Properties

Label 11.14
Level 11
Weight 14
Dimension 60
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 140
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(140\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(11))\).

Total New Old
Modular forms 70 68 2
Cusp forms 60 60 0
Eisenstein series 10 8 2

Trace form

\( 60 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} - 399685 q^{6} - 12610 q^{7} + 40955 q^{8} + 3070065 q^{9} + O(q^{10}) \) \( 60 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} - 399685 q^{6} - 12610 q^{7} + 40955 q^{8} + 3070065 q^{9} - 10000010 q^{10} + 3460590 q^{11} + 49070070 q^{12} - 20208250 q^{13} + 61994260 q^{14} + 52319535 q^{15} + 335277415 q^{16} - 450300500 q^{17} + 501503300 q^{18} + 718681480 q^{19} - 183685490 q^{20} - 1715322430 q^{21} - 620359775 q^{22} + 3512223895 q^{23} - 1185732435 q^{24} - 459844835 q^{25} - 5807664900 q^{26} - 5391523775 q^{27} + 11049893190 q^{28} + 9015838370 q^{29} - 9366369920 q^{30} + 3645349775 q^{31} - 40933540340 q^{32} - 29399368065 q^{33} - 2315030390 q^{34} + 95259022550 q^{35} + 49217857300 q^{36} - 73886112275 q^{37} - 152074308160 q^{38} + 60243560460 q^{39} + 284571664560 q^{40} + 141264052390 q^{41} - 101683304550 q^{42} - 343041029810 q^{43} - 29717091820 q^{44} + 337716774520 q^{45} + 409655208170 q^{46} + 25430858400 q^{47} - 548902184060 q^{48} - 410687591220 q^{49} - 301893670235 q^{50} - 5505719090 q^{51} + 1092743544810 q^{52} - 433703713580 q^{53} - 988539415290 q^{54} - 515145700145 q^{55} + 645126608160 q^{56} + 1012924896300 q^{57} - 1047064839600 q^{58} - 511960934275 q^{59} + 504386178500 q^{60} + 390753065710 q^{61} + 2523991985410 q^{62} - 1480803628740 q^{63} - 92815440705 q^{64} - 94382571440 q^{65} - 372216438020 q^{66} - 2021191798755 q^{67} - 1577100453690 q^{68} + 3259657639025 q^{69} + 7096538159620 q^{70} + 5264793851925 q^{71} - 146388547625 q^{72} - 9784492697950 q^{73} - 9722659495710 q^{74} + 4447676010340 q^{75} + 7307959086310 q^{76} + 8579435273550 q^{77} - 9199908002980 q^{78} - 16730517818130 q^{79} - 15294392235700 q^{80} + 23368862689260 q^{81} + 32889640999585 q^{82} - 4057268358470 q^{83} - 16981867141300 q^{84} - 1958790151310 q^{85} - 805979551165 q^{86} - 16955375625000 q^{87} - 26198802830805 q^{88} - 10585815848275 q^{89} - 9615730808130 q^{90} + 35747062060200 q^{91} + 24402511242270 q^{92} + 2555559320745 q^{93} + 27613270892390 q^{94} - 7719012654720 q^{95} + 11492301067140 q^{96} - 32024481756165 q^{97} - 62701874467100 q^{98} - 44644739430425 q^{99} + O(q^{100}) \)

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(11))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
11.14.a \(\chi_{11}(1, \cdot)\) 11.14.a.a 5 1
11.14.a.b 7
11.14.c \(\chi_{11}(3, \cdot)\) 11.14.c.a 48 4