Properties

Label 11.3.d.a
Level $11$
Weight $3$
Character orbit 11.d
Analytic conductor $0.300$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [11,3,Mod(2,11)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(11, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("11.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 11.d (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.299728290796\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 2 \zeta_{10}) q^{2} + (2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 3 \zeta_{10} - 2) q^{3} + ( - 4 \zeta_{10}^{2} + 3 \zeta_{10} - 4) q^{4} + 4 \zeta_{10}^{2} q^{5} + (\zeta_{10}^{3} + 3 \zeta_{10}^{2} - 7 \zeta_{10} + 6) q^{6} + ( - 8 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 4 \zeta_{10} + 6) q^{7} + (3 \zeta_{10}^{3} + \zeta_{10}^{2} + \zeta_{10} + 3) q^{8} + (4 \zeta_{10}^{3} + 5 \zeta_{10} - 5) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 2 \zeta_{10}) q^{2} + (2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 3 \zeta_{10} - 2) q^{3} + ( - 4 \zeta_{10}^{2} + 3 \zeta_{10} - 4) q^{4} + 4 \zeta_{10}^{2} q^{5} + (\zeta_{10}^{3} + 3 \zeta_{10}^{2} - 7 \zeta_{10} + 6) q^{6} + ( - 8 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 4 \zeta_{10} + 6) q^{7} + (3 \zeta_{10}^{3} + \zeta_{10}^{2} + \zeta_{10} + 3) q^{8} + (4 \zeta_{10}^{3} + 5 \zeta_{10} - 5) q^{9} + ( - 8 \zeta_{10}^{2} + 8 \zeta_{10} - 4) q^{10} + (7 \zeta_{10}^{3} - 9 \zeta_{10}^{2} - 3 \zeta_{10} - 3) q^{11} + ( - 11 \zeta_{10}^{3} + 11 \zeta_{10}^{2} - 2) q^{12} + ( - 2 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 6 \zeta_{10} - 2) q^{13} + (6 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 4 \zeta_{10} - 6) q^{14} + (4 \zeta_{10}^{2} - 12 \zeta_{10} + 4) q^{15} + (8 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 8 \zeta_{10}) q^{16} + ( - 13 \zeta_{10}^{3} + 13 \zeta_{10}) q^{17} + (2 \zeta_{10}^{3} - 7 \zeta_{10}^{2} + \zeta_{10} + 5) q^{18} + (5 \zeta_{10}^{3} - 2 \zeta_{10}^{2} - 2 \zeta_{10} + 5) q^{19} + ( - 4 \zeta_{10}^{3} - 16 \zeta_{10} + 16) q^{20} + (8 \zeta_{10}^{3} + 4 \zeta_{10}^{2} + 4 \zeta_{10} - 2) q^{21} + ( - 14 \zeta_{10}^{3} + 29 \zeta_{10}^{2} - 16 \zeta_{10} + 6) q^{22} + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 4) q^{23} + (8 \zeta_{10}^{3} - 16 \zeta_{10}^{2} + 9 \zeta_{10} - 7) q^{24} + ( - 9 \zeta_{10}^{3} + 9 \zeta_{10}^{2} - 9 \zeta_{10} + 9) q^{25} + ( - 10 \zeta_{10}^{2} + 20 \zeta_{10} - 10) q^{26} + ( - 2 \zeta_{10}^{3} - 