[N,k,chi] = [11,12,Mod(1,11)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 12, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("11.1");
S:= CuspForms(chi, 12);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(11\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 4500T_{2} + 92224 \)
T2^3 - 4500*T2 + 92224
acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(11))\).
$p$
$F_p(T)$
$2$
\( T^{3} - 4500T + 92224 \)
T^3 - 4500*T + 92224
$3$
\( T^{3} + 393 T^{2} + \cdots - 34002261 \)
T^3 + 393*T^2 - 89397*T - 34002261
$5$
\( T^{3} + 7305 T^{2} + \cdots + 62243294875 \)
T^3 + 7305*T^2 - 75639525*T + 62243294875
$7$
\( T^{3} + 5082 T^{2} + \cdots + 43059126844184 \)
T^3 + 5082*T^2 - 2559917892*T + 43059126844184
$11$
\( (T - 161051)^{3} \)
(T - 161051)^3
$13$
\( T^{3} + 2434212 T^{2} + \cdots + 33\!\cdots\!56 \)
T^3 + 2434212*T^2 + 1506461737824*T + 33921300487475456
$17$
\( T^{3} - 12112122 T^{2} + \cdots + 21\!\cdots\!48 \)
T^3 - 12112122*T^2 + 28285872446268*T + 21107781306650092648
$19$
\( T^{3} + 8590560 T^{2} + \cdots - 16\!\cdots\!00 \)
T^3 + 8590560*T^2 - 205011254610000*T - 1660349550003959232000
$23$
\( T^{3} + 3136413 T^{2} + \cdots + 14\!\cdots\!59 \)
T^3 + 3136413*T^2 - 1778224279930317*T + 14888646893899021216559
$29$
\( T^{3} + 376441824 T^{2} + \cdots + 18\!\cdots\!40 \)
T^3 + 376441824*T^2 + 45929192846768832*T + 1824037046449062604093440
$31$
\( T^{3} + 313174893 T^{2} + \cdots + 69\!\cdots\!75 \)
T^3 + 313174893*T^2 + 26864576425801875*T + 692727571441932564734975
$37$
\( T^{3} + 454281387 T^{2} + \cdots - 98\!\cdots\!23 \)
T^3 + 454281387*T^2 + 47946830773431315*T - 98914158957430574608023
$41$
\( T^{3} + 37614456 T^{2} + \cdots + 60\!\cdots\!08 \)
T^3 + 37614456*T^2 - 1447464829896458640*T + 606718323517683405295451008
$43$
\( T^{3} - 162163386 T^{2} + \cdots + 19\!\cdots\!72 \)
T^3 - 162163386*T^2 - 606274374983316468*T + 199844085514309274748830472
$47$
\( T^{3} + 3182498184 T^{2} + \cdots - 45\!\cdots\!28 \)
T^3 + 3182498184*T^2 + 54213218024220288*T - 4524512020184803310442416128
$53$
\( T^{3} + 3000753402 T^{2} + \cdots - 30\!\cdots\!72 \)
T^3 + 3000753402*T^2 + 1406961694046356428*T - 309898387656755418762273672
$59$
\( T^{3} + 1843219707 T^{2} + \cdots - 26\!\cdots\!15 \)
T^3 + 1843219707*T^2 - 29275032054404843421*T - 26865730219410171835171688215
$61$
\( T^{3} + 28094112684 T^{2} + \cdots + 79\!\cdots\!68 \)
T^3 + 28094112684*T^2 + 260099849703011852784*T + 795210038594453498901752501568
$67$
\( T^{3} - 10315312497 T^{2} + \cdots + 86\!\cdots\!09 \)
T^3 - 10315312497*T^2 - 197614004931503275653*T + 861067553092030569907557360109
$71$
\( T^{3} - 3703071657 T^{2} + \cdots - 11\!\cdots\!39 \)
T^3 - 3703071657*T^2 - 485272369394349418293*T - 1179227298331659495196775091339
$73$
\( T^{3} - 14017034988 T^{2} + \cdots + 49\!\cdots\!76 \)
T^3 - 14017034988*T^2 - 318597958619577706656*T + 495915704196928749273008158976
$79$
\( T^{3} + 8104583058 T^{2} + \cdots + 20\!\cdots\!20 \)
T^3 + 8104583058*T^2 - 1632974298852899046804*T + 20645948510244793680637464047320
$83$
\( T^{3} - 26009027946 T^{2} + \cdots + 54\!\cdots\!32 \)
T^3 - 26009027946*T^2 - 3239843609723626007028*T + 54879600347174986507701656933832
$89$
\( T^{3} + 17344395051 T^{2} + \cdots - 22\!\cdots\!15 \)
T^3 + 17344395051*T^2 - 6438992922491806973229*T - 225458340092933286327167852387415
$97$
\( T^{3} + 7984545237 T^{2} + \cdots - 28\!\cdots\!93 \)
T^3 + 7984545237*T^2 - 1589816464140179087085*T - 28843556190829298022643013545193
show more
show less