Newspace parameters
| Level: | \( N \) | \(=\) | \( 11 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 11.c (of order \(5\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(3.43623528033\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1 | −13.5536 | + | 9.84730i | −14.4249 | − | 44.3951i | 47.1778 | − | 145.198i | 315.392 | + | 229.146i | 632.682 | + | 459.670i | 356.708 | − | 1097.83i | 127.721 | + | 393.085i | 6.46918 | − | 4.70013i | −6531.19 | ||
| 3.2 | −12.7113 | + | 9.23528i | 16.6337 | + | 51.1934i | 36.7318 | − | 113.049i | −268.339 | − | 194.959i | −684.221 | − | 497.116i | −72.0370 | + | 221.707i | −44.3449 | − | 136.480i | −574.763 | + | 417.590i | 5211.43 | ||
| 3.3 | −1.19911 | + | 0.871205i | 2.15176 | + | 6.62243i | −38.8753 | + | 119.646i | 171.086 | + | 124.301i | −8.34968 | − | 6.06640i | −463.381 | + | 1426.14i | −116.247 | − | 357.771i | 1730.09 | − | 1256.99i | −313.442 | ||
| 3.4 | 0.987911 | − | 0.717759i | −18.8902 | − | 58.1380i | −39.0934 | + | 120.317i | −339.439 | − | 246.617i | −60.3909 | − | 43.8766i | 312.595 | − | 962.069i | 96.0385 | + | 295.576i | −1253.87 | + | 910.990i | −512.347 | ||
| 3.5 | 7.83171 | − | 5.69007i | 23.5652 | + | 72.5261i | −10.5954 | + | 32.6093i | 9.68480 | + | 7.03642i | 597.234 | + | 433.916i | 520.681 | − | 1602.49i | 485.474 | + | 1494.14i | −2935.40 | + | 2132.69i | 115.886 | ||
| 3.6 | 14.3633 | − | 10.4355i | −6.74383 | − | 20.7554i | 57.8489 | − | 178.041i | 53.3657 | + | 38.7724i | −313.456 | − | 227.739i | −143.396 | + | 441.326i | −324.804 | − | 999.643i | 1384.01 | − | 1005.54i | 1171.11 | ||
| 4.1 | −13.5536 | − | 9.84730i | −14.4249 | + | 44.3951i | 47.1778 | + | 145.198i | 315.392 | − | 229.146i | 632.682 | − | 459.670i | 356.708 | + | 1097.83i | 127.721 | − | 393.085i | 6.46918 | + | 4.70013i | −6531.19 | ||
| 4.2 | −12.7113 | − | 9.23528i | 16.6337 | − | 51.1934i | 36.7318 | + | 113.049i | −268.339 | + | 194.959i | −684.221 | + | 497.116i | −72.0370 | − | 221.707i | −44.3449 | + | 136.480i | −574.763 | − | 417.590i | 5211.43 | ||
| 4.3 | −1.19911 | − | 0.871205i | 2.15176 | − | 6.62243i | −38.8753 | − | 119.646i | 171.086 | − | 124.301i | −8.34968 | + | 6.06640i | −463.381 | − | 1426.14i | −116.247 | + | 357.771i | 1730.09 | + | 1256.99i | −313.442 | ||
| 4.4 | 0.987911 | + | 0.717759i | −18.8902 | + | 58.1380i | −39.0934 | − | 120.317i | −339.439 | + | 246.617i | −60.3909 | + | 43.8766i | 312.595 | + | 962.069i | 96.0385 | − | 295.576i | −1253.87 | − | 910.990i | −512.347 | ||
| 4.5 | 7.83171 | + | 5.69007i | 23.5652 | − | 72.5261i | −10.5954 | − | 32.6093i | 9.68480 | − | 7.03642i | 597.234 | − | 433.916i | 520.681 | + | 1602.49i | 485.474 | − | 1494.14i | −2935.40 | − | 2132.69i | 115.886 | ||