19 \zeta_{10}^{2} - 2 \zeta_{10}) q^{27} + (22 \zeta_{10}^{3} - 12 \zeta_{10}^{2} + 2 \zeta_{10} - 24) q^{28} + (20 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 10 \zeta_{10} - 18) q^{29} + ( - 16 \zeta_{10}^{3} + 12 \zeta_{10}^{2} + 12 \zeta_{10} - 16) q^{30} + ( - 4 \zeta_{10}^{3} + 18 \zeta_{10} - 18) q^{31} + ( - 24 \zeta_{10}^{3} + 22 \zeta_{10}^{2} - 46 \zeta_{10} + 23) q^{32} + (4 \zeta_{10}^{3} - 24 \zeta_{10}^{2} + 25 \zeta_{10} + 3) q^{33} + (39 \zeta_{10}^{3} - 39 \zeta_{10}^{2} + 13) q^{34} + ( - 8 \zeta_{10}^{3} + 16 \zeta_{10}^{2} + 8 \zeta_{10} + 24) q^{35} + ( - 24 \zeta_{10}^{3} + 23 \zeta_{10}^{2} - 23 \zeta_{10} + 24) q^{36} + (36 \zeta_{10}^{2} - 18 \zeta_{10} + 36) q^{37} + ( - 17 \zeta_{10}^{3} + 26 \zeta_{10}^{2} - 17 \zeta_{10}) q^{38} + (10 \zeta_{10}^{2} - 20 \zeta_{10} + 20) q^{39} + (8 \zeta_{10}^{3} + 8 \zeta_{10}^{2} + 4 \zeta_{10} - 16) q^{40} + ( - 16 \zeta_{10}^{3} - 27 \zeta_{10}^{2} - 27 \zeta_{10} - 16) q^{41} - 10 \zeta_{10}^{3} q^{42} + (19 \zeta_{10}^{3} - 17 \zeta_{10}^{2} + 36 \zeta_{10} - 18) q^{43} + (14 \zeta_{10}^{3} - 18 \zeta_{10}^{2} + 60 \zeta_{10} - 17) q^{44} + (20 \zeta_{10}^{3} - 20 \zeta_{10}^{2} - 16) q^{45} + (8 \zeta_{10}^{3} - 16 \zeta_{10}^{2} + 14 \zeta_{10} - 2) q^{46} + (26 \zeta_{10}^{3} - 24 \zeta_{10}^{2} + 24 \zeta_{10} - 26) q^{47} + ( - 19 \zeta_{10}^{2} + 17 \zeta_{10} - 19) q^{48} + ( - 44 \zeta_{10}^{3} + 21 \zeta_{10}^{2} - 44 \zeta_{10}) q^{49} + ( - 9 \zeta_{10}^{2} + 18 \zeta_{10} - 18) q^{50} + ( - 26 \zeta_{10}^{3} + 52 \zeta_{10}^{2} - 13 \zeta_{10} - 26) q^{51} + (22 \zeta_{10}^{3} - 4 \zeta_{10}^{2} - 4 \zeta_{10} + 22) q^{52} + (30 \zeta_{10}^{3} - 30 \zeta_{10} + 30) q^{53} + (2 \zeta_{10}^{3} + 36 \zeta_{10}^{2} - 34 \zeta_{10} + 17) q^{54} + ( - 48 \zeta_{10}^{3} + 24 \zeta_{10}^{2} - 36 \zeta_{10} + 8) q^{55} + ( - 26 \zeta_{10}^{3} + 26 \zeta_{10}^{2} + 38) q^{56} + (17 \zeta_{10}^{3} - 34 \zeta_{10}^{2} + 26 \zeta_{10} - 8) q^{57} + ( - 12 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 2 \zeta_{10} + 12) q^{58} + (15 \zeta_{10}^{2} - 22 \zeta_{10} + 15) q^{59} + (44 \zeta_{10}^{3} - 52 \zeta_{10}^{2} + 44 \zeta_{10}) q^{60} + ( - 18 \zeta_{10}^{3} + 2 \zeta_{10}^{2} + 14 \zeta_{10} + 4) q^{61} + (44 \zeta_{10}^{3} - 62 \zeta_{10}^{2} + 22 \zeta_{10} + 18) q^{62} + (18 \zeta_{10}^{3} + 26 \zeta_{10}^{2} + 26 \zeta_{10} + 18) q^{63} + ( - 41 \zeta_{10}^{3} + 36 \zeta_{10} - 36) q^{64} + ( - 8 \zeta_{10}^{3} - 24 \zeta_{10}^{2} + 16 \zeta_{10} - 