 −1.70235
\(388\) −12.7446 −0.647007
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 6.74456 0.341524
\(391\) 3.76631 0.190471
\(392\) −4.37228 −0.220834
\(393\) −74.5842 −3.76228
\(394\) 20.7446 1.04510
\(395\) −1.25544 −0.0631679
\(396\) −8.37228 −0.420723
\(397\) 24.9783 1.25362 0.626811 0.779171i \(-0.284360\pi\)
0.626811 + 0.779171i \(0.284360\pi\)
\(398\) −18.1168 −0.908115
\(399\) −7.13859 −0.357377
\(400\) 1.00000 0.0500000
\(401\) 13.3723 0.667780 0.333890 0.942612i \(-0.391639\pi\)
0.333890 + 0.942612i \(0.391639\pi\)
\(402\) 26.9783 1.34555
\(403\) 6.74456 0.335971
\(404\) 6.00000 0.298511
\(405\) 35.9783 1.78777
\(406\) −4.62772 −0.229670
\(407\) −9.37228 −0.464567
\(408\) 4.62772 0.229106
\(409\) −1.76631 −0.0873385 −0.0436693 0.999046i \(-0.513905\pi\)
−0.0436693 + 0.999046i \(0.513905\pi\)
\(410\) 11.4891 0.567407
\(411\) −29.4891 −1.45459
\(412\) −9.48913 −0.467496
\(413\) −9.25544 −0.455430
\(414\) −22.9783 −1.12932
\(415\) −2.74456 −0.134725
\(416\) −2.00000 −0.0980581
\(417\) 13.4891 0.660565
\(418\) 0.627719 0.0307027
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −11.3723 −0.554911
\(421\) 10.2337 0.498759 0.249380 0.968406i \(-0.419773\pi\)
0.249380 + 0.968406i \(0.419773\pi\)
\(422\) −6.11684 −0.297763
\(423\) 22.9783 1.11724
\(424\) 4.11684 0.199932
\(425\) 1.37228 0.0665654
\(426\) 34.1168 1.65297
\(427\) −18.1168 −0.876736
\(428\) −12.0000 −0.580042
\(429\) 6.74456 0.325631
\(430\) 4.00000 0.192897
\(431\) −34.9783 −1.68484 −0.842422 0.538819i \(-0.818871\pi\)
−0.842422 + 0.538819i \(0.818871\pi\)
\(432\) −18.1168 −0.871647
\(433\) 27.7228 1.33227 0.666137 0.745830i \(-0.267947\pi\)
0.666137 + 0.745830i \(0.267947\pi\)
\(434\) −11.3723 −0.545887
\(435\) −4.62772 −0.221882
\(436\) −15.4891 −0.741795
\(437\) 1.72281 0.0824133
\(438\) −52.2337 −2.49582
\(439\) 18.9783 0.905782 0.452891 0.891566i \(-0.350393\pi\)
0.452891 + 0.891566i \(0.350393\pi\)
\(440\) 1.00000 0.0476731
\(441\) 36.6060 1.74314
\(442\) −2.74456 −0.130546
\(443\) 29.4891 1.40107 0.700535 0.713618i \(-0.252945\pi\)
0.700535 + 0.713618i \(0.252945\pi\)
\(444\) −31.6060 −1.49995
\(445\) −1.37228 −0.0650524
\(446\) 18.7446 0.887581
\(447\) −72.8614 −3.44623
\(448\) 3.37228 0.159325
\(449\) 28.9783 1.36757 0.683784 0.729684i \(-0.260333\pi\)
0.683784 + 0.729684i \(0.260333\pi\)
\(450\) −8.37228 −0.394673
\(451\) 11.4891 0.541002
\(452\) 3.25544 0.153123
\(453\) 41.2554 1.93835
\(454\) 2.74456 0.128809
\(455\) 6.74456 0.316190
\(456\) 2.11684 0.0991303
\(457\) −16.3505 −0.764846 −0.382423 0.923987i \(-0.624910\pi\)
−0.382423 + 0.923987i \(0.624910\pi\)
\(458\) 10.0000 0.467269
\(459\) −24.8614 −1.16043
\(460\) 2.74456 0.127966
\(461\) 16.1168 0.750636 0.375318 0.926896i \(-0.377533\pi\)
0.375318 + 0.926896i \(0.377533\pi\)
\(462\) −11.3723 −0.529086
\(463\) −0.233688 −0.0108604 −0.00543020 0.999985i \(-0.501728\pi\)
−0.00543020 + 0.999985i \(0.501728\pi\)
\(464\) 1.37228 0.0637066
