Newspace parameters
Level: | \( N \) | \(=\) | \( 11 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 11.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.13706959392\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-30}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 30 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-30}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/11\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 |
|
− | 5.47723i | −3.00000 | −14.0000 | 31.0000 | 16.4317i | 54.7723i | − | 10.9545i | −72.0000 | − | 169.794i | |||||||||||||||||||||
10.2 | 5.47723i | −3.00000 | −14.0000 | 31.0000 | − | 16.4317i | − | 54.7723i | 10.9545i | −72.0000 | 169.794i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 11.5.b.b | ✓ | 2 |
3.b | odd | 2 | 1 | 99.5.c.b | 2 | ||
4.b | odd | 2 | 1 | 176.5.h.c | 2 | ||
5.b | even | 2 | 1 | 275.5.c.e | 2 | ||
5.c | odd | 4 | 2 | 275.5.d.b | 4 | ||
8.b | even | 2 | 1 | 704.5.h.f | 2 | ||
8.d | odd | 2 | 1 | 704.5.h.d | 2 | ||
11.b | odd | 2 | 1 | inner | 11.5.b.b | ✓ | 2 |
11.c | even | 5 | 4 | 121.5.d.b | 8 | ||
11.d | odd | 10 | 4 | 121.5.d.b | 8 | ||
33.d | even | 2 | 1 | 99.5.c.b | 2 | ||
44.c | even | 2 | 1 | 176.5.h.c | 2 | ||
55.d | odd | 2 | 1 | 275.5.c.e | 2 | ||
55.e | even | 4 | 2 | 275.5.d.b | 4 | ||
88.b | odd | 2 | 1 | 704.5.h.f | 2 | ||
88.g | even | 2 | 1 | 704.5.h.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
11.5.b.b | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
11.5.b.b | ✓ | 2 | 11.b | odd | 2 | 1 | inner |
99.5.c.b | 2 | 3.b | odd | 2 | 1 | ||
99.5.c.b | 2 | 33.d | even | 2 | 1 | ||
121.5.d.b | 8 | 11.c | even | 5 | 4 | ||
121.5.d.b | 8 | 11.d | odd | 10 | 4 | ||
176.5.h.c | 2 | 4.b | odd | 2 | 1 | ||
176.5.h.c | 2 | 44.c | even | 2 | 1 | ||
275.5.c.e | 2 | 5.b | even | 2 | 1 | ||
275.5.c.e | 2 | 55.d | odd | 2 | 1 | ||
275.5.d.b | 4 | 5.c | odd | 4 | 2 | ||
275.5.d.b | 4 | 55.e | even | 4 | 2 | ||
704.5.h.d | 2 | 8.d | odd | 2 | 1 | ||
704.5.h.d | 2 | 88.g | even | 2 | 1 | ||
704.5.h.f | 2 | 8.b | even | 2 | 1 | ||
704.5.h.f | 2 | 88.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 30 \)
acting on \(S_{5}^{\mathrm{new}}(11, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 30 \)
$3$
\( (T + 3)^{2} \)
$5$
\( (T - 31)^{2} \)
$7$
\( T^{2} + 3000 \)
$11$
\( T^{2} - 22T + 14641 \)
$13$
\( T^{2} + 34680 \)
$17$
\( T^{2} + 52920 \)
$19$
\( T^{2} + 9720 \)
$23$
\( (T - 277)^{2} \)
$29$
\( T^{2} + 1614720 \)
$31$
\( (T + 1363)^{2} \)
$37$
\( (T - 167)^{2} \)
$41$
\( T^{2} + 1129080 \)
$43$
\( T^{2} + 1452000 \)
$47$
\( (T - 1702)^{2} \)
$53$
\( (T - 4522)^{2} \)
$59$
\( (T + 2363)^{2} \)
$61$
\( T^{2} + 15725280 \)
$67$
\( (T + 2803)^{2} \)
$71$
\( (T - 3397)^{2} \)
$73$
\( T^{2} + 11017080 \)
$79$
\( T^{2} + 37096320 \)
$83$
\( T^{2} + 693120 \)
$89$
\( (T + 4673)^{2} \)
$97$
\( (T - 4247)^{2} \)
show more
show less