8) q^{65} + (14 \zeta_{10}^{3} + 37 \zeta_{10}^{2} - 83 \zeta_{10} + 49) q^{66} + ( - 17 \zeta_{10}^{3} + 17 \zeta_{10}^{2} - 49) q^{67} + ( - 39 \zeta_{10}^{3} + 78 \zeta_{10}^{2} - 91 \zeta_{10} - 13) q^{68} + ( - 10 \zeta_{10}^{3} + 20 \zeta_{10}^{2} - 20 \zeta_{10} + 10) q^{69} + ( - 8 \zeta_{10}^{2} - 16 \zeta_{10} - 8) q^{70} + (62 \zeta_{10}^{3} - 24 \zeta_{10}^{2} + 62 \zeta_{10}) q^{71} + (21 \zeta_{10}^{3} - 19 \zeta_{10}^{2} + 17 \zeta_{10} - 38) q^{72} + ( - 34 \zeta_{10}^{3} - 43 \zeta_{10}^{2} - 17 \zeta_{10} + 77) q^{73} + ( - 54 \zeta_{10}^{3} + 18 \zeta_{10}^{2} + 18 \zeta_{10} - 54) q^{74} + (18 \zeta_{10}^{3} - 9 \zeta_{10} + 9) q^{75} + (5 \zeta_{10}^{3} - 41 \zeta_{10}^{2} + 46 \zeta_{10} - 23) q^{76} + (74 \zeta_{10}^{3} - 26 \zeta_{10}^{2} + 28 \zeta_{10} - 82) q^{77} + ( - 40 \zeta_{10}^{3} + 40 \zeta_{10}^{2} - 30) q^{78} + (26 \zeta_{10}^{3} - 52 \zeta_{10}^{2} + 40 \zeta_{10} - 12) q^{79} + (20 \zeta_{10}^{3} + 12 \zeta_{10}^{2} - 12 \zeta_{10} - 20) q^{80} + ( - 60 \zeta_{10}^{2} + 64 \zeta_{10} - 60) q^{81} + (21 \zeta_{10}^{3} + 17 \zeta_{10}^{2} + 21 \zeta_{10}) q^{82} + ( - 43 \zeta_{10}^{3} + 45 \zeta_{10}^{2} - 47 \zeta_{10} + 90) q^{83} + ( - 28 \zeta_{10}^{3} - 4 \zeta_{10}^{2} - 14 \zeta_{10} + 32) q^{84} + (52 \zeta_{10}^{3} + 52) q^{85} + (16 \zeta_{10}^{3} - 53 \zeta_{10} + 53) q^{86} + ( - 26 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 28 \zeta_{10} + 14) q^{87} + ( - 11 \zeta_{10}^{3} - 22 \zeta_{10}^{2} - 44 \zeta_{10} + 22) q^{88} + ( - 83 \zeta_{10}^{3} + 83 \zeta_{10}^{2} + 72) q^{89} + ( - 24 \zeta_{10}^{3} + 48 \zeta_{10}^{2} - 28 \zeta_{10} + 20) q^{90} + (40 \zeta_{10}^{3} - 20 \zeta_{10}^{2} + 20 \zeta_{10} - 40) q^{91} + (22 \zeta_{10}^{2} - 26 \zeta_{10} + 22) q^{92} + ( - 58 \zeta_{10}^{3} + 84 \zeta_{10}^{2} - 58 \zeta_{10}) q^{93} + ( - 2 \zeta_{10}^{3} + 24 \zeta_{10}^{2} - 46 \zeta_{10} + 48) q^{94} + ( - 16 \zeta_{10}^{3} + 28 \zeta_{10}^{2} - 8 \zeta_{10} - 12) q^{95} + (68 \zeta_{10}^{3} - 21 \zeta_{10}^{2} - 21 \zeta_{10} + 68) q^{96} + (36 \zeta_{10}^{3} + 67 \zeta_{10} - 67) q^{97} + (44 \zeta_{10}^{3} - 86 \zeta_{10}^{2} + 130 \zeta_{10} - 65) q^{98} + ( - 69 \zeta_{10}^{3} + 7 \zeta_{10}^{2} - 5 \zeta_{10} + 28) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} - 9 q^{4} - 4 q^{5} + 15 q^{6} + 10 q^{7} + 15 q^{8} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 5 q^{2} - 9 q^{4} - 4 q^{5} + 15 q^{6} + 10 q^{7} + 15 q^{8} - 11 q^{9} + q^{11} - 30 q^{12} - 20 