\(465\) −11.3723 −0.527377
\(466\) −1.37228 −0.0635697
\(467\) −19.3723 −0.896442 −0.448221 0.893923i \(-0.647942\pi\)
−0.448221 + 0.893923i \(0.647942\pi\)
\(468\) 16.7446 0.774018
\(469\) 26.9783 1.24574
\(470\) −2.74456 −0.126597
\(471\) −31.6060 −1.45633
\(472\) 2.74456 0.126329
\(473\) 4.00000 0.183920
\(474\) −4.23369 −0.194460
\(475\) 0.627719 0.0288017
\(476\) 4.62772 0.212111
\(477\) −34.4674 −1.57815
\(478\) 14.7446 0.674401
\(479\) 5.48913 0.250805 0.125402 0.992106i \(-0.459978\pi\)
0.125402 + 0.992106i \(0.459978\pi\)
\(480\) 3.37228 0.153923
\(481\) 18.7446 0.854678
\(482\) 22.0000 1.00207
\(483\) −31.2119 −1.42019
\(484\) 1.00000 0.0454545
\(485\) −12.7446 −0.578701
\(486\) 66.9783 3.03820
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 5.37228 0.243192
\(489\) 19.8397 0.897180
\(490\) −4.37228 −0.197520
\(491\) −7.37228 −0.332706 −0.166353 0.986066i \(-0.553199\pi\)
−0.166353 + 0.986066i \(0.553199\pi\)
\(492\) 38.7446 1.74674
\(493\) 1.88316 0.0848131
\(494\) −1.25544 −0.0564848
\(495\) −8.37228 −0.376306
\(496\) 3.37228 0.151420
\(497\) 34.1168 1.53035
\(498\) −9.25544 −0.414746
\(499\) −33.4891 −1.49918 −0.749590 0.661903i \(-0.769749\pi\)
−0.749590 + 0.661903i \(0.769749\pi\)
\(500\) 1.00000 0.0447214
\(501\) 15.6060 0.697223
\(502\) −2.74456 −0.122496
\(503\) −34.9783 −1.55960 −0.779802 0.626027i \(-0.784680\pi\)
−0.779802 + 0.626027i \(0.784680\pi\)
\(504\) −28.2337 −1.25763
\(505\) 6.00000 0.266996
\(506\) 2.74456 0.122011
\(507\) 30.3505 1.34791
\(508\) 8.00000 0.354943
\(509\) 9.76631 0.432884 0.216442 0.976295i \(-0.430555\pi\)
0.216442 + 0.976295i \(0.430555\pi\)
\(510\) 4.62772 0.204919
\(511\) −52.2337 −2.31068
\(512\) −1.00000 −0.0441942
\(513\) −11.3723 −0.502098
\(514\) −18.0000 −0.793946
\(515\) −9.48913 −0.418141
\(516\) 13.4891 0.593826
\(517\) −2.74456 −0.120706
\(518\) −31.6060 −1.38869
\(519\) 20.2337 0.888160
\(520\) −2.00000 −0.0877058
\(521\) 12.5109 0.548111 0.274056 0.961714i \(-0.411635\pi\)
0.274056 + 0.961714i \(0.411635\pi\)
\(522\) −11.4891 −0.502865
\(523\) 30.9783 1.35458 0.677292 0.735714i \(-0.263153\pi\)
0.677292 + 0.735714i \(0.263153\pi\)
\(524\) 22.1168 0.966179
\(525\) −11.3723 −0.496327
\(526\) 24.8614 1.08401
\(527\) 4.62772 0.201587
\(528\) 3.37228 0.146760
\(529\) −15.4674 −0.672495
\(530\) 4.11684 0.178824
\(531\) −22.9783 −0.997171
\(532\) 2.11684 0.0917768
\(533\) −22.9783 −0.995299
\(534\) −4.62772 −0.200261
\(535\) −12.0000 −0.518805
\(536\) −8.00000 −0.345547
\(537\) 40.4674 1.74630
\(538\) 8.74456 0.377005
\(539\) −4.37228 −0.188327
\(540\) −18.1168 −0.779625
\(541\) −20.1168 −0.864891 −0.432445 0.901660i \(-0.642349\pi\)
−0.432445 + 0.901660i \(0.642349\pi\)
\(542\) 16.0000 0.687259
\(543\) 33.7228 1.44718
\(544\) −1.37228 −0.0588361
\(545\) −15.4891 −0.663481
\(546\) 22.7446 0.973377
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 8.74456 0.373549
\(549\) −44.9783 −1.91962
