Properties

Label 10890.2.a.dr
Level $10890$
Weight $2$
Character orbit 10890.a
Self dual yes
Analytic conductor $86.957$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [10890,2,Mod(1,10890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("10890.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10890.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,-4,0,4,4,0,-4,0,0,4,4,0,4,-4,0,8,-4,0,0,8,0,4,4,0,4, -8,0,0,4,0,-4,-4,0,-16,8,0,-4,-8,0,16,0,0,8,0,0,16,4,0,4,16,0,0,4,0,-8, 0,0,8,0,0,4,-4,0,24,-4,0,-4,12,0,24,-16,0,8,0,0,40,-4,0,-8,4,0,4,16,0, 0,32,0,-4,8,0,0,-8,0,0,16,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.9570878012\)
Dimension: \(4\)
Coefficient field: 4.4.29952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 13 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q + 4 q^{2} + 4 q^{4} - 4 q^{5} + 4 q^{7} + 4 q^{8} - 4 q^{10} + 4 q^{13} + 4 q^{14} + 4 q^{16} - 4 q^{17} + 8 q^{19} - 4 q^{20} + 8 q^{23} + 4 q^{25} + 4 q^{26} + 4 q^{28} - 8 q^{29} + 4 q^{32} - 4 q^{34}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.