q^{13} - 10 q^{14} + 19 q^{16} + 30 q^{18} + 25 q^{19} + 44 q^{20} - 35 q^{22} - 20 q^{23} + 5 q^{24} + 9 q^{25} - 10 q^{26} + 15 q^{27} - 60 q^{28} - 40 q^{29} - 80 q^{30} - 58 q^{31} + 65 q^{33} + 130 q^{34} + 80 q^{35} + 26 q^{36} + 90 q^{37} - 60 q^{38} + 50 q^{39} - 60 q^{40} - 80 q^{41} - 10 q^{42} + 24 q^{44} - 24 q^{45} + 30 q^{46} - 30 q^{47} - 40 q^{48} - 109 q^{49} - 45 q^{50} - 195 q^{51} + 110 q^{52} + 120 q^{53} - 76 q^{55} + 100 q^{56} + 45 q^{57} + 40 q^{58} + 23 q^{59} + 140 q^{60} + 10 q^{61} + 200 q^{62} + 90 q^{63} - 149 q^{64} + 90 q^{66} - 230 q^{67} - 260 q^{68} - 10 q^{69} - 40 q^{70} + 148 q^{71} - 95 q^{72} + 300 q^{73} - 270 q^{74} + 45 q^{75} - 200 q^{77} - 200 q^{78} + 70 q^{79} - 84 q^{80} - 116 q^{81} + 25 q^{82} + 225 q^{83} + 90 q^{84} + 260 q^{85} + 175 q^{86} + 55 q^{88} + 122 q^{89} - 20 q^{90} - 80 q^{91} + 40 q^{92} - 200 q^{93} + 120 q^{94} - 100 q^{95} + 340 q^{96} - 165 q^{97} + 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/11\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
−0.690983 0.224514i −1.11803 + 0.812299i −2.80902 2.04087i 1.23607 + 3.80423i 0.954915 0.310271i 5.85410 8.05748i 3.19098 + 4.39201i −2.19098 + 6.74315i 2.90617i
6.1 −0.690983 + 0.224514i −1.11803 0.812299i −2.80902 + 2.04087i 1.23607 3.80423i 0.954915 + 0.310271i 5.85410 + 8.05748i 3.19098 4.39201i −2.19098 6.74315i 2.90617i
7.1 −1.80902 + 2.48990i 1.11803 3.44095i −1.69098 5.20431i −3.23607 + 2.35114i 6.54508 + 9.00854i −0.854102 + 0.277515i 4.30902 + 1.40008i −3.30902 2.40414i 12.3107i
8.1 −1.80902 2.48990i 1.11803 + 3.44095i −1.69098 + 5.20431i −3.23607 2.35114i 6.54508 9.00854i −0.854102 0.277515i 4.30902 1.40008i −3.30902 + 2.40414i 12.3107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.3.d.a 4
3.b odd 2 1 99.3.k.a 4
4.b odd 2 1 176.3.n.a 4
5.b even 2 1 275.3.x.e 4
5.c odd 4 2 275.3.q.d 8
11.b odd 2 1 121.3.d.d 4
11.c even 5 1 121.3.b.b 4
11.c even 5 1 121.3.d.a 4
11.c even 5 1 121.3.d.c 4
11.c even 5 1 121.3.d.d 4
11.d odd 10 1 inner 11.3.d.a 4
11.d odd 10 1 121.3.b.b 4
11.d odd 10 1 121.3.d.a 4
11.d odd 10 1 121.3.d.c 4
33.f even 10 1 99.3.k.a 4
33.f even 10 1 1089.3.c.e 4
33.h odd 10 1 1089.3.c.e 4
44.g even 10 1 176.3.n.a 4
55.h odd 10 1 275.3.x.e 4
55.l even 20 2 275.3.q.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.3.d.a 4 1.a even 1 1 trivial
11.3.d.a 4 11.d odd 10 1 inner
99.3.k.a 4 3.b odd 2 1
99.3.k.a 4 33.f even 10 1
121.3.b.b 4 11.c even 5 1
121.3.b.b 4 11.d odd 10 1
121.3.d.a 4 11.c even 5 1