\(550\) 1.00000 0.0426401
\(551\) 0.861407 0.0366972
\(552\) 9.25544 0.393938
\(553\) −4.23369 −0.180035
\(554\) 12.7446 0.541465
\(555\) −31.6060 −1.34160
\(556\) −4.00000 −0.169638
\(557\) 4.97825 0.210935 0.105468 0.994423i \(-0.466366\pi\)
0.105468 + 0.994423i \(0.466366\pi\)
\(558\) −28.2337 −1.19523
\(559\) −8.00000 −0.338364
\(560\) 3.37228 0.142505
\(561\) 4.62772 0.195382
\(562\) −18.0000 −0.759284
\(563\) −8.23369 −0.347009 −0.173504 0.984833i \(-0.555509\pi\)
−0.173504 + 0.984833i \(0.555509\pi\)
\(564\) −9.25544 −0.389724
\(565\) 3.25544 0.136957
\(566\) −5.25544 −0.220903
\(567\) 121.329 5.09533
\(568\) −10.1168 −0.424493
\(569\) −15.2554 −0.639541 −0.319771 0.947495i \(-0.603606\pi\)
−0.319771 + 0.947495i \(0.603606\pi\)
\(570\) 2.11684 0.0886648
\(571\) 15.3723 0.643310 0.321655 0.946857i \(-0.395761\pi\)
0.321655 + 0.946857i \(0.395761\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 18.5109 0.773303
\(574\) 38.7446 1.61717
\(575\) 2.74456 0.114456
\(576\) 8.37228 0.348845
\(577\) 36.9783 1.53942 0.769712 0.638391i \(-0.220400\pi\)
0.769712 + 0.638391i \(0.220400\pi\)
\(578\) 15.1168 0.628778
\(579\) −50.1168 −2.08278
\(580\) 1.37228 0.0569809
\(581\) −9.25544 −0.383980
\(582\) −42.9783 −1.78151
\(583\) 4.11684 0.170502
\(584\) 15.4891 0.640945
\(585\) 16.7446 0.692302
\(586\) −23.4891 −0.970327
\(587\) 24.8614 1.02614 0.513070 0.858347i \(-0.328508\pi\)
0.513070 + 0.858347i \(0.328508\pi\)
\(588\) −14.7446 −0.608056
\(589\) 2.11684 0.0872230
\(590\) 2.74456 0.112992
\(591\) 69.9565 2.87763
\(592\) 9.37228 0.385198
\(593\) −12.5109 −0.513760 −0.256880 0.966443i \(-0.582695\pi\)
−0.256880 + 0.966443i \(0.582695\pi\)
\(594\) −18.1168 −0.743343
\(595\) 4.62772 0.189718
\(596\) 21.6060 0.885015
\(597\) −61.0951 −2.50046
\(598\) −5.48913 −0.224467
\(599\) −39.6060 −1.61826 −0.809128 0.587632i \(-0.800060\pi\)
−0.809128 + 0.587632i \(0.800060\pi\)
\(600\) 3.37228 0.137673
\(601\) −16.5109 −0.673493 −0.336746 0.941595i \(-0.609326\pi\)
−0.336746 + 0.941595i \(0.609326\pi\)
\(602\) 13.4891 0.549776
\(603\) 66.9783 2.72757
\(604\) −12.2337 −0.497782
\(605\) 1.00000 0.0406558
\(606\) 20.2337 0.821937
\(607\) −5.88316 −0.238790 −0.119395 0.992847i \(-0.538095\pi\)
−0.119395 + 0.992847i \(0.538095\pi\)
\(608\) −0.627719 −0.0254574
\(609\) −15.6060 −0.632386
\(610\) 5.37228 0.217517
\(611\) 5.48913 0.222066
\(612\) 11.4891 0.464420
\(613\) 20.5109 0.828426 0.414213 0.910180i \(-0.364057\pi\)
0.414213 + 0.910180i \(0.364057\pi\)
\(614\) −5.25544 −0.212092
\(615\) 38.7446 1.56233
\(616\) 3.37228 0.135873
\(617\) −2.23369 −0.0899249 −0.0449624 0.998989i \(-0.514317\pi\)
−0.0449624 + 0.998989i \(0.514317\pi\)
\(618\) −32.0000 −1.28723
\(619\) −44.4674 −1.78729 −0.893647 0.448770i \(-0.851862\pi\)
−0.893647 + 0.448770i \(0.851862\pi\)
\(620\) 3.37228 0.135434
\(621\) −49.7228 −1.99531
\(622\) −19.3723 −0.776758
\(623\) −4.62772 −0.185406
\(624\) −6.74456 −0.269999
