Properties

Label 11.8.a.a
Level $11$
Weight $8$
Character orbit 11.a
Self dual yes
Analytic conductor $3.436$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,8,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.43623528033\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 4) q^{2} + ( - 6 \beta - 3) q^{3} + ( - 8 \beta - 52) q^{4} + (20 \beta - 235) q^{5} + (21 \beta - 348) q^{6} + (82 \beta - 614) q^{7} + ( - 148 \beta + 240) q^{8} + (36 \beta - 18) q^{9}+ \cdots + (47916 \beta - 23958) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 6 q^{3} - 104 q^{4} - 470 q^{5} - 696 q^{6} - 1228 q^{7} + 480 q^{8} - 36 q^{9} + 4280 q^{10} + 2662 q^{11} + 6072 q^{12} + 344 q^{13} + 14752 q^{14} - 12990 q^{15} - 6368 q^{16} - 8468 q^{17}+ \cdots - 47916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.87298
3.87298
−11.7460 43.4758 9.96773 −389.919 −510.665 −1249.17 1386.40 −296.855 4579.98
1.2 3.74597 −49.4758 −113.968 −80.0807 −185.335 21.1693 −906.403 260.855 −299.980
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.8.a.a 2
3.b odd 2 1 99.8.a.c 2
4.b odd 2 1 176.8.a.d 2
5.b even 2 1 275.8.a.a 2
7.b odd 2 1 539.8.a.a 2
11.b odd 2 1 121.8.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.8.a.a 2 1.a even 1 1 trivial
99.8.a.c 2 3.b odd 2 1
121.8.a.b 2 11.b odd 2 1
176.8.a.d 2 4.b odd 2 1
275.8.a.a 2 5.b even 2 1
539.8.a.a 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 8T_{2} - 44 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8T - 44 \) Copy content Toggle raw display
$3$ \( T^{2} + 6T - 2151 \) Copy content Toggle raw display
$5$ \( T^{2} + 470T + 31225 \) Copy content Toggle raw display
$7$ \( T^{2} + 1228T - 26444 \) Copy content Toggle raw display
$11$ \( (T - 1331)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 344 T - 16069856 \) Copy content Toggle raw display
$17$ \( T^{2} + 8468 T - 788446604 \) Copy content Toggle raw display
$19$ \( T^{2} + 35280 T - 222369840 \) Copy content Toggle raw display
$23$ \( T^{2} + 61486 T - 159113951 \) Copy content Toggle raw display
$29$ \( T^{2} - 179040 T + 122928960 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 23689658111 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 191745594561 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 264475105136 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 9203802564 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 677029127296 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 388813137924 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 207772229185 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 9007507329744 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 9239984638199 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 11975092638711 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 2090754692576 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2681742596060 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 536001911676 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 42998937114225 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 1834997592239 \) Copy content Toggle raw display
show more
show less