121.3.d.a 4 11.d odd 10 1
121.3.d.c 4 11.c even 5 1
121.3.d.c 4 11.d odd 10 1
121.3.d.d 4 11.b odd 2 1
121.3.d.d 4 11.c even 5 1
176.3.n.a 4 4.b odd 2 1
176.3.n.a 4 44.g even 10 1
275.3.q.d 8 5.c odd 4 2
275.3.q.d 8 55.l even 20 2
275.3.x.e 4 5.b even 2 1
275.3.x.e 4 55.h odd 10 1
1089.3.c.e 4 33.f even 10 1
1089.3.c.e 4 33.h odd 10 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(11, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 5 T^{3} + 15 T^{2} + 15 T + 5 \) Copy content Toggle raw display
$3$ \( T^{4} + 10 T^{2} + 25 T + 25 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + 16 T^{2} + 64 T + 256 \) Copy content Toggle raw display
$7$ \( T^{4} - 10 T^{3} + 80 T^{2} + 160 T + 80 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} - 209 T^{2} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{4} + 20 T^{3} + 200 T^{2} + \cdots + 2000 \) Copy content Toggle raw display
$17$ \( T^{4} - 10985 T + 142805 \) Copy content Toggle raw display
$19$ \( T^{4} - 25 T^{3} + 200 T^{2} + \cdots + 605 \) Copy content Toggle raw display
$23$ \( (T^{2} + 10 T + 20)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 40 T^{3} + 1040 T^{2} + \cdots + 9680 \) Copy content Toggle raw display
$31$ \( T^{4} + 58 T^{3} + 1384 T^{2} + \cdots + 55696 \) Copy content Toggle raw display
$37$ \( T^{4} - 90 T^{3} + 4860 T^{2} + \cdots + 2624400 \) Copy content Toggle raw display
$41$ \( T^{4} + 80 T^{3} + 4720 T^{2} + \cdots + 8405 \) Copy content Toggle raw display
$43$ \( T^{4} + 1625 T^{2} + 581405 \) Copy content Toggle raw display
$47$ \( T^{4} + 30 T^{3} + 640 T^{2} + \cdots + 384400 \) Copy content Toggle raw display
$53$ \( T^{4} - 120 T^{3} + 5400 T^{2} + \cdots + 810000 \) Copy content Toggle raw display
$59$ \( T^{4} - 23 T^{3} + 1054 T^{2} + \cdots + 5041 \) Copy content Toggle raw display
$61$ \( T^{4} - 10 T^{3} - 120 T^{2} + \cdots + 403280 \) Copy content Toggle raw display
$67$ \( (T^{2} + 115 T + 2945)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 148 T^{3} + \cdots + 22619536 \) Copy content Toggle raw display
$73$ \( T^{4} - 300 T^{3} + \cdots + 93787805 \) Copy content Toggle raw display
$79$ \( T^{4} - 70 T^{3} + 3780 T^{2} + \cdots + 67280 \) Copy content Toggle raw display
$83$ \( T^{4} - 225 T^{3} + \cdots + 22281605 \) Copy content Toggle raw display
$89$ \( (T^{2} - 61 T - 7681)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 165 T^{3} + \cdots + 31416025 \) Copy content Toggle raw display
show more
show less