Properties

Label 11.6.a
Level $11$
Weight $6$
Character orbit 11.a
Rep. character $\chi_{11}(1,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $6$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(6\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(11))\).

Total New Old
Modular forms 6 4 2
Cusp forms 4 4 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)Dim
\(+\)\(1\)
\(-\)\(3\)

Trace form

\( 4 q - 4 q^{2} + 19 q^{3} + 68 q^{4} + 5 q^{5} - 146 q^{6} + 94 q^{7} - 372 q^{8} - 25 q^{9} - 338 q^{10} + 242 q^{11} + 1232 q^{12} - 662 q^{13} - 1060 q^{14} + 1939 q^{15} + 1736 q^{16} + 1772 q^{17} - 3634 q^{18}+ \cdots + 1331 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
11.6.a.a 11.a 1.a $1$ $1.764$ \(\Q\) None 11.6.a.a \(-4\) \(-15\) \(-19\) \(10\) $+$ $\mathrm{SU}(2)$ \(q-4q^{2}-15q^{3}-2^{4}q^{4}-19q^{5}+60q^{6}+\cdots\)
11.6.a.b 11.a 1.a $3$ $1.764$ 3.3.54492.1 None 11.6.a.b \(0\) \(34\) \(24\) \(84\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(11+\beta _{1}-\beta _{2})q^{3}+(30-6\beta _{1}+\cdots)q^{4}+\cdots\)