Defining parameters
| Level: | \( N \) | \(=\) | \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1092.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(448\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1092))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 236 | 12 | 224 |
| Cusp forms | 213 | 12 | 201 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(14\) | \(0\) | \(14\) | \(13\) | \(0\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(15\) | \(0\) | \(15\) | \(13\) | \(0\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(15\) | \(0\) | \(15\) | \(13\) | \(0\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(14\) | \(0\) | \(14\) | \(12\) | \(0\) | \(12\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(16\) | \(0\) | \(16\) | \(14\) | \(0\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(15\) | \(0\) | \(15\) | \(13\) | \(0\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(15\) | \(0\) | \(15\) | \(13\) | \(0\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(16\) | \(0\) | \(16\) | \(14\) | \(0\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(14\) | \(1\) | \(13\) | \(13\) | \(1\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(14\) | \(2\) | \(12\) | \(13\) | \(2\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(15\) | \(2\) | \(13\) | \(14\) | \(2\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(14\) | \(1\) | \(13\) | \(13\) | \(1\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(15\) | \(3\) | \(12\) | \(14\) | \(3\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(15\) | \(2\) | \(13\) | \(14\) | \(2\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(14\) | \(0\) | \(14\) | \(13\) | \(0\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(114\) | \(4\) | \(110\) | \(103\) | \(4\) | \(99\) | \(11\) | \(0\) | \(11\) | ||||||
| Minus space | \(-\) | \(122\) | \(8\) | \(114\) | \(110\) | \(8\) | \(102\) | \(12\) | \(0\) | \(12\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1092))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1092)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 2}\)