Properties

Label 11.5.d.a.8.2
Level 11
Weight 5
Character 11.8
Analytic conductor 1.137
Analytic rank 0
Dimension 12
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 11.d (of order \(10\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.13706959392\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 8.2
Root \(-0.159251i\)
Character \(\chi\) = 11.8
Dual form 11.5.d.a.7.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.02443 + 1.41001i) q^{2} +(2.68168 + 8.25338i) q^{3} +(4.00561 - 12.3280i) q^{4} +(-8.06057 - 5.85635i) q^{5} +(-8.89011 + 12.2362i) q^{6} +(-56.0338 - 18.2065i) q^{7} +(48.0070 - 15.5984i) q^{8} +(4.60358 - 3.34469i) q^{9} +O(q^{10})\) \(q+(1.02443 + 1.41001i) q^{2} +(2.68168 + 8.25338i) q^{3} +(4.00561 - 12.3280i) q^{4} +(-8.06057 - 5.85635i) q^{5} +(-8.89011 + 12.2362i) q^{6} +(-56.0338 - 18.2065i) q^{7} +(48.0070 - 15.5984i) q^{8} +(4.60358 - 3.34469i) q^{9} -17.3649i q^{10} +(-16.1117 + 119.923i) q^{11} +112.489 q^{12} +(75.0662 + 103.320i) q^{13} +(-31.7314 - 97.6593i) q^{14} +(26.7187 - 82.2318i) q^{15} +(-96.6156 - 70.1954i) q^{16} +(22.8472 - 31.4465i) q^{17} +(9.43207 + 3.06467i) q^{18} +(-560.182 + 182.014i) q^{19} +(-104.485 + 75.9125i) q^{20} -511.293i q^{21} +(-185.597 + 100.135i) q^{22} +973.600 q^{23} +(257.479 + 354.390i) q^{24} +(-162.460 - 499.999i) q^{25} +(-68.7814 + 211.687i) q^{26} +(608.630 + 442.196i) q^{27} +(-448.900 + 617.857i) q^{28} +(-141.677 - 46.0337i) q^{29} +(143.319 - 46.5671i) q^{30} +(140.685 - 102.214i) q^{31} -1015.78i q^{32} +(-1032.97 + 188.618i) q^{33} +67.7450 q^{34} +(345.041 + 474.909i) q^{35} +(-22.7933 - 70.1504i) q^{36} +(442.232 - 1361.05i) q^{37} +(-830.507 - 603.399i) q^{38} +(-651.433 + 896.620i) q^{39} +(-478.314 - 155.414i) q^{40} +(-561.211 + 182.349i) q^{41} +(720.925 - 523.783i) q^{42} +1171.41i q^{43} +(1413.87 + 678.988i) q^{44} -56.6952 q^{45} +(997.384 + 1372.78i) q^{46} +(-151.299 - 465.650i) q^{47} +(320.256 - 985.647i) q^{48} +(865.865 + 629.088i) q^{49} +(538.573 - 741.283i) q^{50} +(320.808 + 104.237i) q^{51} +(1574.41 - 511.557i) q^{52} +(-1804.69 + 1311.18i) q^{53} +1311.17i q^{54} +(832.178 - 872.289i) q^{55} -2974.01 q^{56} +(-3004.46 - 4135.29i) q^{57} +(-80.2304 - 246.924i) q^{58} +(-1488.77 + 4581.97i) q^{59} +(-906.729 - 658.778i) q^{60} +(2838.11 - 3906.32i) q^{61} +(288.243 + 93.6559i) q^{62} +(-318.851 + 103.601i) q^{63} +(-113.596 + 82.5323i) q^{64} -1272.43i q^{65} +(-1324.16 - 1263.27i) q^{66} +187.188 q^{67} +(-296.155 - 407.623i) q^{68} +(2610.89 + 8035.49i) q^{69} +(-316.153 + 973.020i) q^{70} +(-537.618 - 390.602i) q^{71} +(168.832 - 232.377i) q^{72} +(5025.08 + 1632.75i) q^{73} +(2372.13 - 770.750i) q^{74} +(3691.02 - 2681.68i) q^{75} +7635.00i q^{76} +(3086.17 - 6426.38i) q^{77} -1931.59 q^{78} +(-5015.11 - 6902.71i) q^{79} +(367.689 + 1131.63i) q^{80} +(-1875.02 + 5770.73i) q^{81} +(-832.034 - 604.508i) q^{82} +(-136.132 + 187.370i) q^{83} +(-6303.22 - 2048.04i) q^{84} +(-368.323 + 119.675i) q^{85} +(-1651.69 + 1200.02i) q^{86} -1292.76i q^{87} +(1097.13 + 6008.44i) q^{88} -6640.75 q^{89} +(-58.0802 - 79.9405i) q^{90} +(-2325.16 - 7156.09i) q^{91} +(3899.86 - 12002.5i) q^{92} +(1220.88 + 887.020i) q^{93} +(501.574 - 690.357i) q^{94} +(5581.33 + 1813.48i) q^{95} +(8383.61 - 2724.00i) q^{96} +(-5913.27 + 4296.24i) q^{97} +1865.33i q^{98} +(326.933 + 605.961i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 5q^{2} - 6q^{3} + 7q^{4} - 18q^{5} + 75q^{6} - 80q^{7} - 245q^{8} + q^{9} + O(q^{10}) \) \( 12q - 5q^{2} - 6q^{3} + 7q^{4} - 18q^{5} + 75q^{6} - 80q^{7} - 245q^{8} + q^{9} - 43q^{11} + 594q^{12} + 250q^{13} + 610q^{14} + 1134q^{15} - 633q^{16} - 1250q^{17} - 3150q^{18} - 1025q^{19} + 752q^{20} - 35q^{22} + 1684q^{23} + 5345q^{24} + 197q^{25} + 3490q^{26} - 687q^{27} - 3580q^{28} - 2690q^{29} - 6740q^{30} - 1136q^{31} + 5939q^{33} + 2370q^{34} + 3610q^{35} - 514q^{36} - 336q^{37} + 1900q^{38} - 6880q^{39} - 2340q^{40} - 4550q^{41} + 1310q^{42} - 6268q^{44} + 5136q^{45} + 4150q^{46} + 24q^{47} + 344q^{48} + 827q^{49} + 8895q^{50} + 13155q^{51} + 14070q^{52} + 414q^{53} - 2738q^{55} - 21340q^{56} - 26925q^{57} + 2980q^{58} - 10011q^{59} - 6856q^{60} + 9460q^{61} - 6200q^{62} + 9150q^{63} - 2633q^{64} - 3210q^{66} + 12154q^{67} - 9400q^{68} - 9022q^{69} - 9380q^{70} + 17574q^{71} + 43045q^{72} + 27950q^{73} + 43270q^{74} - 1761q^{75} + 4090q^{77} - 42920q^{78} - 41540q^{79} - 2308q^{80} - 21080q^{81} - 28175q^{82} - 18665q^{83} + 26250q^{84} - 4230q^{85} - 10125q^{86} - 15125q^{88} + 5554q^{89} + 18400q^{90} + 7390q^{91} + 3904q^{92} + 36898q^{93} + 18920q^{94} + 14110q^{95} - 21140q^{96} + 20769q^{97} - 3269q^{99} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/11\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02443 + 1.41001i 0.256107 + 0.352501i 0.917638 0.397416i \(-0.130093\pi\)
−0.661531 + 0.749918i \(0.730093\pi\)
\(3\) 2.68168 + 8.25338i 0.297965 + 0.917042i 0.982209 + 0.187789i \(0.0601322\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(4\) 4.00561 12.3280i 0.250351 0.770500i
\(5\) −8.06057 5.85635i −0.322423 0.234254i 0.414786 0.909919i \(-0.363857\pi\)
−0.737209 + 0.675665i \(0.763857\pi\)
\(6\) −8.89011 + 12.2362i −0.246948 + 0.339894i
\(7\) −56.0338 18.2065i −1.14355 0.371561i −0.324839 0.945769i \(-0.605310\pi\)
−0.818709 + 0.574208i \(0.805310\pi\)
\(8\) 48.0070 15.5984i 0.750109 0.243725i
\(9\) 4.60358 3.34469i 0.0568343 0.0412925i
\(10\) 17.3649i 0.173649i
\(11\) −16.1117 + 119.923i −0.133155 + 0.991095i
\(12\) 112.489 0.781177
\(13\) 75.0662 + 103.320i 0.444178 + 0.611359i 0.971134 0.238533i \(-0.0766667\pi\)
−0.526956 + 0.849893i \(0.676667\pi\)
\(14\) −31.7314 97.6593i −0.161895 0.498262i
\(15\) 26.7187 82.2318i 0.118750 0.365475i
\(16\) −96.6156 70.1954i −0.377405 0.274201i
\(17\) 22.8472 31.4465i 0.0790560 0.108811i −0.767658 0.640860i \(-0.778578\pi\)
0.846714 + 0.532049i \(0.178578\pi\)
\(18\) 9.43207 + 3.06467i 0.0291113 + 0.00945885i
\(19\) −560.182 + 182.014i −1.55175 + 0.504194i −0.954589 0.297927i \(-0.903705\pi\)
−0.597162 + 0.802121i \(0.703705\pi\)
