Properties

Label 11.6
Level 11
Weight 6
Dimension 20
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 60
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(11))\).

Total New Old
Modular forms 30 28 2
Cusp forms 20 20 0
Eisenstein series 10 8 2

Trace form

\( 20 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} - 25 q^{6} + 290 q^{7} + 155 q^{8} - 555 q^{9} - 1010 q^{10} - 450 q^{11} - 330 q^{12} + 500 q^{13} - 500 q^{14} + 3735 q^{15} + 8135 q^{16} + 1750 q^{17} - 2800 q^{18}+ \cdots + 726295 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
11.6.a \(\chi_{11}(1, \cdot)\) 11.6.a.a 1 1
11.6.a.b 3
11.6.c \(\chi_{11}(3, \cdot)\) 11.6.c.a 16 4