\(625\) 1.00000 0.0400000
\(626\) 22.0000 0.879297
\(627\) 2.11684 0.0845386
\(628\) 9.37228 0.373995
\(629\) 12.8614 0.512818
\(630\) −28.2337 −1.12486
\(631\) 42.1168 1.67665 0.838323 0.545175i \(-0.183537\pi\)
0.838323 + 0.545175i \(0.183537\pi\)
\(632\) 1.25544 0.0499386
\(633\) −20.6277 −0.819878
\(634\) 24.3505 0.967083
\(635\) 8.00000 0.317470
\(636\) 13.8832 0.550503
\(637\) 8.74456 0.346472
\(638\) 1.37228 0.0543291
\(639\) 84.7011 3.35072
\(640\) −1.00000 −0.0395285
\(641\) −27.0951 −1.07019 −0.535096 0.844791i \(-0.679725\pi\)
−0.535096 + 0.844791i \(0.679725\pi\)
\(642\) −40.4674 −1.59712
\(643\) −5.88316 −0.232009 −0.116005 0.993249i \(-0.537009\pi\)
−0.116005 + 0.993249i \(0.537009\pi\)
\(644\) 9.25544 0.364715
\(645\) 13.4891 0.531134
\(646\) −0.861407 −0.0338916
\(647\) −37.7228 −1.48304 −0.741518 0.670933i \(-0.765894\pi\)
−0.741518 + 0.670933i \(0.765894\pi\)
\(648\) −35.9783 −1.41336
\(649\) 2.74456 0.107734
\(650\) −2.00000 −0.0784465
\(651\) −38.3505 −1.50308
\(652\) −5.88316 −0.230402
\(653\) 10.6277 0.415895 0.207947 0.978140i \(-0.433322\pi\)
0.207947 + 0.978140i \(0.433322\pi\)
\(654\) −52.2337 −2.04250
\(655\) 22.1168 0.864177
\(656\) −11.4891 −0.448575
\(657\) −129.679 −5.05927
\(658\) −9.25544 −0.360815
\(659\) 12.8614 0.501009 0.250505 0.968115i \(-0.419403\pi\)
0.250505 + 0.968115i \(0.419403\pi\)
\(660\) 3.37228 0.131266
\(661\) 8.51087 0.331035 0.165517 0.986207i \(-0.447071\pi\)
0.165517 + 0.986207i \(0.447071\pi\)
\(662\) −30.9783 −1.20400
\(663\) −9.25544 −0.359451
\(664\) 2.74456 0.106510
\(665\) 2.11684 0.0820877
\(666\) −78.4674 −3.04055
\(667\) 3.76631 0.145832
\(668\) −4.62772 −0.179052
\(669\) 63.2119 2.44391
\(670\) −8.00000 −0.309067
\(671\) 5.37228 0.207395
\(672\) 11.3723 0.438695
\(673\) 14.8614 0.572865 0.286433 0.958100i \(-0.407531\pi\)
0.286433 + 0.958100i \(0.407531\pi\)
\(674\) −24.1168 −0.928946
\(675\) −18.1168 −0.697318
\(676\) −9.00000 −0.346154
\(677\) 3.25544 0.125117 0.0625583 0.998041i \(-0.480074\pi\)
0.0625583 + 0.998041i \(0.480074\pi\)
\(678\) 10.9783 0.421617
\(679\) −42.9783 −1.64935
\(680\) −1.37228 −0.0526246
\(681\) 9.25544 0.354669
\(682\) 3.37228 0.129131
\(683\) −28.6277 −1.09541 −0.547705 0.836672i \(-0.684498\pi\)
−0.547705 + 0.836672i \(0.684498\pi\)
\(684\) 5.25544 0.200947
\(685\) 8.74456 0.334113
\(686\) 8.86141 0.338330
\(687\) 33.7228 1.28661
\(688\) −4.00000 −0.152499
\(689\) −8.23369 −0.313679
\(690\) 9.25544 0.352348
\(691\) 40.2337 1.53056 0.765281 0.643697i \(-0.222600\pi\)
0.765281 + 0.643697i \(0.222600\pi\)
\(692\) −6.00000 −0.228086
\(693\) −28.2337 −1.07251
\(694\) 32.2337 1.22357
\(695\) −4.00000 −0.151729
\(696\) 4.62772 0.175413
\(697\) −15.7663 −0.597192
\(698\) −19.4891 −0.737674
\(699\) −4.62772 −0.175036
\(700\) 3.37228 0.127460
\(701\) −37.3723 −1.41153 −0.705766 0.708445i \(-0.749397\pi\)
−0.705766 + 0.708445i \(0.749397\pi\)
\(702\) 36.2337 1.36755
\(703\) 5.88316 0.221887
