[N,k,chi] = [11,8,Mod(1,11)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("11.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{15}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(11\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 8T_{2} - 44 \)
T2^2 + 8*T2 - 44
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(11))\).
$p$
$F_p(T)$
$2$
\( T^{2} + 8T - 44 \)
T^2 + 8*T - 44
$3$
\( T^{2} + 6T - 2151 \)
T^2 + 6*T - 2151
$5$
\( T^{2} + 470T + 31225 \)
T^2 + 470*T + 31225
$7$
\( T^{2} + 1228T - 26444 \)
T^2 + 1228*T - 26444
$11$
\( (T - 1331)^{2} \)
(T - 1331)^2
$13$
\( T^{2} - 344 T - 16069856 \)
T^2 - 344*T - 16069856
$17$
\( T^{2} + 8468 T - 788446604 \)
T^2 + 8468*T - 788446604
$19$
\( T^{2} + 35280 T - 222369840 \)
T^2 + 35280*T - 222369840
$23$
\( T^{2} + 61486 T - 159113951 \)
T^2 + 61486*T - 159113951
$29$
\( T^{2} - 179040 T + 122928960 \)
T^2 - 179040*T + 122928960
$31$
\( T^{2} + 57166 T - 23689658111 \)
T^2 + 57166*T - 23689658111
$37$
\( T^{2} + 877698 T + 191745594561 \)
T^2 + 877698*T + 191745594561
$41$
\( T^{2} + 283616 T - 264475105136 \)
T^2 + 283616*T - 264475105136
$43$
\( T^{2} - 275484 T + 9203802564 \)
T^2 - 275484*T + 9203802564
$47$
\( T^{2} - 1662512 T + 677029127296 \)
T^2 - 1662512*T + 677029127296
$53$
\( T^{2} - 1616484 T + 388813137924 \)
T^2 - 1616484*T + 388813137924
$59$
\( T^{2} + 2454130 T + 207772229185 \)
T^2 + 2454130*T + 207772229185
$61$
\( T^{2} + 6019176 T + 9007507329744 \)
T^2 + 6019176*T + 9007507329744
$67$
\( T^{2} + 174698 T - 9239984638199 \)
T^2 + 174698*T - 9239984638199
$71$
\( T^{2} + 1151466 T - 11975092638711 \)
T^2 + 1151466*T - 11975092638711
$73$
\( T^{2} - 885944 T - 2090754692576 \)
T^2 - 885944*T - 2090754692576
$79$
\( T^{2} - 3801460 T - 2681742596060 \)
T^2 - 3801460*T - 2681742596060
$83$
\( T^{2} + 2282916 T - 536001911676 \)
T^2 + 2282916*T - 536001911676
$89$
\( T^{2} + 13481970 T + 42998937114225 \)
T^2 + 13481970*T + 42998937114225
$97$
\( T^{2} + 68078 T - 1834997592239 \)
T^2 + 68078*T - 1834997592239
show more
show less