Properties

Label 110.2.a.c
Level 110
Weight 2
Character orbit 110.a
Self dual Yes
Analytic conductor 0.878
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 110.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} - 2q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} - q^{7} + q^{8} - 2q^{9} - q^{10} - q^{11} + q^{12} + 2q^{13} - q^{14} - q^{15} + q^{16} - 3q^{17} - 2q^{18} - q^{19} - q^{20} - q^{21} - q^{22} + 6q^{23} + q^{24} + q^{25} + 2q^{26} - 5q^{27} - q^{28} - 9q^{29} - q^{30} + 5q^{31} + q^{32} - q^{33} - 3q^{34} + q^{35} - 2q^{36} + 5q^{37} - q^{38} + 2q^{39} - q^{40} - 6q^{41} - q^{42} + 8q^{43} - q^{44} + 2q^{45} + 6q^{46} + 6q^{47} + q^{48} - 6q^{49} + q^{50} - 3q^{51} + 2q^{52} + 9q^{53} - 5q^{54} + q^{55} - q^{56} - q^{57} - 9q^{58} + 6q^{59} - q^{60} + 5q^{61} + 5q^{62} + 2q^{63} + q^{64} - 2q^{65} - q^{66} + 8q^{67} - 3q^{68} + 6q^{69} + q^{70} - 9q^{71} - 2q^{72} - 10q^{73} + 5q^{74} + q^{75} - q^{76} + q^{77} + 2q^{78} + 14q^{79} - q^{80} + q^{81} - 6q^{82} - 6q^{83} - q^{84} + 3q^{85} + 8q^{86} - 9q^{87} - q^{88} - 15q^{89} + 2q^{90} - 2q^{91} + 6q^{92} + 5q^{93} + 6q^{94} + q^{95} + q^{96} + 8q^{97} - 6q^{98} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 −1.00000 1.00000 −2.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(110))\):

\( T_{3} - 1 \)
\( T_{7} + 1 \)