Properties

Label 11.2.a
Level $11$
Weight $2$
Character orbit 11.a
Rep. character $\chi_{11}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 11.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(11))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)Dim
\(-\)\(1\)

Trace form

\( q - 2 q^{2} - q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{9} - 2 q^{10} + q^{11} - 2 q^{12} + 4 q^{13} + 4 q^{14} - q^{15} - 4 q^{16} - 2 q^{17} + 4 q^{18} + 2 q^{20} + 2 q^{21} - 2 q^{22} - q^{23}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
11.2.a.a 11.a 1.a $1$ $0.088$ \(\Q\) None 11.2.a.a \(-2\) \(-1\) \(1\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}+q^{5}+2q^{6}-2q^{7}+\cdots\)