Properties

Label 11.9.d
Level 1111
Weight 99
Character orbit 11.d
Rep. character χ11(2,)\chi_{11}(2,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 2828
Newform subspaces 11
Sturm bound 99
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 11 11
Weight: k k == 9 9
Character orbit: [χ][\chi] == 11.d (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q(ζ10)\Q(\zeta_{10})
Newform subspaces: 1 1
Sturm bound: 99
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M9(11,[χ])M_{9}(11, [\chi]).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

28q5q2+144q3+951q4708q54485q6+5470q73845q814225q9+38567q11+63954q1212500q1349262q14211056q15+65335q16+368200q17+149389979q99+O(q100) 28 q - 5 q^{2} + 144 q^{3} + 951 q^{4} - 708 q^{5} - 4485 q^{6} + 5470 q^{7} - 3845 q^{8} - 14225 q^{9} + 38567 q^{11} + 63954 q^{12} - 12500 q^{13} - 49262 q^{14} - 211056 q^{15} + 65335 q^{16} + 368200 q^{17}+ \cdots - 149389979 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S9new(11,[χ])S_{9}^{\mathrm{new}}(11, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
11.9.d.a 11.d 11.d 2828 4.4814.481 None 11.9.d.a 5-5 144144 708-708 54705470 SU(2)[C10]\mathrm{SU}(2)[C_{10}]