Properties

Label 1089.6.a.o
Level $1089$
Weight $6$
Character orbit 1089.a
Self dual yes
Analytic conductor $174.658$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(174.657979776\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{313}) \)
Defining polynomial: \(x^{2} - x - 78\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{313})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( 46 + \beta ) q^{4} + ( 24 - 10 \beta ) q^{5} + ( 10 - 2 \beta ) q^{7} + ( 78 + 15 \beta ) q^{8} +O(q^{10})\) \( q + \beta q^{2} + ( 46 + \beta ) q^{4} + ( 24 - 10 \beta ) q^{5} + ( 10 - 2 \beta ) q^{7} + ( 78 + 15 \beta ) q^{8} + ( -780 + 14 \beta ) q^{10} + ( -20 + 106 \beta ) q^{13} + ( -156 + 8 \beta ) q^{14} + ( -302 + 61 \beta ) q^{16} + ( -462 + 4 \beta ) q^{17} + ( 1468 - 4 \beta ) q^{19} + ( 324 - 446 \beta ) q^{20} + ( -2610 - 26 \beta ) q^{23} + ( 5251 - 380 \beta ) q^{25} + ( 8268 + 86 \beta ) q^{26} + ( 304 - 84 \beta ) q^{28} + ( -6234 - 132 \beta ) q^{29} + ( 4664 + 608 \beta ) q^{31} + ( 2262 - 721 \beta ) q^{32} + ( 312 - 458 \beta ) q^{34} + ( 1800 - 128 \beta ) q^{35} + ( 3158 - 320 \beta ) q^{37} + ( -312 + 1464 \beta ) q^{38} + ( -9828 - 570 \beta ) q^{40} + ( 12486 - 728 \beta ) q^{41} + ( -9560 - 1240 \beta ) q^{43} + ( -2028 - 2636 \beta ) q^{46} + ( 2514 + 778 \beta ) q^{47} + ( -16395 - 36 \beta ) q^{49} + ( -29640 + 4871 \beta ) q^{50} + ( 7348 + 4962 \beta ) q^{52} + ( -20088 - 594 \beta ) q^{53} + ( -1560 - 36 \beta ) q^{56} + ( -10296 - 6366 \beta ) q^{58} + ( -10944 + 3676 \beta ) q^{59} + ( 7072 - 2746 \beta ) q^{61} + ( 47424 + 5272 \beta ) q^{62} + ( -46574 - 411 \beta ) q^{64} + ( -83160 + 1684 \beta ) q^{65} + ( 32300 + 768 \beta ) q^{67} + ( -20940 - 274 \beta ) q^{68} + ( -9984 + 1672 \beta ) q^{70} + ( -32274 + 3102 \beta ) q^{71} + ( -26546 - 320 \beta ) q^{73} + ( -24960 + 2838 \beta ) q^{74} + ( 67216 + 1280 \beta ) q^{76} + ( -9626 + 2130 \beta ) q^{79} + ( -54828 + 3874 \beta ) q^{80} + ( -56784 + 11758 \beta ) q^{82} + ( -5388 - 3528 \beta ) q^{83} + ( -14208 + 4676 \beta ) q^{85} + ( -96720 - 10800 \beta ) q^{86} + ( 30582 - 3024 \beta ) q^{89} + ( -16736 + 888 \beta ) q^{91} + ( -122088 - 3832 \beta ) q^{92} + ( 60684 + 3292 \beta ) q^{94} + ( 38352 - 14736 \beta ) q^{95} + ( -92074 + 1092 \beta ) q^{97} + ( -2808 - 16431 \beta ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} + 93q^{4} + 38q^{5} + 18q^{7} + 171q^{8} + O(q^{10}) \) \( 2q + q^{2} + 93q^{4} + 38q^{5} + 18q^{7} + 171q^{8} - 1546q^{10} + 66q^{13} - 304q^{14} - 543q^{16} - 920q^{17} + 2932q^{19} + 202q^{20} - 5246q^{23} + 10122q^{25} + 16622q^{26} + 524q^{28} - 12600q^{29} + 9936q^{31} + 3803q^{32} + 166q^{34} + 3472q^{35} + 5996q^{37} + 840q^{38} - 20226q^{40} + 24244q^{41} - 20360q^{43} - 6692q^{46} + 5806q^{47} - 32826q^{49} - 54409q^{50} + 19658q^{52} - 40770q^{53} - 3156q^{56} - 26958q^{58} - 18212q^{59} + 11398q^{61} + 100120q^{62} - 93559q^{64} - 164636q^{65} + 65368q^{67} - 42154q^{68} - 18296q^{70} - 61446q^{71} - 53412q^{73} - 47082q^{74} + 135712q^{76} - 17122q^{79} - 105782q^{80} - 101810q^{82} - 14304q^{83} - 23740q^{85} - 204240q^{86} + 58140q^{89} - 32584q^{91} - 248008q^{92} + 124660q^{94} + 61968q^{95} - 183056q^{97} - 22047q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.34590
9.34590
−8.34590 0 37.6541 107.459 0 26.6918 −47.1885 0 −896.843
1.2 9.34590 0 55.3459 −69.4590 0 −8.69181 218.189 0 −649.157
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.6.a.o 2
3.b odd 2 1 363.6.a.g 2
11.b odd 2 1 99.6.a.e 2
33.d even 2 1 33.6.a.d 2
132.d odd 2 1 528.6.a.q 2
165.d even 2 1 825.6.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.6.a.d 2 33.d even 2 1
99.6.a.e 2 11.b odd 2 1
363.6.a.g 2 3.b odd 2 1
528.6.a.q 2 132.d odd 2 1
825.6.a.d 2 165.d even 2 1
1089.6.a.o 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2}^{2} - T_{2} - 78 \)
\( T_{5}^{2} - 38 T_{5} - 7464 \)
\( T_{7}^{2} - 18 T_{7} - 232 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -78 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( -7464 - 38 T + T^{2} \)
$7$ \( -232 - 18 T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( -878128 - 66 T + T^{2} \)
$17$ \( 210348 + 920 T + T^{2} \)
$19$ \( 2147904 - 2932 T + T^{2} \)
$23$ \( 6827232 + 5246 T + T^{2} \)
$29$ \( 38326572 + 12600 T + T^{2} \)
$31$ \( -4245184 - 9936 T + T^{2} \)
$37$ \( 975204 - 5996 T + T^{2} \)
$41$ \( 105471636 - 24244 T + T^{2} \)
$43$ \( -16684800 + 20360 T + T^{2} \)
$47$ \( -38936064 - 5806 T + T^{2} \)
$53$ \( 387938808 + 40770 T + T^{2} \)
$59$ \( -974471136 + 18212 T + T^{2} \)
$61$ \( -557566776 - 11398 T + T^{2} \)
$67$ \( 1022090128 - 65368 T + T^{2} \)
$71$ \( 190949616 + 61446 T + T^{2} \)
$73$ \( 705197636 + 53412 T + T^{2} \)
$79$ \( -281721704 + 17122 T + T^{2} \)
$83$ \( -922809744 + 14304 T + T^{2} \)
$89$ \( 129501828 - 58140 T + T^{2} \)
$97$ \( 8284064476 + 183056 T + T^{2} \)
show more
show less