\(704\) −1.00000 −0.0376889
\(705\) −9.25544 −0.348580
\(706\) 0.510875 0.0192270
\(707\) 20.2337 0.760966
\(708\) 9.25544 0.347841
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −10.1168 −0.379678
\(711\) −10.5109 −0.394189
\(712\) 1.37228 0.0514284
\(713\) 9.25544 0.346619
\(714\) 15.6060 0.584039
\(715\) −2.00000 −0.0747958
\(716\) −12.0000 −0.448461
\(717\) 49.7228 1.85693
\(718\) 0 0
\(719\) 13.8832 0.517754 0.258877 0.965910i \(-0.416648\pi\)
0.258877 + 0.965910i \(0.416648\pi\)
\(720\) 8.37228 0.312017
\(721\) −32.0000 −1.19174
\(722\) 18.6060 0.692442
\(723\) 74.1902 2.75916
\(724\) −10.0000 −0.371647
\(725\) 1.37228 0.0509652
\(726\) 3.37228 0.125157
\(727\) −24.2337 −0.898778 −0.449389 0.893336i \(-0.648358\pi\)
−0.449389 + 0.893336i \(0.648358\pi\)
\(728\) −6.74456 −0.249970
\(729\) 117.935 4.36795
\(730\) 15.4891 0.573278
\(731\) −5.48913 −0.203023
\(732\) 18.1168 0.669618
\(733\) 46.2337 1.70768 0.853840 0.520535i \(-0.174268\pi\)
0.853840 + 0.520535i \(0.174268\pi\)
\(734\) 4.00000 0.147643
\(735\) −14.7446 −0.543861
\(736\) −2.74456 −0.101166
\(737\) −8.00000 −0.294684
\(738\) 96.1902 3.54081
\(739\) −20.4674 −0.752905 −0.376452 0.926436i \(-0.622856\pi\)
−0.376452 + 0.926436i \(0.622856\pi\)
\(740\) 9.37228 0.344532
\(741\) −4.23369 −0.155528
\(742\) 13.8832 0.509667
\(743\) −4.62772 −0.169775 −0.0848873 0.996391i \(-0.527053\pi\)
−0.0848873 + 0.996391i \(0.527053\pi\)
\(744\) 11.3723 0.416928
\(745\) 21.6060 0.791581
\(746\) −31.4891 −1.15290
\(747\) −22.9783 −0.840730
\(748\) −1.37228 −0.0501756
\(749\) −40.4674 −1.47865
\(750\) 3.37228 0.123138
\(751\) 8.86141 0.323357 0.161679 0.986843i \(-0.448309\pi\)
0.161679 + 0.986843i \(0.448309\pi\)
\(752\) 2.74456 0.100084
\(753\) −9.25544 −0.337287
\(754\) −2.74456 −0.0999511
\(755\) −12.2337 −0.445229
\(756\) −61.0951 −2.22201
\(757\) −20.9783 −0.762467 −0.381234 0.924479i \(-0.624501\pi\)
−0.381234 + 0.924479i \(0.624501\pi\)
\(758\) 0.233688 0.00848793
\(759\) 9.25544 0.335951
\(760\) −0.627719 −0.0227697
\(761\) 4.97825 0.180461 0.0902307 0.995921i \(-0.471240\pi\)
0.0902307 + 0.995921i \(0.471240\pi\)
\(762\) 26.9783 0.977319
\(763\) −52.2337 −1.89099
\(764\) −5.48913 −0.198590
\(765\) 11.4891 0.415390
\(766\) −32.2337 −1.16465
\(767\) −5.48913 −0.198201
\(768\) −3.37228 −0.121687
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 3.37228 0.121529
\(771\) −60.7011 −2.18610
\(772\) 14.8614 0.534874
\(773\) −33.6060 −1.20872 −0.604361 0.796710i \(-0.706572\pi\)
−0.604361 + 0.796710i \(0.706572\pi\)
\(774\) 33.4891 1.20374
\(775\) 3.37228 0.121136
\(776\) 12.7446 0.457503
\(777\) −106.584 −3.82369
\(778\) −6.00000 −0.215110
\(779\) −7.21194 −0.258395
\(780\) −6.74456 −0.241494
\(781\) −10.1168 −0.362009
\(782\) −3.76631 −0.134683
\(783\) −24.8614 −0.888474
\(784\) 4.37228 0.156153
\(785\) 9.37228 0.334511
\(786\) 74.5842 2.66033
\(787\) −44.4674 −1.58509 −0.792545 0.609813i \(-0.791245\pi\)
