Defining parameters
Level: | \( N \) | \(=\) | \( 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 11.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(6\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(11))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 4 | 2 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | Dim. |
---|---|
\(+\) | \(1\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | |||||||
11.6.a.a | $1$ | $1.764$ | \(\Q\) | None | \(-4\) | \(-15\) | \(-19\) | \(10\) | $+$ | \(q-4q^{2}-15q^{3}-2^{4}q^{4}-19q^{5}+60q^{6}+\cdots\) | |
11.6.a.b | $3$ | $1.764$ | 3.3.54492.1 | None | \(0\) | \(34\) | \(24\) | \(84\) | $-$ | \(q+\beta _{2}q^{2}+(11+\beta _{1}-\beta _{2})q^{3}+(30-6\beta _{1}+\cdots)q^{4}+\cdots\) |