Properties

Label 110.2
Level 110
Weight 2
Dimension 111
Nonzero newspaces 6
Newform subspaces 16
Sturm bound 1440
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 16 \)
Sturm bound: \(1440\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(110))\).

Total New Old
Modular forms 440 111 329
Cusp forms 281 111 170
Eisenstein series 159 0 159

Trace form

\( 111 q + q^{2} + 4 q^{3} + q^{4} + q^{5} - 6 q^{6} - 12 q^{7} + q^{8} - 27 q^{9} - 9 q^{10} - 9 q^{11} - 16 q^{12} - 6 q^{13} - 12 q^{14} - 26 q^{15} + q^{16} - 22 q^{17} + 3 q^{18} - 10 q^{19} + q^{20}+ \cdots + 83 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
110.2.a \(\chi_{110}(1, \cdot)\) 110.2.a.a 1 1
110.2.a.b 1
110.2.a.c 1
110.2.a.d 2
110.2.b \(\chi_{110}(89, \cdot)\) 110.2.b.a 2 1
110.2.b.b 2
110.2.b.c 2
110.2.f \(\chi_{110}(43, \cdot)\) 110.2.f.a 4 2
110.2.f.b 4
110.2.f.c 4
110.2.g \(\chi_{110}(31, \cdot)\) 110.2.g.a 4 4
110.2.g.b 4
110.2.g.c 8
110.2.j \(\chi_{110}(9, \cdot)\) 110.2.j.a 8 4
110.2.j.b 16
110.2.k \(\chi_{110}(7, \cdot)\) 110.2.k.a 48 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(110))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(110)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)