−0.792545 + 0.609813i \(0.791245\pi\)
\(788\) −20.7446 −0.738994
\(789\) 83.8397 2.98477
\(790\) 1.25544 0.0446665
\(791\) 10.9783 0.390342
\(792\) 8.37228 0.297496
\(793\) −10.7446 −0.381551
\(794\) −24.9783 −0.886445
\(795\) 13.8832 0.492385
\(796\) 18.1168 0.642135
\(797\) 11.4891 0.406966 0.203483 0.979079i \(-0.434774\pi\)
0.203483 + 0.979079i \(0.434774\pi\)
\(798\) 7.13859 0.252703
\(799\) 3.76631 0.133243
\(800\) −1.00000 −0.0353553
\(801\) −11.4891 −0.405948
\(802\) −13.3723 −0.472192
\(803\) 15.4891 0.546599
\(804\) −26.9783 −0.951450
\(805\) 9.25544 0.326211
\(806\) −6.74456 −0.237567
\(807\) 29.4891 1.03807
\(808\) −6.00000 −0.211079
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) −35.9783 −1.26415
\(811\) 44.8614 1.57530 0.787649 0.616125i \(-0.211298\pi\)
0.787649 + 0.616125i \(0.211298\pi\)
\(812\) 4.62772 0.162401
\(813\) 53.9565 1.89234
\(814\) 9.37228 0.328498
\(815\) −5.88316 −0.206078
\(816\) −4.62772 −0.162003
\(817\) −2.51087 −0.0878444
\(818\) 1.76631 0.0617577
\(819\) 56.4674 1.97313
\(820\) −11.4891 −0.401218
\(821\) 11.4891 0.400973 0.200487 0.979696i \(-0.435748\pi\)
0.200487 + 0.979696i \(0.435748\pi\)
\(822\) 29.4891 1.02855
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) 9.48913 0.330569
\(825\) 3.37228 0.117408
\(826\) 9.25544 0.322038
\(827\) 46.9783 1.63359 0.816797 0.576925i \(-0.195748\pi\)
0.816797 + 0.576925i \(0.195748\pi\)
\(828\) 22.9783 0.798549
\(829\) −24.7446 −0.859414 −0.429707 0.902968i \(-0.641383\pi\)
−0.429707 + 0.902968i \(0.641383\pi\)
\(830\) 2.74456 0.0952652
\(831\) 42.9783 1.49090
\(832\) 2.00000 0.0693375
\(833\) 6.00000 0.207888
\(834\) −13.4891 −0.467090
\(835\) −4.62772 −0.160149
\(836\) −0.627719 −0.0217101
\(837\) −61.0951 −2.11176
\(838\) 12.0000 0.414533
\(839\) −10.9783 −0.379011 −0.189506 0.981880i \(-0.560689\pi\)
−0.189506 + 0.981880i \(0.560689\pi\)
\(840\) 11.3723 0.392381
\(841\) −27.1168 −0.935064
\(842\) −10.2337 −0.352676
\(843\) −60.7011 −2.09066
\(844\) 6.11684 0.210550
\(845\) −9.00000 −0.309609
\(846\) −22.9783 −0.790009
\(847\) 3.37228 0.115873
\(848\) −4.11684 −0.141373
\(849\) −17.7228 −0.608245
\(850\) −1.37228 −0.0470689
\(851\) 25.7228 0.881767
\(852\) −34.1168 −1.16882
\(853\) −38.4674 −1.31710 −0.658549 0.752538i \(-0.728829\pi\)
−0.658549 + 0.752538i \(0.728829\pi\)
\(854\) 18.1168 0.619946
\(855\) 5.25544 0.179732
\(856\) 12.0000 0.410152
\(857\) 36.3505 1.24171 0.620855 0.783925i \(-0.286785\pi\)
0.620855 + 0.783925i \(0.286785\pi\)
\(858\) −6.74456 −0.230256
\(859\) −42.7446 −1.45843 −0.729213 0.684287i \(-0.760114\pi\)
−0.729213 + 0.684287i \(0.760114\pi\)
\(860\) −4.00000 −0.136399
\(861\) 130.658 4.45280
\(862\) 34.9783 1.19136
\(863\) 21.2554 0.723544 0.361772 0.932267i \(-0.382172\pi\)
0.361772 + 0.932267i \(0.382172\pi\)
\(864\) 18.1168 0.616348
\(865\) −6.00000 −0.204006
\(866\) −27.7228 −0.942060
\(867\) 50.9783 1.73131
\(868\) 11.3723 0.386000
\(869\) 1.25544 0.0425878