\(20\) −104.485 + 75.9125i −0.261212 + 0.189781i
\(21\) 511.293i 1.15939i
\(22\) −185.597 + 100.135i −0.383464 + 0.206889i
\(23\) 973.600 1.84045 0.920227 0.391386i \(-0.128004\pi\)
0.920227 + 0.391386i \(0.128004\pi\)
\(24\) 257.479 + 354.390i 0.447013 + 0.615260i
\(25\) −162.460 499.999i −0.259935 0.799999i
\(26\) −68.7814 + 211.687i −0.101748 + 0.313147i
\(27\) 608.630 + 442.196i 0.834884 + 0.606579i
\(28\) −448.900 + 617.857i −0.572576 + 0.788083i
\(29\) −141.677 46.0337i −0.168463 0.0547369i 0.223571 0.974688i \(-0.428228\pi\)
−0.392034 + 0.919951i \(0.628228\pi\)
\(30\) 143.319 46.5671i 0.159243 0.0517412i
\(31\) 140.685 102.214i 0.146394 0.106362i −0.512177 0.858880i \(-0.671161\pi\)
0.658572 + 0.752518i \(0.271161\pi\)
\(32\) 1015.78i 0.991972i
\(33\) −1032.97 + 188.618i −0.948551 + 0.173203i
\(34\) 67.7450 0.0586029
\(35\) 345.041 + 474.909i 0.281666 + 0.387680i
\(36\) −22.7933 70.1504i −0.0175874 0.0541284i
\(37\) 442.232 1361.05i 0.323033 0.994194i −0.649287 0.760543i \(-0.724933\pi\)
0.972321 0.233651i \(-0.0750672\pi\)
\(38\) −830.507 603.399i −0.575144 0.417866i
\(39\) −651.433 + 896.620i −0.428292 + 0.589494i
\(40\) −478.314 155.414i −0.298946 0.0971334i
\(41\) −561.211 + 182.349i −0.333856 + 0.108476i −0.471148 0.882054i \(-0.656160\pi\)
0.137292 + 0.990531i \(0.456160\pi\)
\(42\) 720.925 523.783i 0.408688 0.296929i
\(43\) 1171.41i 0.633535i 0.948503 + 0.316767i \(0.102597\pi\)
−0.948503 + 0.316767i \(0.897403\pi\)
\(44\) 1413.87 + 678.988i 0.730304 + 0.350717i
\(45\) −56.6952 −0.0279976
\(46\) 997.384 + 1372.78i 0.471353 + 0.648762i
\(47\) −151.299 465.650i −0.0684920 0.210797i 0.910952 0.412512i \(-0.135348\pi\)
−0.979444 + 0.201715i \(0.935348\pi\)
\(48\) 320.256 985.647i 0.139000 0.427798i
\(49\) 865.865 + 629.088i 0.360627 + 0.262011i
\(50\) 538.573 741.283i 0.215429 0.296513i
\(51\) 320.808 + 104.237i 0.123340 + 0.0400757i
\(52\) 1574.41 511.557i 0.582253 0.189185i
\(53\) −1804.69 + 1311.18i −0.642467 + 0.466780i −0.860697 0.509118i \(-0.829972\pi\)
0.218230 + 0.975897i \(0.429972\pi\)
\(54\) 1311.17i 0.449647i
\(55\) 832.178 872.289i 0.275100 0.288360i
\(56\) −2974.01 −0.948345
\(57\) −3004.46 4135.29i −0.924734 1.27279i
\(58\) −80.2304 246.924i −0.0238497 0.0734019i
\(59\) −1488.77 + 4581.97i −0.427685 + 1.31628i 0.472715 + 0.881215i \(0.343274\pi\)
−0.900400 + 0.435063i \(0.856726\pi\)
\(60\) −906.729 658.778i −0.251869 0.182994i
\(61\) 2838.11 3906.32i 0.762727 1.04980i −0.234255 0.972175i \(-0.575265\pi\)
0.996982 0.0776287i \(-0.0247349\pi\)
\(62\) 288.243 + 93.6559i 0.0749852 + 0.0243642i
\(63\) −318.851 + 103.601i −0.0803354 + 0.0261026i
\(64\) −113.596 + 82.5323i −0.0277334 + 0.0201495i
\(65\) 1272.43i 0.301167i
\(66\) −1324.16 1263.27i −0.303985 0.290007i
\(67\) 187.188 0.0416992 0.0208496 0.999783i \(-0.493363\pi\)
0.0208496 + 0.999783i \(0.493363\pi\)
\(68\) −296.155 407.623i −0.0640474 0.0881537i
\(69\) 2610.89 + 8035.49i 0.548391 + 1.68777i
\(70\) −316.153 + 973.020i −0.0645211 + 0.198576i
\(71\) −537.618 390.602i −0.106649 0.0774850i 0.533183 0.846000i \(-0.320996\pi\)
−0.639832 + 0.768515i \(0.720996\pi\)
\(72\) 168.832 232.377i 0.0325679 0.0448258i
\(73\) 5025.08 + 1632.75i 0.942969 + 0.306389i 0.739855 0.672766i \(-0.234894\pi\)
0.203113 + 0.979155i \(0.434894\pi\)
\(74\) 2372.13 770.750i 0.433186 0.140751i
\(75\) 3691.02 2681.68i 0.656181 0.476743i
\(76\) 7635.00i 1.32185i
\(77\) 3086.17 6426.38i 0.520521 1.08389i
\(78\) −1931.59 −0.317486
\(79\) −5015.11 6902.71i −0.803575 1.10603i −0.992283 0.123993i \(-0.960430\pi\)
0.188708 0.982033i \(-0.439570\pi\)
\(80\) 367.689 + 1131.63i 0.0574514 + 0.176817i
\(81\) −1875.02 + 5770.73i −0.285783 + 0.879550i
\(82\) −832.034 604.508i −0.123741 0.0899030i
\(83\) −136.132 + 187.370i −0.0197608 + 0.0271985i −0.818783 0.574103i \(-0.805351\pi\)
0.799022 + 0.601301i \(0.205351\pi\)
\(84\) −6303.22 2048.04i −0.893313 0.290255i
\(85\) −368.323 + 119.675i −0.0509789 + 0.0165641i
\(86\) −1651.69 + 1200.02i −0.223322 + 0.162253i
\(87\) 1292.76i 0.170797i
\(88\) 1097.13 + 6008.44i 0.141674 + 0.775883i
\(89\) −6640.75 −0.838372 −0.419186 0.907900i \(-0.637685\pi\)
−0.419186 + 0.907900i \(0.637685\pi\)
\(90\) −58.0802 79.9405i −0.00717039 0.00986919i
\(91\) −2325.16 7156.09i −0.280782 0.864158i
\(92\) 3899.86 12002.5i 0.460759 1.41807i
\(93\) 1220.88 + 887.020i 0.141158 + 0.102558i
\(94\) 501.574 690.357i 0.0567648 0.0781301i
\(95\) 5581.33 + 1813.48i 0.618429 + 0.200940i
\(96\) 8383.61 2724.00i 0.909680 0.295573i
\(97\) −5913.27 + 4296.24i −0.628470 + 0.456610i −0.855870 0.517191i \(-0.826978\pi\)
0.227400 + 0.973801i \(0.426978\pi\)
\(98\) 1865.33i 0.194224i
\(99\) 326.933 + 605.961i 0.0333571 + 0.0618265i
\(100\) −6814.74 −0.681474
\(101\) 9028.83 + 12427.1i 0.885092 + 1.21823i 0.974984 + 0.222274i \(0.0713478\pi\)
−0.0898920 + 0.995952i \(0.528652\pi\)
\(102\) 181.671 + 559.125i 0.0174616 + 0.0537413i
\(103\) −282.605 + 869.770i −0.0266383 + 0.0819841i −0.963492 0.267738i \(-0.913724\pi\)
0.936854 + 0.349722i \(0.113724\pi\)
\(104\) 5215.32 + 3789.15i 0.482186 + 0.350329i
\(105\) −2994.31 + 4121.31i −0.271593 + 0.373815i
\(106\) −3697.55 1201.41i −0.329081 0.106925i
\(107\) −7928.10 + 2576.00i −0.692471 + 0.224998i −0.634047 0.773294i \(-0.718608\pi\)
−0.0584239 + 0.998292i \(0.518608\pi\)
\(108\) 7889.33 5731.93i 0.676383 0.491421i
\(109\) 3099.23i 0.260856i −0.991458 0.130428i \(-0.958365\pi\)
0.991458 0.130428i \(-0.0416351\pi\)
\(110\) 2082.44 + 279.778i 0.172102 + 0.0231221i
\(111\) 12419.2 1.00797
\(112\) 4135.73 + 5692.35i 0.329698 + 0.453791i
\(113\) −1541.47 4744.16i −0.120720 0.371538i 0.872377 0.488833i \(-0.162577\pi\)
−0.993097 + 0.117296i \(0.962577\pi\)
\(114\) 2752.92 8472.62i 0.211828 0.651940i
\(115\) −7847.77 5701.74i −0.593404 0.431134i
\(116\) −1135.01 + 1562.20i −0.0843496 + 0.116097i
\(117\) 691.145 + 224.567i 0.0504891 + 0.0164049i
\(118\) −7985.74 + 2594.72i −0.573523 + 0.186349i
\(119\) −1852.75 + 1346.10i −0.130834 + 0.0950567i
\(120\) 4364.47i 0.303088i
\(121\) −14121.8 3864.31i −0.964540 0.263938i
\(122\) 8415.37 0.565397
