Properties

Label 11.5.d
Level 11
Weight 5
Character orbit d
Rep. character \(\chi_{11}(2,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 12
Newforms 1
Sturm bound 5
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 5 \)
Character orbit: \([\chi]\) = 11.d (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newforms: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(11, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12q - 5q^{2} - 6q^{3} + 7q^{4} - 18q^{5} + 75q^{6} - 80q^{7} - 245q^{8} + q^{9} + O(q^{10}) \) \( 12q - 5q^{2} - 6q^{3} + 7q^{4} - 18q^{5} + 75q^{6} - 80q^{7} - 245q^{8} + q^{9} - 43q^{11} + 594q^{12} + 250q^{13} + 610q^{14} + 1134q^{15} - 633q^{16} - 1250q^{17} - 3150q^{18} - 1025q^{19} + 752q^{20} - 35q^{22} + 1684q^{23} + 5345q^{24} + 197q^{25} + 3490q^{26} - 687q^{27} - 3580q^{28} - 2690q^{29} - 6740q^{30} - 1136q^{31} + 5939q^{33} + 2370q^{34} + 3610q^{35} - 514q^{36} - 336q^{37} + 1900q^{38} - 6880q^{39} - 2340q^{40} - 4550q^{41} + 1310q^{42} - 6268q^{44} + 5136q^{45} + 4150q^{46} + 24q^{47} + 344q^{48} + 827q^{49} + 8895q^{50} + 13155q^{51} + 14070q^{52} + 414q^{53} - 2738q^{55} - 21340q^{56} - 26925q^{57} + 2980q^{58} - 10011q^{59} - 6856q^{60} + 9460q^{61} - 6200q^{62} + 9150q^{63} - 2633q^{64} - 3210q^{66} + 12154q^{67} - 9400q^{68} - 9022q^{69} - 9380q^{70} + 17574q^{71} + 43045q^{72} + 27950q^{73} + 43270q^{74} - 1761q^{75} + 4090q^{77} - 42920q^{78} - 41540q^{79} - 2308q^{80} - 21080q^{81} - 28175q^{82} - 18665q^{83} + 26250q^{84} - 4230q^{85} - 10125q^{86} - 15125q^{88} + 5554q^{89} + 18400q^{90} + 7390q^{91} + 3904q^{92} + 36898q^{93} + 18920q^{94} + 14110q^{95} - 21140q^{96} + 20769q^{97} - 3269q^{99} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(11, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
11.5.d.a \(12\) \(1.137\) \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None \(-5\) \(-6\) \(-18\) \(-80\) \(q+(-1-\beta _{2}-2\beta _{3}-\beta _{4}+\beta _{7})q^{2}+\cdots\)