\(870\) 4.62772 0.156894
\(871\) 16.0000 0.542139
\(872\) 15.4891 0.524528
\(873\) −106.701 −3.61128
\(874\) −1.72281 −0.0582750
\(875\) 3.37228 0.114004
\(876\) 52.2337 1.76481
\(877\) 36.9783 1.24867 0.624333 0.781158i \(-0.285371\pi\)
0.624333 + 0.781158i \(0.285371\pi\)
\(878\) −18.9783 −0.640485
\(879\) −79.2119 −2.67175
\(880\) −1.00000 −0.0337100
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) −36.6060 −1.23259
\(883\) 3.37228 0.113486 0.0567432 0.998389i \(-0.481928\pi\)
0.0567432 + 0.998389i \(0.481928\pi\)
\(884\) 2.74456 0.0923096
\(885\) 9.25544 0.311118
\(886\) −29.4891 −0.990707
\(887\) −10.9783 −0.368614 −0.184307 0.982869i \(-0.559004\pi\)
−0.184307 + 0.982869i \(0.559004\pi\)
\(888\) 31.6060 1.06063
\(889\) 26.9783 0.904821
\(890\) 1.37228 0.0459990
\(891\) −35.9783 −1.20532
\(892\) −18.7446 −0.627614
\(893\) 1.72281 0.0576517
\(894\) 72.8614 2.43685
\(895\) −12.0000 −0.401116
\(896\) −3.37228 −0.112660
\(897\) −18.5109 −0.618060
\(898\) −28.9783 −0.967017
\(899\) 4.62772 0.154343
\(900\) 8.37228 0.279076
\(901\) −5.64947 −0.188211
\(902\) −11.4891 −0.382546
\(903\) 45.4891 1.51378
\(904\) −3.25544 −0.108274
\(905\) −10.0000 −0.332411
\(906\) −41.2554 −1.37062
\(907\) −0.394031 −0.0130836 −0.00654179 0.999979i \(-0.502082\pi\)
−0.00654179 + 0.999979i \(0.502082\pi\)
\(908\) −2.74456 −0.0910815
\(909\) 50.2337 1.66615
\(910\) −6.74456 −0.223580
\(911\) −8.39403 −0.278107 −0.139053 0.990285i \(-0.544406\pi\)
−0.139053 + 0.990285i \(0.544406\pi\)
\(912\) −2.11684 −0.0700957
\(913\) 2.74456 0.0908318
\(914\) 16.3505 0.540828
\(915\) 18.1168 0.598924
\(916\) −10.0000 −0.330409
\(917\) 74.5842 2.46299
\(918\) 24.8614 0.820549
\(919\) 18.9783 0.626035 0.313017 0.949747i \(-0.398660\pi\)
0.313017 + 0.949747i \(0.398660\pi\)
\(920\) −2.74456 −0.0904856
\(921\) −17.7228 −0.583987
\(922\) −16.1168 −0.530780
\(923\) 20.2337 0.666000
\(924\) 11.3723 0.374121
\(925\) 9.37228 0.308159
\(926\) 0.233688 0.00767946
\(927\) −79.4456 −2.60934
\(928\) −1.37228 −0.0450473
\(929\) 24.3505 0.798915 0.399458 0.916752i \(-0.369199\pi\)
0.399458 + 0.916752i \(0.369199\pi\)
\(930\) 11.3723 0.372912
\(931\) 2.74456 0.0899494
\(932\) 1.37228 0.0449506
\(933\) −65.3288 −2.13877
\(934\) 19.3723 0.633880
\(935\) −1.37228 −0.0448784
\(936\) −16.7446 −0.547313
\(937\) −28.5109 −0.931410 −0.465705 0.884940i \(-0.654199\pi\)
−0.465705 + 0.884940i \(0.654199\pi\)
\(938\) −26.9783 −0.880871
\(939\) 74.1902 2.42111
\(940\) 2.74456 0.0895178
\(941\) −15.0951 −0.492086 −0.246043 0.969259i \(-0.579130\pi\)
−0.246043 + 0.969259i \(0.579130\pi\)
\(942\) 31.6060 1.02978
\(943\) −31.5326 −1.02684
\(944\) −2.74456 −0.0893279
\(945\) −61.0951 −1.98742
\(946\) −4.00000 −0.130051
\(947\) 48.8614 1.58778 0.793891 0.608060i \(-0.208052\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(948\) 4.23369 0.137504
\(949\) −30.9783 −1.00560
\(950\) −0.627719 −0.0203659
\(951\) 82.1168 2.66282