\(123\) −3009.98 4142.89i −0.198955 0.273837i
\(124\) −696.560 2143.79i −0.0453018 0.139424i
\(125\) −3542.94 + 10904.1i −0.226748 + 0.697860i
\(126\) −472.718 343.450i −0.0297757 0.0216333i
\(127\) −6612.92 + 9101.91i −0.410002 + 0.564319i −0.963219 0.268718i \(-0.913400\pi\)
0.553217 + 0.833037i \(0.313400\pi\)
\(128\) −15689.8 5097.91i −0.957627 0.311152i
\(129\) −9668.06 + 3141.34i −0.580978 + 0.188771i
\(130\) 1794.13 1303.51i 0.106162 0.0771310i
\(131\) 27358.8i 1.59424i −0.603818 0.797122i \(-0.706355\pi\)
0.603818 0.797122i \(-0.293645\pi\)
\(132\) −1812.40 + 13490.0i −0.104017 + 0.774221i
\(133\) 34703.0 1.96184
\(134\) 191.760 + 263.935i 0.0106795 + 0.0146990i
\(135\) −2316.26 7128.71i −0.127092 0.391150i
\(136\) 606.310 1866.03i 0.0327806 0.100888i
\(137\) 20807.3 + 15117.4i 1.10860 + 0.805445i 0.982443 0.186565i \(-0.0597355\pi\)
0.126158 + 0.992010i \(0.459736\pi\)
\(138\) −8655.41 + 11913.2i −0.454495 + 0.625559i
\(139\) 20596.8 + 6692.32i 1.06603 + 0.346375i 0.788942 0.614468i \(-0.210629\pi\)
0.277092 + 0.960843i \(0.410629\pi\)
\(140\) 7236.78 2351.37i 0.369223 0.119968i
\(141\) 3437.45 2497.45i 0.172901 0.125620i
\(142\) 1158.19i 0.0574384i
\(143\) −13599.8 + 7337.47i −0.665060 + 0.358818i
\(144\) −679.559 −0.0327720
\(145\) 872.410 + 1200.77i 0.0414939 + 0.0571115i
\(146\) 2845.65 + 8758.02i 0.133498 + 0.410866i
\(147\) −2870.12 + 8833.32i −0.132821 + 0.408780i
\(148\) −15007.6 10903.7i −0.685155 0.497794i
\(149\) 21517.4 29616.2i 0.969211 1.33400i 0.0267658 0.999642i \(-0.491479\pi\)
0.942445 0.334362i \(-0.108521\pi\)
\(150\) 7562.37 + 2457.16i 0.336105 + 0.109207i
\(151\) −8685.35 + 2822.04i −0.380920 + 0.123768i −0.493217 0.869906i \(-0.664179\pi\)
0.112297 + 0.993675i \(0.464179\pi\)
\(152\) −24053.5 + 17475.9i −1.04110 + 0.756401i
\(153\) 221.183i 0.00944863i
\(154\) 12222.8 2231.86i 0.515382 0.0941076i
\(155\) −1732.60 −0.0721165
\(156\) 8444.15 + 11622.4i 0.346982 + 0.477580i
\(157\) −2087.92 6425.96i −0.0847061 0.260699i 0.899728 0.436450i \(-0.143764\pi\)
−0.984435 + 0.175752i \(0.943764\pi\)
\(158\) 4595.23 14142.7i 0.184074 0.566522i
\(159\) −15661.3 11378.6i −0.619489 0.450085i
\(160\) −5948.76 + 8187.76i −0.232373 + 0.319834i
\(161\) −54554.5 17725.8i −2.10465 0.683841i
\(162\) −10057.6 + 3267.91i −0.383234 + 0.124520i
\(163\) 19475.3 14149.6i 0.733009 0.532562i −0.157505 0.987518i \(-0.550345\pi\)
0.890514 + 0.454956i \(0.150345\pi\)
\(164\) 7649.03i 0.284393i
\(165\) 9430.97 + 4529.07i 0.346408 + 0.166357i
\(166\) −403.651 −0.0146484
\(167\) 12349.4 + 16997.5i 0.442805 + 0.609469i 0.970833 0.239758i \(-0.0770683\pi\)
−0.528028 + 0.849227i \(0.677068\pi\)
\(168\) −7975.35 24545.6i −0.282573 0.869672i
\(169\) 3785.80 11651.5i 0.132551 0.407951i
\(170\) −546.063 396.738i −0.0188949 0.0137280i
\(171\) −1970.06 + 2711.55i −0.0673731 + 0.0927312i
\(172\) 14441.1 + 4692.20i 0.488139 + 0.158606i
\(173\) 6450.49 2095.89i 0.215526 0.0700288i −0.199264 0.979946i \(-0.563855\pi\)
0.414790 + 0.909917i \(0.363855\pi\)
\(174\) 1822.80 1324.34i 0.0602062 0.0437424i
\(175\) 30974.7i 1.01142i
\(176\) 9974.65 10455.4i 0.322012 0.337533i
\(177\) −41809.1 −1.33452
\(178\) −6802.97 9363.49i −0.214713 0.295527i
\(179\) 11829.4 + 36407.2i 0.369196 + 1.13627i 0.947312 + 0.320313i \(0.103788\pi\)
−0.578116 + 0.815955i \(0.696212\pi\)
\(180\) −227.099 + 698.938i −0.00700922 + 0.0215722i
\(181\) 17836.1 + 12958.7i 0.544430 + 0.395551i 0.825727 0.564069i \(-0.190765\pi\)
−0.281298 + 0.959620i \(0.590765\pi\)
\(182\) 7708.17 10609.4i 0.232707 0.320293i
\(183\) 39851.2 + 12948.5i 1.18998 + 0.386648i
\(184\) 46739.6 15186.6i 1.38054 0.448565i
\(185\) −11535.4 + 8380.99i −0.337047 + 0.244879i
\(186\) 2630.14i 0.0760243i
\(187\) 3403.03 + 3246.55i 0.0973157 + 0.0928408i
\(188\) −6346.58 −0.179566
\(189\) −26053.1 35859.0i −0.729349 1.00386i
\(190\) 3160.65 + 9727.48i 0.0875526 + 0.269459i
\(191\) −1356.85 + 4175.95i −0.0371933 + 0.114469i −0.967929 0.251222i \(-0.919167\pi\)
0.930736 + 0.365691i \(0.119167\pi\)
\(192\) −985.799 716.225i −0.0267415 0.0194288i
\(193\) −11047.4 + 15205.4i −0.296582 + 0.408210i −0.931138 0.364666i \(-0.881183\pi\)
0.634556 + 0.772877i \(0.281183\pi\)
\(194\) −12115.5 3936.55i −0.321911 0.104595i
\(195\) 10501.8 3412.26i 0.276183 0.0897372i
\(196\) 11223.7 8154.51i 0.292162 0.212268i
\(197\) 13912.0i 0.358474i 0.983806 + 0.179237i \(0.0573629\pi\)
−0.983806 + 0.179237i \(0.942637\pi\)
\(198\) −519.489 + 1081.74i −0.0132509 + 0.0275926i
\(199\) −42834.8 −1.08166 −0.540830 0.841132i \(-0.681890\pi\)
−0.540830 + 0.841132i \(0.681890\pi\)
\(200\) −15598.4 21469.3i −0.389960 0.536734i
\(201\) 501.978 + 1544.93i 0.0124249 + 0.0382399i
\(202\) −8272.91 + 25461.4i −0.202747 + 0.623992i
\(203\) 7100.61 + 5158.89i 0.172307 + 0.125188i
\(204\) 2570.07 3537.39i 0.0617567 0.0850008i
\(205\) 5591.58 + 1816.82i 0.133054 + 0.0432318i
\(206\) −1515.89 + 492.542i −0.0357218 + 0.0116067i
\(207\) 4482.04 3256.39i 0.104601 0.0759970i
\(208\) 15251.6i 0.352524i
\(209\) −12802.1 70111.0i −0.293082 1.60507i
\(210\) −8878.53 −0.201327
\(211\) −25464.9 35049.5i −0.571975 0.787257i 0.420812 0.907148i \(-0.361745\pi\)
−0.992787 + 0.119891i \(0.961745\pi\)
\(212\) 8935.40 + 27500.3i 0.198812 + 0.611880i
\(213\) 1782.07 5484.63i 0.0392794 0.120889i
\(214\) −11753.9 8539.74i −0.256659 0.186474i
\(215\) 6860.16 9442.20i 0.148408 0.204266i
\(216\) 36116.1 + 11734.8i 0.774093 + 0.251518i
\(217\) −9744.06 + 3166.04i −0.206929 + 0.0672352i
\(218\) 4369.93 3174.94i 0.0919521 0.0668071i
\(219\) 45852.4i 0.956035i
\(220\) −7420.20 13753.1i −0.153310 0.284156i
\(221\) 4964.09 0.101638
\(222\) 12722.6 + 17511.1i 0.258148 + 0.355311i
\(223\) 945.780 + 2910.81i 0.0190187 + 0.0585335i 0.960115 0.279604i \(-0.0902031\pi\)
−0.941097 + 0.338137i \(0.890203\pi\)
\(224\) −18493.8 + 56918.0i −0.368578 + 1.13437i
\(225\) −2420.24 1758.41i −0.0478072 0.0347340i
\(226\) 5110.17 7033.54i 0.100050 0.137707i
\(227\) 64.7787 + 21.0479i 0.00125713 + 0.000408467i 0.309645 0.950852i \(-0.399790\pi\)
−0.308388 + 0.951261i \(0.599790\pi\)
\(228\) −63014.6 + 20474.7i −1.21219 + 0.393865i