| 4.6 | 14.3633 | + | 10.4355i | −6.74383 | + | 20.7554i | 57.8489 | + | 178.041i | 53.3657 | − | 38.7724i | −313.456 | + | 227.739i | −143.396 | − | 441.326i | −324.804 | + | 999.643i | 1384.01 | + | 1005.54i | 1171.11 | ||
| 5.1 | −4.77944 | − | 14.7096i | −26.0461 | − | 18.9236i | −89.9749 | + | 65.3706i | −44.2018 | + | 136.039i | −153.873 | + | 473.572i | −451.793 | + | 328.247i | −210.025 | − | 152.592i | −355.523 | − | 1094.19i | 2212.34 | ||
| 5.2 | −3.78266 | − | 11.6418i | 65.2919 | + | 47.4374i | −17.6695 | + | 12.8376i | 31.6803 | − | 97.5020i | 305.280 | − | 939.557i | 601.350 | − | 436.906i | −1051.31 | − | 763.821i | 1336.91 | + | 4114.59i | −1254.94 | ||
| 5.3 | 0.419581 | + | 1.29134i | −22.7291 | − | 16.5137i | 102.063 | − | 74.1529i | 90.0532 | − | 277.155i | 11.7880 | − | 36.2797i | 205.463 | − | 149.277i | 279.185 | + | 202.840i | −431.909 | − | 1329.28i | 395.685 | ||
| 5.4 | 2.40997 | + | 7.41712i | 23.7466 | + | 17.2529i | 54.3484 | − | 39.4864i | −139.587 | + | 429.605i | −70.7385 | + | 217.711i | 40.1674 | − | 29.1833i | 1231.45 | + | 894.704i | −409.581 | − | 1260.56i | −3522.83 | ||
| 5.5 | 5.72800 | + | 17.6290i | −70.9612 | − | 51.5564i | −174.417 | + | 126.721i | −66.8497 | + | 205.742i | 502.420 | − | 1546.29i | −327.935 | + | 238.259i | −1313.52 | − | 954.328i | 1701.62 | + | 5237.04i | −4009.94 | ||
| 5.6 | 5.78570 | + | 17.8065i | 46.4061 | + | 33.7160i | −180.045 | + | 130.810i | 151.154 | − | 465.205i | −331.874 | + | 1021.40i | −544.422 | + | 395.546i | −1432.12 | − | 1040.50i | 340.938 | + | 1049.30i | 9158.23 | ||
| 9.1 | −4.77944 | + | 14.7096i | −26.0461 | + | 18.9236i | −89.9749 | − | 65.3706i | −44.2018 | − | 136.039i | −153.873 | − | 473.572i | −451.793 | − | 328.247i | −210.025 | + | 152.592i | −355.523 | + | 1094.19i | 2212.34 | ||
| 9.2 | −3.78266 | + | 11.6418i | 65.2919 | − | 47.4374i | −17.6695 | − | 12.8376i | 31.6803 | + | 97.5020i | 305.280 | + | 939.557i | 601.350 | + | 436.906i | −1051.31 | + | 763.821i | 1336.91 | − | 4114.59i | −1254.94 | ||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 11.8.c.a | ✓ | 24 |
| 3.b | odd | 2 | 1 | 99.8.f.a | 24 | ||
| 11.c | even | 5 | 1 | inner | 11.8.c.a | ✓ | 24 |
| 11.c | even | 5 | 1 | 121.8.a.i | 12 | ||
| 11.d | odd | 10 | 1 | 121.8.a.g | 12 | ||
| 33.h | odd | 10 | 1 | 99.8.f.a | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 11.8.c.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 11.8.c.a | ✓ | 24 | 11.c | even | 5 | 1 | inner |
| 99.8.f.a | 24 | 3.b | odd | 2 | 1 | ||
| 99.8.f.a | 24 | 33.h | odd | 10 | 1 | ||
| 121.8.a.g | 12 | 11.d | odd | 10 | 1 | ||
| 121.8.a.i | 12 | 11.c | even | 5 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(11, [\chi])\).