\(952\) −4.62772 −0.149985
\(953\) 40.1168 1.29951 0.649756 0.760143i \(-0.274871\pi\)
0.649756 + 0.760143i \(0.274871\pi\)
\(954\) 34.4674 1.11592
\(955\) −5.48913 −0.177624
\(956\) −14.7446 −0.476873
\(957\) 4.62772 0.149593
\(958\) −5.48913 −0.177346
\(959\) 29.4891 0.952254
\(960\) −3.37228 −0.108840
\(961\) −19.6277 −0.633152
\(962\) −18.7446 −0.604349
\(963\) −100.467 −3.23752
\(964\) −22.0000 −0.708572
\(965\) 14.8614 0.478406
\(966\) 31.2119 1.00423
\(967\) 47.6060 1.53090 0.765452 0.643493i \(-0.222515\pi\)
0.765452 + 0.643493i \(0.222515\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −2.90491 −0.0933190
\(970\) 12.7446 0.409203
\(971\) −1.02175 −0.0327895 −0.0163947 0.999866i \(-0.505219\pi\)
−0.0163947 + 0.999866i \(0.505219\pi\)
\(972\) −66.9783 −2.14833
\(973\) −13.4891 −0.432442
\(974\) −20.0000 −0.640841
\(975\) −6.74456 −0.215999
\(976\) −5.37228 −0.171963
\(977\) 14.2337 0.455376 0.227688 0.973734i \(-0.426883\pi\)
0.227688 + 0.973734i \(0.426883\pi\)
\(978\) −19.8397 −0.634402
\(979\) 1.37228 0.0438583
\(980\) 4.37228 0.139667
\(981\) −129.679 −4.14034
\(982\) 7.37228 0.235259
\(983\) −13.7228 −0.437690 −0.218845 0.975760i \(-0.570229\pi\)
−0.218845 + 0.975760i \(0.570229\pi\)
\(984\) −38.7446 −1.23513
\(985\) −20.7446 −0.660977
\(986\) −1.88316 −0.0599719
\(987\) −31.2119 −0.993487
\(988\) 1.25544 0.0399408
\(989\) −10.9783 −0.349088
\(990\) 8.37228 0.266089
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −3.37228 −0.107070
\(993\) −104.467 −3.31517
\(994\) −34.1168 −1.08212
\(995\) 18.1168 0.574343
\(996\) 9.25544 0.293270
\(997\) 22.2337 0.704148 0.352074 0.935972i \(-0.385477\pi\)
0.352074 + 0.935972i \(0.385477\pi\)
\(998\) 33.4891 1.06008
\(999\) −169.796 −5.37211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.2.a.d.1.1 2
3.2 odd 2 990.2.a.m.1.2 2
4.3 odd 2 880.2.a.n.1.2 2
5.2 odd 4 550.2.b.f.199.2 4
5.3 odd 4 550.2.b.f.199.3 4
5.4 even 2 550.2.a.n.1.2 2
7.6 odd 2 5390.2.a.bp.1.2 2
8.3 odd 2 3520.2.a.bj.1.1 2
8.5 even 2 3520.2.a.bq.1.2 2
11.10 odd 2 1210.2.a.r.1.1 2
12.11 even 2 7920.2.a.bq.1.1 2
15.2 even 4 4950.2.c.bc.199.4 4
15.8 even 4 4950.2.c.bc.199.1 4
15.14 odd 2 4950.2.a.bw.1.1 2
20.3 even 4 4400.2.b.p.4049.4 4
20.7 even 4 4400.2.b.p.4049.1 4
20.19 odd 2 4400.2.a.bl.1.1 2
44.43 even 2 9680.2.a.bt.1.2 2
55.54 odd 2 6050.2.a.cb.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.1 2 1.1 even 1 trivial
550.2.a.n.1.2 2 5.4 even 2
550.2.b.f.199.2 4 5.2 odd 4
550.2.b.f.199.3 4 5.3 odd 4
880.2.a.n.1.2 2 4.3 odd 2
990.2.a.m.1.2 2 3.2 odd 2
1210.2.a.r.1.1 2 11.10 odd 2
3520.2.a.bj.1.1 2 8.3 odd 2
3520.2.a.bq.1.2 2 8.5 even 2
4400.2.a.bl.1.1 2 20.19 odd 2
4400.2.b.p.4049.1 4 20.7 even 4
4400.2.b.p.4049.4 4 20.3 even 4
4950.2.a.bw.1.1 2 15.14 odd 2
4950.2.c.bc.199.1 4 15.8 even 4
4950.2.c.bc.199.4 4 15.2 even 4
5390.2.a.bp.1.2 2 7.6 odd 2
6050.2.a.cb.1.2 2 55.54 odd 2
7920.2.a.bq.1.1 2 12.11 even 2
9680.2.a.bt.1.2 2 44.43 even 2