\(229\) 11009.2 7998.63i 0.209934 0.152526i −0.477850 0.878442i \(-0.658584\pi\)
0.687784 + 0.725915i \(0.258584\pi\)
\(230\) 16906.4i 0.319592i
\(231\) 61315.5 + 8237.79i 1.14907 + 0.154379i
\(232\) −7519.55 −0.139706
\(233\) 30700.4 + 42255.4i 0.565499 + 0.778343i 0.992013 0.126138i \(-0.0402584\pi\)
−0.426514 + 0.904481i \(0.640258\pi\)
\(234\) 391.389 + 1204.57i 0.00714787 + 0.0219989i
\(235\) −1507.45 + 4639.46i −0.0272966 + 0.0840102i
\(236\) 50523.1 + 36707.2i 0.907122 + 0.659063i
\(237\) 43521.7 59902.5i 0.774835 1.06647i
\(238\) −3796.01 1233.40i −0.0670153 0.0217746i
\(239\) 78576.7 25531.1i 1.37562 0.446965i 0.474392 0.880314i \(-0.342668\pi\)
0.901226 + 0.433348i \(0.142668\pi\)
\(240\) −8353.74 + 6069.35i −0.145030 + 0.105371i
\(241\) 24514.3i 0.422070i 0.977478 + 0.211035i \(0.0676835\pi\)
−0.977478 + 0.211035i \(0.932317\pi\)
\(242\) −9018.11 23870.6i −0.153987 0.407598i
\(243\) 8280.78 0.140236
\(244\) −36788.8 50635.4i −0.617925 0.850501i
\(245\) −3295.21 10141.6i −0.0548973 0.168957i
\(246\) 2757.98 8488.19i 0.0455744 0.140264i
\(247\) −60856.3 44214.7i −0.997498 0.724725i
\(248\) 5159.49 7101.42i 0.0838886 0.115463i
\(249\) −1911.50 621.085i −0.0308302 0.0100173i
\(250\) −19004.3 + 6174.86i −0.304068 + 0.0987978i
\(251\) −86430.5 + 62795.5i −1.37189 + 0.996737i −0.374305 + 0.927306i \(0.622119\pi\)
−0.997587 + 0.0694317i \(0.977881\pi\)
\(252\) 4345.78i 0.0684332i
\(253\) −15686.4 + 116757.i −0.245065 + 1.82406i
\(254\) −19608.2 −0.303928
\(255\) −1975.45 2718.98i −0.0303799 0.0418143i
\(256\) −8190.72 25208.4i −0.124980 0.384650i
\(257\) 27704.0 85264.0i 0.419446 1.29092i −0.488768 0.872414i \(-0.662554\pi\)
0.908214 0.418507i \(-0.137446\pi\)
\(258\) −14333.5 10413.9i −0.215335 0.156450i
\(259\) −49560.0 + 68213.4i −0.738808 + 1.01688i
\(260\) −15686.5 5096.86i −0.232049 0.0753973i
\(261\) −806.191 + 261.947i −0.0118347 + 0.00384532i
\(262\) 38576.1 28027.2i 0.561973 0.408297i
\(263\) 109118.i 1.57756i −0.614675 0.788781i \(-0.710713\pi\)
0.614675 0.788781i \(-0.289287\pi\)
\(264\) −46647.7 + 25167.7i −0.669303 + 0.361107i
\(265\) 22225.6 0.316491
\(266\) 35550.7 + 48931.4i 0.502441 + 0.691551i
\(267\) −17808.4 54808.6i −0.249806 0.768822i
\(268\) 749.801 2307.65i 0.0104394 0.0321292i
\(269\) 7596.38 + 5519.09i 0.104979 + 0.0762716i 0.639036 0.769177i \(-0.279333\pi\)
−0.534057 + 0.845448i \(0.679333\pi\)
\(270\) 7678.67 10568.8i 0.105332 0.144976i
\(271\) −77397.0 25147.8i −1.05387 0.342422i −0.269682 0.962949i \(-0.586919\pi\)
−0.784185 + 0.620527i \(0.786919\pi\)
\(272\) −4414.79 + 1434.45i −0.0596722 + 0.0193887i
\(273\) 52826.6 38380.8i 0.708806 0.514978i
\(274\) 44825.1i 0.597063i
\(275\) 62578.7 11426.7i 0.827487 0.151097i
\(276\) 109520. 1.43772
\(277\) 28294.2 + 38943.7i 0.368755 + 0.507548i 0.952562 0.304344i \(-0.0984374\pi\)
−0.583807 + 0.811893i \(0.698437\pi\)
\(278\) 11663.8 + 35897.5i 0.150921 + 0.464488i
\(279\) 305.780 941.095i 0.00392827 0.0120900i
\(280\) 23972.2 + 17416.8i 0.305768 + 0.222153i
\(281\) −51179.9 + 70443.1i −0.648167 + 0.892126i −0.999018 0.0443056i \(-0.985892\pi\)
0.350851 + 0.936431i \(0.385892\pi\)
\(282\) 7042.84 + 2288.36i 0.0885625 + 0.0287757i
\(283\) 8915.84 2896.93i 0.111324 0.0361714i −0.252825 0.967512i \(-0.581360\pi\)
0.364149 + 0.931341i \(0.381360\pi\)
\(284\) −6968.83 + 5063.15i −0.0864019 + 0.0627747i
\(285\) 50928.0i 0.626999i
\(286\) −24277.9 11659.1i −0.296810 0.142539i
\(287\) 34766.8 0.422085
\(288\) −3397.47 4676.22i −0.0409610 0.0563780i
\(289\) 25342.5 + 77996.3i 0.303427 + 0.933852i
\(290\) −799.369 + 2460.21i −0.00950499 + 0.0292533i
\(291\) −51316.1 37283.3i −0.605993 0.440279i
\(292\) 40257.0 55409.0i 0.472146 0.649853i
\(293\) −74010.8 24047.6i −0.862105 0.280115i −0.155597 0.987821i \(-0.549730\pi\)
−0.706507 + 0.707706i \(0.749730\pi\)
\(294\) −15395.3 + 5002.23i −0.178112 + 0.0578720i
\(295\) 38833.9 28214.5i 0.446239 0.324212i
\(296\) 72238.1i 0.824485i
\(297\) −62835.3 + 65864.0i −0.712346 + 0.746681i
\(298\) 63802.1 0.718460
\(299\) 73084.4 + 100592.i 0.817490 + 1.12518i
\(300\) −18275.0 56244.6i −0.203055 0.624940i
\(301\) 21327.2 65638.4i 0.235397 0.724477i
\(302\) −12876.6 9355.41i −0.141185 0.102577i
\(303\) −78353.2 + 107844.i −0.853437 + 1.17466i
\(304\) 66898.9 + 21736.8i 0.723888 + 0.235206i
\(305\) −45753.5 + 14866.2i −0.491841 + 0.159809i
\(306\) 311.869 226.586i 0.00333065 0.00241986i
\(307\) 153965.i 1.63360i −0.576921 0.816800i \(-0.695746\pi\)
0.576921 0.816800i \(-0.304254\pi\)
\(308\) −66862.5 63787.9i −0.704824 0.672414i
\(309\) −7936.40 −0.0831202
\(310\) −1774.92 2442.97i −0.0184695 0.0254212i
\(311\) −25689.2 79063.2i −0.265601 0.817436i −0.991554 0.129692i \(-0.958601\pi\)
0.725953 0.687744i \(-0.241399\pi\)
\(312\) −17287.5 + 53205.3i −0.177591 + 0.546570i
\(313\) 82353.8 + 59833.6i 0.840611 + 0.610740i 0.922541 0.385898i \(-0.126108\pi\)
−0.0819302 + 0.996638i \(0.526108\pi\)
\(314\) 6921.71 9526.92i 0.0702027 0.0966258i
\(315\) 3176.85 + 1032.22i 0.0320166 + 0.0104028i
\(316\) −105185. + 34176.7i −1.05337 + 0.342260i
\(317\) −92619.0 + 67291.6i −0.921683 + 0.669642i −0.943942 0.330110i \(-0.892914\pi\)
0.0222593 + 0.999752i \(0.492914\pi\)
\(318\) 33739.1i 0.333641i
\(319\) 7803.14 16248.6i 0.0766811 0.159674i
\(320\) 1398.99 0.0136620
\(321\) −42521.3 58525.6i −0.412664 0.567984i
\(322\) −30893.7 95081.1i −0.297960 0.917027i
\(323\) −7074.88 + 21774.2i −0.0678132 + 0.208708i
\(324\) 63631.0 + 46230.6i 0.606148 + 0.440392i
\(325\) 39464.6 54318.3i 0.373629 0.514256i
\(326\) 39902.2 + 12965.0i 0.375458 + 0.121994i
\(327\) 25579.1 8311.16i 0.239216 0.0777259i
\(328\) −24097.7 + 17508.0i −0.223990 + 0.162738i
\(329\) 28846.8i 0.266505i
\(330\) 3275.33 + 17937.4i 0.0300765 + 0.164715i
\(331\) 3500.96 0.0319545 0.0159772 0.999872i \(-0.494914\pi\)
0.0159772 + 0.999872i \(0.494914\pi\)
\(332\) 1764.61 + 2428.77i 0.0160093 + 0.0220349i
\(333\) −2516.45 7744.84i −0.0226934 0.0698431i
\(334\) −11315.5 + 34825.4i −0.101433 + 0.312179i
\(335\) −1508.84 1096.24i −0.0134448 0.00976820i
\(336\) −35890.4 + 49398.8i −0.317906 + 0.437561i
