Properties

Label 110.2.a.a
Level 110
Weight 2
Character orbit 110.a
Self dual Yes
Analytic conductor 0.878
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 110.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 5q^{7} - q^{8} - 2q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 5q^{7} - q^{8} - 2q^{9} + q^{10} + q^{11} + q^{12} + 2q^{13} - 5q^{14} - q^{15} + q^{16} + 3q^{17} + 2q^{18} - 7q^{19} - q^{20} + 5q^{21} - q^{22} - 6q^{23} - q^{24} + q^{25} - 2q^{26} - 5q^{27} + 5q^{28} - 3q^{29} + q^{30} - 7q^{31} - q^{32} + q^{33} - 3q^{34} - 5q^{35} - 2q^{36} - 7q^{37} + 7q^{38} + 2q^{39} + q^{40} + 6q^{41} - 5q^{42} + 8q^{43} + q^{44} + 2q^{45} + 6q^{46} + 6q^{47} + q^{48} + 18q^{49} - q^{50} + 3q^{51} + 2q^{52} - 3q^{53} + 5q^{54} - q^{55} - 5q^{56} - 7q^{57} + 3q^{58} - 6q^{59} - q^{60} - q^{61} + 7q^{62} - 10q^{63} + q^{64} - 2q^{65} - q^{66} + 8q^{67} + 3q^{68} - 6q^{69} + 5q^{70} + 3q^{71} + 2q^{72} + 2q^{73} + 7q^{74} + q^{75} - 7q^{76} + 5q^{77} - 2q^{78} - 10q^{79} - q^{80} + q^{81} - 6q^{82} - 6q^{83} + 5q^{84} - 3q^{85} - 8q^{86} - 3q^{87} - q^{88} + 9q^{89} - 2q^{90} + 10q^{91} - 6q^{92} - 7q^{93} - 6q^{94} + 7q^{95} - q^{96} - 4q^{97} - 18q^{98} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 −1.00000 −1.00000 5.00000 −1.00000 −2.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(11\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(110))\):

\( T_{3} - 1 \)
\( T_{7} - 5 \)