Defining parameters
Level: | \( N \) | \(=\) | \( 11 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 11.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(11))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 12 | 2 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(11\) | Dim |
---|---|
\(+\) | \(5\) |
\(-\) | \(7\) |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(11))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | |||||||
11.14.a.a | $5$ | $11.795$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-64\) | \(480\) | \(-454\) | \(-313920\) | $+$ | \(q+(-13-\beta _{1})q^{2}+(96-2\beta _{1}-\beta _{3}+\cdots)q^{3}+\cdots\) | |
11.14.a.b | $7$ | $11.795$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(379\) | \(52689\) | \(-89386\) | $-$ | \(q-\beta _{1}q^{2}+(54+3\beta _{1}-\beta _{2})q^{3}+(6727+\cdots)q^{4}+\cdots\) |