\(337\) 128354. + 41704.6i 1.13018 + 0.367218i 0.813645 0.581362i \(-0.197480\pi\)
0.316536 + 0.948580i \(0.397480\pi\)
\(338\) 20307.0 6598.13i 0.177751 0.0577547i
\(339\) 35021.6 25444.7i 0.304745 0.221410i
\(340\) 5020.06i 0.0434261i
\(341\) 9991.03 + 18518.1i 0.0859214 + 0.159253i
\(342\) −5841.49 −0.0499426
\(343\) 46084.3 + 63429.7i 0.391710 + 0.539143i
\(344\) 18272.1 + 56235.7i 0.154408 + 0.475220i
\(345\) 26013.4 80060.9i 0.218554 0.672639i
\(346\) 9563.29 + 6948.13i 0.0798831 + 0.0580385i
\(347\) 54879.0 75534.5i 0.455772 0.627316i −0.517853 0.855469i \(-0.673269\pi\)
0.973625 + 0.228153i \(0.0732687\pi\)
\(348\) −15937.2 5178.31i −0.131599 0.0427592i
\(349\) −52327.1 + 17002.1i −0.429612 + 0.139589i −0.515838 0.856686i \(-0.672519\pi\)
0.0862261 + 0.996276i \(0.472519\pi\)
\(350\) −43674.5 + 31731.4i −0.356526 + 0.259032i
\(351\) 96077.5i 0.779843i
\(352\) 121815. + 16365.9i 0.983139 + 0.132086i
\(353\) −3735.78 −0.0299801 −0.0149900 0.999888i \(-0.504772\pi\)
−0.0149900 + 0.999888i \(0.504772\pi\)
\(354\) −42830.5 58951.1i −0.341780 0.470419i
\(355\) 2046.00 + 6296.95i 0.0162349 + 0.0499659i
\(356\) −26600.2 + 81867.1i −0.209887 + 0.645966i
\(357\) −16078.3 11681.6i −0.126155 0.0916570i
\(358\) −39215.9 + 53976.1i −0.305982 + 0.421148i
\(359\) −81956.4 26629.2i −0.635907 0.206619i −0.0267172 0.999643i \(-0.508505\pi\)
−0.609190 + 0.793024i \(0.708505\pi\)
\(360\) −2721.76 + 884.355i −0.0210013 + 0.00682372i
\(361\) 175243. 127321.i 1.34470 0.976982i
\(362\) 38424.2i 0.293216i
\(363\) −5976.66 126916.i −0.0453571 0.963168i
\(364\) −97534.0 −0.736128
\(365\) −30943.1 42589.5i −0.232262 0.319681i
\(366\) 22567.4 + 69455.2i 0.168469 + 0.518493i
\(367\) 7826.17 24086.5i 0.0581055 0.178830i −0.917791 0.397063i \(-0.870029\pi\)
0.975897 + 0.218233i \(0.0700293\pi\)
\(368\) −94065.0 68342.2i −0.694596 0.504654i
\(369\) −1973.68 + 2716.54i −0.0144952 + 0.0199509i
\(370\) −23634.5 7679.31i −0.172640 0.0560943i
\(371\) 124996. 40613.6i 0.908129 0.295069i
\(372\) 15825.6 11497.9i 0.114360 0.0830872i
\(373\) 192208.i 1.38151i 0.723089 + 0.690755i \(0.242722\pi\)
−0.723089 + 0.690755i \(0.757278\pi\)
\(374\) −1091.49 + 8124.15i −0.00780325 + 0.0580811i
\(375\) −99496.4 −0.707530
\(376\) −14526.8 19994.4i −0.102753 0.141427i
\(377\) −5878.97 18093.6i −0.0413637 0.127304i
\(378\) 23871.8 73469.9i 0.167071 0.514193i
\(379\) −106632. 77472.8i −0.742352 0.539350i 0.151095 0.988519i \(-0.451720\pi\)
−0.893447 + 0.449169i \(0.851720\pi\)
\(380\) 44713.2 61542.5i 0.309648 0.426195i
\(381\) −92855.2 30170.5i −0.639671 0.207842i
\(382\) −7278.10 + 2364.80i −0.0498760 + 0.0162057i
\(383\) −142062. + 103214.i −0.968454 + 0.703623i −0.955099 0.296288i \(-0.904251\pi\)
−0.0133552 + 0.999911i \(0.504251\pi\)
\(384\) 143164.i 0.970896i
\(385\) −62511.4 + 33726.6i −0.421733 + 0.227537i
\(386\) −32757.0 −0.219852
\(387\) 3917.99 + 5392.66i 0.0261602 + 0.0360065i
\(388\) 29277.8 + 90108.0i 0.194480 + 0.598549i
\(389\) 7643.41 23524.0i 0.0505112 0.155458i −0.922619 0.385712i \(-0.873956\pi\)
0.973130 + 0.230254i \(0.0739558\pi\)
\(390\) 15569.7 + 11312.0i 0.102365 + 0.0743724i
\(391\) 22244.0 30616.3i 0.145499 0.200262i
\(392\) 51380.3 + 16694.5i 0.334368 + 0.108643i
\(393\) 225803. 73367.7i 1.46199 0.475029i
\(394\) −19616.0 + 14251.9i −0.126363 + 0.0918078i
\(395\) 85010.0i 0.544849i
\(396\) 8779.86 1603.18i 0.0559883 0.0102233i
\(397\) −191822. −1.21708 −0.608539 0.793524i \(-0.708244\pi\)
−0.608539 + 0.793524i \(0.708244\pi\)
\(398\) −43881.2 60397.3i −0.277021 0.381286i
\(399\) 93062.5 + 286417.i 0.584559 + 1.79909i
\(400\) −19401.5 + 59711.7i −0.121259 + 0.373198i
\(401\) 91171.9 + 66240.3i 0.566986 + 0.411939i 0.834009 0.551751i \(-0.186040\pi\)
−0.267023 + 0.963690i \(0.586040\pi\)
\(402\) −1664.12 + 2290.46i −0.0102975 + 0.0141733i
\(403\) 21121.3 + 6862.74i 0.130050 + 0.0422559i
\(404\) 189367. 61529.2i 1.16023 0.376980i
\(405\) 48909.2 35534.6i 0.298181 0.216641i
\(406\) 15296.8i 0.0928002i
\(407\) 156096. + 74962.5i 0.942328 + 0.452538i
\(408\) 17027.0 0.102286
\(409\) −159737. 219859.i −0.954902 1.31431i −0.949315 0.314325i \(-0.898222\pi\)
−0.00558643 0.999984i \(-0.501778\pi\)
\(410\) 3166.46 + 9745.36i 0.0188368 + 0.0579736i
\(411\) −68970.9 + 212271.i −0.408303 + 1.25663i
\(412\) 9590.52 + 6967.92i 0.0564999 + 0.0410496i
\(413\) 166843. 229640.i 0.978156 1.34632i
\(414\) 9183.06 + 2983.76i 0.0535781 + 0.0174086i
\(415\) 2194.61 713.072i 0.0127427 0.00414035i
\(416\) 104950. 76250.6i 0.606451 0.440613i
\(417\) 187940.i 1.08081i
\(418\) 85742.0 89874.8i 0.490728 0.514381i
\(419\) 36389.5 0.207275 0.103638 0.994615i \(-0.466952\pi\)
0.103638 + 0.994615i \(0.466952\pi\)
\(420\) 38813.5 + 53422.2i 0.220031 + 0.302847i
\(421\) −44837.8 137997.i −0.252976 0.778581i −0.994222 0.107347i \(-0.965764\pi\)
0.741245 0.671234i \(-0.234236\pi\)
\(422\) 23332.9 71811.3i 0.131022 0.403244i
\(423\) −2253.97 1637.61i −0.0125970 0.00915227i
\(424\) −66185.3 + 91096.3i −0.368155 + 0.506721i
\(425\) −19435.0 6314.80i −0.107598 0.0349608i
\(426\) 9558.96 3105.89i 0.0526734 0.0171146i
\(427\) −230150. + 167214.i −1.26228 + 0.917101i
\(428\) 108056.i 0.589877i
\(429\) −97029.3 92567.5i −0.527216 0.502972i
\(430\) 20341.3 0.110012
\(431\) 487.457 + 670.927i 0.00262411 + 0.00361178i 0.810327 0.585978i \(-0.199289\pi\)
−0.807703 + 0.589590i \(0.799289\pi\)
\(432\) −27763.1 85446.1i −0.148765 0.457851i
\(433\) −45127.5 + 138888.i −0.240694 + 0.740781i 0.755621 + 0.655009i \(0.227335\pi\)
−0.996315 + 0.0857711i \(0.972665\pi\)
\(434\) −14446.2 10495.8i −0.0766964 0.0557232i
\(435\) −7570.87 + 10420.4i −0.0400099 + 0.0550689i
\(436\) −38207.3 12414.3i −0.200990 0.0653055i
\(437\) −545393. + 177209.i −2.85592 + 0.927946i
\(438\) −64652.1 + 46972.5i −0.337004 + 0.244847i
\(439\) 325054.i 1.68666i −0.537398 0.843329i \(-0.680593\pi\)
0.537398 0.843329i \(-0.319407\pi\)
\(440\) 26344.0 54856.6i 0.136075 0.283350i
\(441\) 6090.18 0.0313150
\(442\) 5085.36 + 6999.39i 0.0260302 + 0.0358274i
\(443\) −3613.23 11120.4i −0.0184115 0.0566647i 0.941429 0.337212i \(-0.109484\pi\)
