Properties

Label 11.5.b.a
Level $11$
Weight $5$
Character orbit 11.b
Self dual yes
Analytic conductor $1.137$
Analytic rank $0$
Dimension $1$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,5,Mod(10,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.10"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 11.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.13706959392\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 7 q^{3} + 16 q^{4} - 49 q^{5} - 32 q^{9} + 121 q^{11} + 112 q^{12} - 343 q^{15} + 256 q^{16} - 784 q^{20} + 167 q^{23} + 1776 q^{25} - 791 q^{27} - 553 q^{31} + 847 q^{33} - 512 q^{36} - 2113 q^{37}+ \cdots - 3872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/11\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
0
0 7.00000 16.0000 −49.0000 0 0 0 −32.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.5.b.a 1
3.b odd 2 1 99.5.c.a 1
4.b odd 2 1 176.5.h.a 1
5.b even 2 1 275.5.c.a 1
5.c odd 4 2 275.5.d.a 2
8.b even 2 1 704.5.h.a 1
8.d odd 2 1 704.5.h.b 1
11.b odd 2 1 CM 11.5.b.a 1
11.c even 5 4 121.5.d.a 4
11.d odd 10 4 121.5.d.a 4
33.d even 2 1 99.5.c.a 1
44.c even 2 1 176.5.h.a 1
55.d odd 2 1 275.5.c.a 1
55.e even 4 2 275.5.d.a 2
88.b odd 2 1 704.5.h.a 1
88.g even 2 1 704.5.h.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.a 1 1.a even 1 1 trivial
11.5.b.a 1 11.b odd 2 1 CM
99.5.c.a 1 3.b odd 2 1
99.5.c.a 1 33.d even 2 1
121.5.d.a 4 11.c even 5 4
121.5.d.a 4 11.d odd 10 4
176.5.h.a 1 4.b odd 2 1
176.5.h.a 1 44.c even 2 1
275.5.c.a 1 5.b even 2 1
275.5.c.a 1 55.d odd 2 1
275.5.d.a 2 5.c odd 4 2
275.5.d.a 2 55.e even 4 2
704.5.h.a 1 8.b even 2 1
704.5.h.a 1 88.b odd 2 1
704.5.h.b 1 8.d odd 2 1
704.5.h.b 1 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{5}^{\mathrm{new}}(11, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 7 \) Copy content Toggle raw display
$5$ \( T + 49 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 121 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 167 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 553 \) Copy content Toggle raw display
$37$ \( T + 2113 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 1918 \) Copy content Toggle raw display
$53$ \( T + 718 \) Copy content Toggle raw display
$59$ \( T - 4487 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 7753 \) Copy content Toggle raw display
$71$ \( T - 7607 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6433 \) Copy content Toggle raw display
$97$ \( T + 9793 \) Copy content Toggle raw display
show more
show less