−0.959840 + 0.280548i \(0.909484\pi\)
\(444\) 49746.5 153104.i 0.252346 0.776641i
\(445\) 53528.2 + 38890.5i 0.270310 + 0.196392i
\(446\) −3135.38 + 4315.48i −0.0157623 + 0.0216950i
\(447\) 302137. + 98170.2i 1.51213 + 0.491320i
\(448\) 7867.84 2556.42i 0.0392012 0.0127372i
\(449\) 284422. 206645.i 1.41082 1.02502i 0.417615 0.908624i \(-0.362866\pi\)
0.993203 0.116395i \(-0.0371340\pi\)
\(450\) 5213.91i 0.0257477i
\(451\) −12825.6 70239.8i −0.0630559 0.345327i
\(452\) −64660.6 −0.316492
\(453\) −46582.8 64115.7i −0.227002 0.312441i
\(454\) 36.6836 + 112.900i 0.000177975 + 0.000547752i
\(455\) −23166.5 + 71299.1i −0.111902 + 0.344399i
\(456\) −208739. 151658.i −1.00386 0.729349i
\(457\) 90965.8 125204.i 0.435558 0.599494i −0.533660 0.845699i \(-0.679184\pi\)
0.969218 + 0.246205i \(0.0791837\pi\)
\(458\) 22556.2 + 7328.96i 0.107531 + 0.0349391i
\(459\) 27811.0 9036.34i 0.132005 0.0428911i
\(460\) −101726. + 73908.4i −0.480748 + 0.349284i
\(461\) 116794.i 0.549564i 0.961507 + 0.274782i \(0.0886057\pi\)
−0.961507 + 0.274782i \(0.911394\pi\)
\(462\) 51198.0 + 94894.2i 0.239866 + 0.444586i
\(463\) 39611.3 0.184781 0.0923904 0.995723i \(-0.470549\pi\)
0.0923904 + 0.995723i \(0.470549\pi\)
\(464\) 10456.9 + 14392.7i 0.0485698 + 0.0668506i
\(465\) −4646.28 14299.8i −0.0214882 0.0661338i
\(466\) −28130.1 + 86575.4i −0.129538 + 0.398678i
\(467\) 77040.8 + 55973.4i 0.353254 + 0.256654i 0.750233 0.661174i \(-0.229941\pi\)
−0.396979 + 0.917828i \(0.629941\pi\)
\(468\) 5536.92 7620.92i 0.0252800 0.0347949i
\(469\) −10488.8 3408.03i −0.0476850 0.0154938i
\(470\) −8085.95 + 2627.28i −0.0366046 + 0.0118935i
\(471\) 47436.7 34464.8i 0.213832 0.155358i
\(472\) 243189.i 1.09159i
\(473\) −140478. 18873.3i −0.627893 0.0843581i
\(474\) 129048. 0.574372
\(475\) 182014. + 250521.i 0.806710 + 1.11034i
\(476\) 9173.33 + 28232.6i 0.0404868 + 0.124605i
\(477\) −3922.52 + 12072.3i −0.0172396 + 0.0530582i
\(478\) 116495. + 84638.7i 0.509862 + 0.370436i
\(479\) −206359. + 284028.i −0.899398 + 1.23791i 0.0712622 + 0.997458i \(0.477297\pi\)
−0.970660 + 0.240457i \(0.922703\pi\)
\(480\) −83529.4 27140.3i −0.362541 0.117797i
\(481\) 173820. 56477.6i 0.751294 0.244110i
\(482\) −34565.2 + 25113.1i −0.148780 + 0.108095i
\(483\) 497794.i 2.13381i
\(484\) −104206. + 158615.i −0.444837 + 0.677101i
\(485\) 72824.7 0.309596
\(486\) 8483.07 + 11675.9i 0.0359154 + 0.0494333i
\(487\) −50720.6 156102.i −0.213858 0.658189i −0.999233 0.0391673i \(-0.987529\pi\)
0.785374 0.619021i \(-0.212471\pi\)
\(488\) 75316.6 231801.i 0.316265 0.973363i
\(489\) 169009. + 122792.i 0.706793 + 0.513515i
\(490\) 10924.0 15035.6i 0.0454978 0.0626224i
\(491\) 172324. + 55991.5i 0.714797 + 0.232252i 0.643766 0.765222i \(-0.277371\pi\)
0.0710312 + 0.997474i \(0.477371\pi\)
\(492\) −63130.4 + 20512.3i −0.260800 + 0.0847391i
\(493\) −4684.52 + 3403.51i −0.0192740 + 0.0140034i
\(494\) 131103.i 0.537227i
\(495\) 913.455 6799.03i 0.00372801 0.0277483i
\(496\) −20767.3 −0.0844143
\(497\) 23013.3 + 31675.1i 0.0931678 + 0.128234i
\(498\) −1082.47 3331.48i −0.00436471 0.0134332i
\(499\) 35889.1 110455.i 0.144132 0.443594i −0.852766 0.522293i \(-0.825077\pi\)
0.996898 + 0.0786994i \(0.0250767\pi\)
\(500\) 120234. + 87354.8i 0.480934 + 0.349419i
\(501\) −107169. + 147506.i −0.426968 + 0.587671i
\(502\) −177084. 57538.0i −0.702703 0.228322i
\(503\) 61308.6 19920.4i 0.242318 0.0787339i −0.185340 0.982674i \(-0.559339\pi\)
0.427658 + 0.903941i \(0.359339\pi\)
\(504\) −13691.1 + 9947.15i −0.0538985 + 0.0391595i
\(505\) 153046.i 0.600120i
\(506\) −180697. + 97491.0i −0.705748 + 0.380771i
\(507\) 106317. 0.413604
\(508\) 85719.5 + 117983.i 0.332164 + 0.457184i
\(509\) −44701.3 137576.i −0.172538 0.531017i 0.826975 0.562239i \(-0.190060\pi\)
−0.999512 + 0.0312225i \(0.990060\pi\)
\(510\) 1810.06 5570.79i 0.00695910 0.0214179i
\(511\) −251848. 182978.i −0.964487 0.700741i
\(512\) −127996. + 176171.i −0.488265 + 0.672038i
\(513\) −421430. 136931.i −1.60137 0.520315i
\(514\) 148603. 48284.2i 0.562474 0.182759i
\(515\) 7371.64 5355.81i 0.0277939 0.0201934i
\(516\) 131771.i 0.494903i
\(517\) 58279.6 10641.7i 0.218040 0.0398135i
\(518\) −146952. −0.547666
\(519\) 34596.4 + 47617.8i 0.128439 + 0.176781i
\(520\) −19847.9 61085.5i −0.0734019 0.225908i
\(521\) 33121.1 101936.i 0.122020 0.375538i −0.871327 0.490703i \(-0.836740\pi\)
0.993346 + 0.115166i \(0.0367399\pi\)
\(522\) −1195.23 868.387i −0.00438643 0.00318693i
\(523\) −118355. + 162901.i −0.432695 + 0.595554i −0.968569 0.248744i \(-0.919982\pi\)
0.535874 + 0.844298i \(0.319982\pi\)
\(524\) −337280. 109589.i −1.22837 0.399120i
\(525\) −255646. + 83064.4i −0.927513 + 0.301367i
\(526\) 153857. 111784.i 0.556093 0.404025i
\(527\) 6759.33i 0.0243379i
\(528\) 113041. + 54286.4i 0.405480 + 0.194726i
\(529\) 668056. 2.38727
\(530\) 22768.5 + 31338.2i 0.0810557 + 0.111564i
\(531\) 8471.60 + 26072.9i 0.0300453 + 0.0924699i
\(532\) 139007. 427818.i 0.491148 1.51160i
\(533\) −60968.2 44296.0i −0.214609 0.155923i
\(534\) 59037.0 81257.4i 0.207034 0.284958i
\(535\) 78991.0 + 25665.7i 0.275975 + 0.0896698i
\(536\) 8986.31 2919.83i 0.0312789 0.0101631i
\(537\) −268759. + 195265.i −0.931998 + 0.677136i
\(538\) 16364.8i 0.0565389i
\(539\) −89392.3 + 93701.0i −0.307697 + 0.322528i
\(540\) −97160.7 −0.333199
\(541\) 90406.1 + 124433.i 0.308890 + 0.425150i 0.935035 0.354557i \(-0.115368\pi\)
−0.626145 + 0.779707i \(0.715368\pi\)
\(542\) −43829.2 134892.i −0.149199 0.459186i
\(543\) −59122.0 + 181959.i −0.200516 + 0.617125i
\(544\) −31942.7 23207.7i −0.107938 0.0784213i
\(545\) −18150.2 + 24981.6i −0.0611065 + 0.0841059i
\(546\) 108234. + 35167.4i 0.363061 + 0.117966i
\(547\) −150147. + 48785.9i −0.501815 + 0.163049i −0.548976 0.835838i \(-0.684982\pi\)
0.0471619 + 0.998887i \(0.484982\pi\)
\(548\) 269713. 195958.i 0.898134 0.652533i
\(549\) 27475.6i 0.0911598i
\(550\) 80219.1 + 76530.4i 0.265187 + 0.252993i
\(551\) 87743.8 0.289010
\(552\) 250682. + 345034.i 0.822706 + 1.13236i
\(553\) 155342. + 478093.i 0.507970 + 1.56337i
\(554\) −25925.4 + 79790.0i −0.0844705 + 0.259974i
\(555\) −100106. 72731.2i −0.324993 0.236121i
\(556\) 165006. 227111.i 0.533765 0.734664i
\(557\) 553427. + 179819.i 1.78382 + 0.579597i 0.999185 0.0403674i \(-0.0128528\pi\)
0.784630 + 0.619964i \(0.212853\pi\)
\(558\) 1640.20 532.933i 0.00526779 0.00171161i
\(559\) −121029. + 87932.9i −0.387317 + 0.281403i
\(560\) 70103.9i 0.223546i
\(561\) −17669.1 + 36792.7i −0.0561422 + 0.116906i
\(562\) −151755. −0.480476
\(563\) −228448. 314432.i −0.720728 0.991997i −0.999499 0.0316397i \(-0.989927\pi\)
0.278771 0.960358i \(-0.410073\pi\)
\(564\) −17019.5 52380.7i −0.0535043 0.164669i
\(565\) −15358.3 + 47268.1i −0.0481113 + 0.148071i
\(566\) 13218.3 + 9603.68i 0.0412614 + 0.0299781i
\(567\) 210130. 289218.i 0.653613 0.899622i
\(568\) −31902.2 10365.6i −0.0988835 0.0321292i
\(569\) −194357. + 63150.3i −0.600309 + 0.195052i −0.593378 0.804924i \(-0.702206\pi\)
−0.00693101 + 0.999976i \(0.502206\pi\)
\(570\) −71808.7 + 52172.1i −0.221018 + 0.160579i
\(571\) 68721.2i 0.210775i −0.994431 0.105387i \(-0.966392\pi\)
0.994431 0.105387i \(-0.0336083\pi\)
\(572\) 35980.8 + 197049.i 0.109971 + 0.602259i
\(573\) −38104.3 −0.116055
\(574\) 35616.1 + 49021.3i 0.108099 + 0.148786i
\(575\) −158171. 486799.i −0.478399 1.47236i
\(576\) −246.902 + 759.887i −0.000744184 + 0.00229036i
\(577\) 194489. + 141305.i 0.584177 + 0.424429i 0.840227 0.542234i \(-0.182421\pi\)
−0.256051 + 0.966663i \(0.582421\pi\)
\(578\) −84013.5 + 115635.i −0.251474 + 0.346125i
\(579\) −155122. 50402.1i −0.462717 0.150346i
\(580\) 18297.6 5945.26i 0.0543925 0.0176732i
\(581\) 11039.4 8020.58i 0.0327034 0.0237604i
\(582\) 110550.i 0.326372i
\(583\) −128164. 237548.i −0.377076 0.698900i
\(584\) 266707. 0.782004
\(585\) −4255.89 5857.73i −0.0124359 0.0171166i
\(586\) −41911.6 128991.i −0.122050 0.375633i
\(587\) −143863. + 442766.i −0.417517 + 1.28499i 0.492463 + 0.870334i \(0.336097\pi\)
−0.909980 + 0.414652i \(0.863903\pi\)
\(588\) 97400.7 + 70765.7i 0.281713 + 0.204677i
\(589\) −60204.8 + 82864.8i −0.173540 + 0.238858i
\(590\) 79565.2 + 25852.3i 0.228570 + 0.0742669i
\(591\) −114821. + 37307.6i −0.328736 + 0.106813i
\(592\) −138266. + 100456.i −0.394523 + 0.286638i
\(593\) 54204.4i 0.154143i 0.997026 + 0.0770717i \(0.0245570\pi\)
−0.997026 + 0.0770717i \(0.975443\pi\)
\(594\) −157239. 21125.2i −0.445643 0.0598725i
\(595\) 22817.4 0.0644514
\(596\) −278918. 383898.i −0.785208 1.08075i
\(597\) −114869. 353532.i −0.322297 0.991927i
\(598\) −66965.6 + 206099.i −0.187262 + 0.576332i
\(599\) −344600. 250367.i −0.960421 0.697787i −0.00717284 0.999974i \(-0.502283\pi\)
−0.953249 + 0.302187i \(0.902283\pi\)
\(600\) 135365. 186313.i 0.376013 0.517537i
\(601\) −178462. 57985.7i −0.494078 0.160536i 0.0513708 0.998680i \(-0.483641\pi\)
−0.545449 + 0.838144i \(0.683641\pi\)
\(602\) 114399. 37170.4i 0.315666 0.102566i
\(603\) 861.732 626.085i 0.00236994 0.00172186i
\(604\) 118377.i 0.324484i
\(605\) 91199.3 + 113851.i 0.249161 + 0.311047i
\(606\) −232328. −0.632639
\(607\) −197925. 272420.i −0.537183 0.739369i 0.451021 0.892513i \(-0.351060\pi\)
−0.988204 + 0.153144i \(0.951060\pi\)
\(608\) 184886. + 569021.i 0.500147 + 1.53929i
\(609\) −23536.7 + 72438.5i −0.0634616 + 0.195315i
\(610\) −67832.7 49283.4i −0.182297 0.132447i
\(611\) 36753.4 50586.7i 0.0984498 0.135505i
\(612\) −2726.74 885.973i −0.00728017 0.00236547i
\(613\) 253103. 82238.3i 0.673561 0.218853i 0.0477869 0.998858i \(-0.484783\pi\)
0.625774 + 0.780004i \(0.284783\pi\)
\(614\) 217092. 157726.i 0.575846 0.418377i
\(615\) 51021.6i 0.134897i
\(616\) 47916.3 356651.i 0.126276 0.939900i
\(617\) −266633. −0.700396 −0.350198 0.936676i \(-0.613886\pi\)
−0.350198 + 0.936676i \(0.613886\pi\)
\(618\) −8130.27 11190.4i −0.0212877 0.0293000i
\(619\) 190706. + 586932.i 0.497717 + 1.53182i 0.812679 + 0.582711i \(0.198008\pi\)
−0.314962 + 0.949104i \(0.601992\pi\)
\(620\) −6940.12 + 21359.5i −0.0180544 + 0.0555658i
\(621\) 592563. + 430522.i 1.53657 + 1.11638i
\(622\) 85162.8 117217.i 0.220125 0.302976i
\(623\) 372106. + 120905.i 0.958719 + 0.311507i
\(624\) 125877. 40900.0i 0.323279 0.105040i
\(625\) −173412. + 125991.i −0.443934 + 0.322537i
\(626\) 177415.i 0.452731i
\(627\) 544321. 293676.i 1.38459 0.747022i
\(628\) −87582.6 −0.222075
\(629\) −32696.5 45002.8i −0.0826418 0.113747i
\(630\) 1799.02 + 5536.81i 0.00453267 + 0.0139501i
\(631\) 24299.7 74786.9i 0.0610299 0.187831i −0.915893 0.401422i \(-0.868516\pi\)
0.976923 + 0.213591i \(0.0685161\pi\)
\(632\) −348432. 253150.i −0.872335 0.633789i
\(633\) 220987. 304163.i 0.551519 0.759100i
\(634\) −189763. 61657.8i −0.472099 0.153394i
\(635\) 106608. 34639.0i 0.264388 0.0859049i
\(636\) −203009. + 147494.i −0.501880 + 0.364637i
\(637\) 136684.i 0.336852i
\(638\) 30904.4 5643.07i 0.0759240 0.0138635i
\(639\) −3781.41 −0.00926087
\(640\) 96613.3 + 132977.i 0.235872 + 0.324650i
\(641\) 169464. + 521557.i 0.412441 + 1.26936i 0.914520 + 0.404541i \(0.132569\pi\)
−0.502079 + 0.864822i \(0.667431\pi\)
\(642\) 38961.3 119911.i 0.0945287 0.290929i
\(643\) 103495. + 75193.8i 0.250322 + 0.181870i 0.705870 0.708342i \(-0.250556\pi\)
−0.455548 + 0.890211i \(0.650556\pi\)
\(644\) −437049. + 601546.i −1.05380 + 1.45043i
\(645\) 96326.9 + 31298.5i 0.231541 + 0.0752323i
\(646\) −37949.5 + 12330.5i −0.0909371 + 0.0295473i
\(647\) 575751. 418308.i 1.37539 0.999281i 0.378098 0.925766i \(-0.376578\pi\)
0.997294 0.0735150i \(-0.0234217\pi\)
\(648\) 306283.i 0.729411i
\(649\) −525494. 252360.i −1.24761 0.599145i
\(650\) 117018. 0.276965
\(651\) −52261.0 71931.1i −0.123315 0.169728i
\(652\) −96426.4 296770.i −0.226830 0.698111i
\(653\) 74638.0 229712.i 0.175039 0.538713i −0.824597 0.565721i \(-0.808598\pi\)
0.999635 + 0.0270077i \(0.00859788\pi\)
\(654\) 37922.8 + 27552.5i 0.0886634 + 0.0644177i
\(655\) −160223. + 220528.i −0.373458 + 0.514021i
\(656\) 67021.8 + 21776.7i 0.155743 + 0.0506040i
\(657\) 28594.4 9290.88i 0.0662445 0.0215241i
\(658\) −40674.1 + 29551.5i −0.0939434 + 0.0682539i
\(659\) 165208.i 0.380418i 0.981744 + 0.190209i \(0.0609165\pi\)
−0.981744 + 0.190209i \(0.939084\pi\)
\(660\) 93611.2 98123.3i 0.214902 0.225260i
\(661\) −782672. −1.79133 −0.895667 0.444725i \(-0.853302\pi\)
−0.895667 + 0.444725i \(0.853302\pi\)
\(662\) 3586.49 + 4936.38i 0.00818377 + 0.0112640i
\(663\) 13312.1 + 40970.5i 0.0302845 + 0.0932061i
\(664\) −3612.63 + 11118.5i −0.00819384 + 0.0252180i
\(665\) −279726. 203233.i −0.632542 0.459569i
\(666\) 8342.34 11482.2i 0.0188079 0.0258868i
\(667\) −137937. 44818.4i −0.310048 0.100741i
\(668\) 259012. 84158.0i 0.580452 0.188600i
\(669\) −21487.7 + 15611.8i −0.0480108 + 0.0348819i
\(670\) 3250.49i 0.00724100i
\(671\) 422729. + 403291.i 0.938895 + 0.895721i
\(672\) −519360. −1.15009
\(673\) −198195. 272792.i −0.437586 0.602285i 0.532088 0.846689i \(-0.321408\pi\)
−0.969673 + 0.244404i \(0.921408\pi\)
\(674\) 72685.4 + 223703.i 0.160003 + 0.492437i
\(675\) 122220. 376154.i 0.268246 0.825577i
\(676\) −128475. 93342.8i −0.281142 0.204262i
\(677\) 439699. 605194.i 0.959353 1.32044i 0.0121078 0.999927i \(-0.496146\pi\)
0.947245 0.320510i \(-0.103854\pi\)
\(678\) 71754.3 + 23314.4i 0.156095 + 0.0507183i
\(679\) 409563. 133075.i 0.888344 0.288640i
\(680\) −15815.3 + 11490.5i −0.0342027 + 0.0248497i
\(681\) 591.087i 0.00127455i
\(682\) −15875.5 + 33057.9i −0.0341318 + 0.0710733i
\(683\) −591342. −1.26764 −0.633822 0.773479i \(-0.718515\pi\)
−0.633822 + 0.773479i \(0.718515\pi\)
\(684\) 25536.7 + 35148.3i 0.0545825 + 0.0751263i
\(685\) −79186.1 243710.i −0.168759 0.519388i
\(686\) −42226.0 + 129958.i −0.0897288 + 0.276157i
\(687\) 95538.9 + 69413.1i 0.202426 + 0.147071i
\(688\) 82227.3 113176.i 0.173716 0.239099i
\(689\) −270942. 88034.5i −0.570740 0.185445i
\(690\) 139535. 45337.7i 0.293080 0.0952273i
\(691\) −187294. + 136077.i −0.392253 + 0.284989i −0.766378 0.642390i \(-0.777943\pi\)
0.374125 + 0.927378i \(0.377943\pi\)
\(692\) 87917.0i 0.183595i
\(693\) −7286.86 39906.6i −0.0151731 0.0830957i
\(694\) 162724. 0.337856
\(695\) −126830. 174566.i −0.262574 0.361402i
\(696\) −20165.1 62061.7i −0.0416276 0.128116i
\(697\) −7087.88 + 21814.3i −0.0145899 + 0.0449030i
\(698\) −77578.5 56364.1i −0.159232 0.115689i
\(699\) −266421. + 366698.i −0.545274 + 0.750505i
\(700\) 381856. + 124073.i 0.779298 + 0.253209i
\(701\) 46147.3 14994.2i 0.0939097 0.0305131i −0.261685 0.965153i \(-0.584278\pi\)
0.355595 + 0.934640i \(0.384278\pi\)
\(702\) −135470. + 98424.5i −0.274896 + 0.199723i
\(703\) 842929.i 1.70561i
\(704\) −8067.26 14952.4i −0.0162772 0.0301694i
\(705\) −42333.8 −0.0851743
\(706\) −3827.05 5267.48i −0.00767811 0.0105680i
\(707\) −279666. 860722.i −0.559500 1.72196i
\(708\) −167471. + 515423.i −0.334098 + 1.02825i
\(709\) 472771. + 343488.i 0.940499 + 0.683313i 0.948541 0.316655i \(-0.102560\pi\)
−0.00804160 + 0.999968i \(0.502560\pi\)
\(710\) −6782.75 + 9335.66i −0.0134552 + 0.0185195i
\(711\) −46174.9 15003.1i −0.0913412 0.0296785i
\(712\) −318802. + 103585.i −0.628871 + 0.204332i
\(713\) 136971. 99515.1i 0.269432 0.195754i
\(714\) 34637.5i 0.0679439i
\(715\) 152593. + 20501.0i 0.298485 + 0.0401017i
\(716\) 496212. 0.967923
\(717\) 421436. + 580057.i 0.819772 + 1.12832i
\(718\) −46411.1 142839.i −0.0900270 0.277075i
\(719\) −81167.1 + 249807.i −0.157008 + 0.483221i −0.998359 0.0572683i \(-0.981761\pi\)
0.841351 + 0.540490i \(0.181761\pi\)
\(720\) 5477.64 + 3979.74i 0.0105664 + 0.00767696i
\(721\) 31670.9 43591.3i 0.0609242 0.0838550i
\(722\) 359047. + 116662.i 0.688775 + 0.223797i
\(723\) −202325. + 65739.5i −0.387056 + 0.125762i
\(724\) 231199. 167976.i 0.441071 0.320457i
\(725\) 78317.1i 0.148998i
\(726\) 172829. 138443.i 0.327902 0.262663i
\(727\) 172573. 0.326516 0.163258 0.986583i \(-0.447800\pi\)
0.163258 + 0.986583i \(0.447800\pi\)
\(728\) −223247. 307274.i −0.421234 0.579779i
\(729\) 174083. + 535773.i 0.327568 + 1.00815i
\(730\) 28352.4 87259.8i 0.0532040 0.163745i
\(731\) 36836.6 + 26763.3i 0.0689357 + 0.0500847i
\(732\) 319257. 439420.i 0.595825 0.820082i
\(733\) −174118. 56574.4i −0.324068 0.105296i 0.142465 0.989800i \(-0.454497\pi\)
−0.466533 + 0.884504i \(0.654497\pi\)
\(734\) 41979.4 13639.9i 0.0779191 0.0253175i
\(735\) 74865.9 54393.2i 0.138583 0.100686i
\(736\) 988963.i 1.82568i
\(737\) −3015.91 + 22448.0i −0.00555243 + 0.0413279i
\(738\) −5852.22 −0.0107450
\(739\) 177886. + 244839.i 0.325726 + 0.448323i 0.940205 0.340610i \(-0.110634\pi\)
−0.614479 + 0.788933i \(0.710634\pi\)
\(740\) 57114.4 + 175780.i 0.104299 + 0.321001i
\(741\) 201723. 620840.i 0.367383 1.13069i
\(742\) 185315. + 134639.i 0.336591 + 0.244547i
\(743\) −271424. + 373583.i −0.491666 + 0.676721i −0.980694 0.195547i \(-0.937352\pi\)
0.489028 + 0.872268i \(0.337352\pi\)
\(744\) 72446.8 + 23539.4i 0.130880 + 0.0425255i
\(745\) −346886. + 112710.i −0.624991 + 0.203072i
\(746\) −271014. + 196904.i −0.486984 + 0.353815i
\(747\) 1317.89i 0.00236178i
\(748\) 53654.7 28948.2i 0.0958969 0.0517390i
\(749\) 491142. 0.875474
\(750\) −101927. 140290.i −0.181203 0.249405i
\(751\) 185329. + 570383.i 0.328596 + 1.01132i 0.969791 + 0.243937i \(0.0784390\pi\)
−0.641195 + 0.767378i \(0.721561\pi\)
\(752\) −18068.6 + 55609.5i −0.0319514 + 0.0983362i
\(753\) −750054. 544946.i −1.32283 0.961089i
\(754\) 19489.5 26825.0i 0.0342814 0.0471843i
\(755\) 86535.8 + 28117.2i 0.151811 + 0.0493262i
\(756\) −546428. + 177545.i −0.956069 + 0.310646i
\(757\) −506946. + 368318.i −0.884647 + 0.642734i −0.934477 0.356024i \(-0.884132\pi\)
0.0498296 + 0.998758i \(0.484132\pi\)
\(758\) 229717.i 0.399812i
\(759\) −1.00570e6 + 183639.i −1.74576 + 0.318773i
\(760\) 296230. 0.512864
\(761\) 23646.8 + 32547.1i 0.0408323 + 0.0562008i 0.828945 0.559330i \(-0.188942\pi\)
−0.788113 + 0.615531i \(0.788942\pi\)
\(762\) −52583.0 161834.i −0.0905598 0.278715i
\(763\) −56426.1 + 173662.i −0.0969240 + 0.298301i
\(764\) 46046.1 + 33454.5i 0.0788871 + 0.0573149i
\(765\) −1295.32 + 1782.86i −0.00221338 + 0.00304646i
\(766\) −291064. 94572.4i −0.496056 0.161178i
\(767\) −585164. + 190131.i −0.994688 + 0.323194i
\(768\) 186090. 135202.i 0.315501 0.229225i
\(769\) 816302.i 1.38038i −0.723629 0.690189i \(-0.757527\pi\)
0.723629 0.690189i \(-0.242473\pi\)
\(770\) −111593. 53590.9i