Properties

Label 1089.6.a.d.1.1
Level $1089$
Weight $6$
Character 1089.1
Self dual yes
Analytic conductor $174.658$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,6,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.657979776\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -28.0000 q^{4} -46.0000 q^{5} -148.000 q^{7} +120.000 q^{8} +O(q^{10})\) \(q-2.00000 q^{2} -28.0000 q^{4} -46.0000 q^{5} -148.000 q^{7} +120.000 q^{8} +92.0000 q^{10} -574.000 q^{13} +296.000 q^{14} +656.000 q^{16} -722.000 q^{17} -2160.00 q^{19} +1288.00 q^{20} +2536.00 q^{23} -1009.00 q^{25} +1148.00 q^{26} +4144.00 q^{28} +4650.00 q^{29} +5032.00 q^{31} -5152.00 q^{32} +1444.00 q^{34} +6808.00 q^{35} +8118.00 q^{37} +4320.00 q^{38} -5520.00 q^{40} -5138.00 q^{41} -8304.00 q^{43} -5072.00 q^{46} -24728.0 q^{47} +5097.00 q^{49} +2018.00 q^{50} +16072.0 q^{52} +28746.0 q^{53} -17760.0 q^{56} -9300.00 q^{58} +5860.00 q^{59} +53658.0 q^{61} -10064.0 q^{62} -10688.0 q^{64} +26404.0 q^{65} +30908.0 q^{67} +20216.0 q^{68} -13616.0 q^{70} +69648.0 q^{71} +18446.0 q^{73} -16236.0 q^{74} +60480.0 q^{76} +25300.0 q^{79} -30176.0 q^{80} +10276.0 q^{82} -17556.0 q^{83} +33212.0 q^{85} +16608.0 q^{86} -132570. q^{89} +84952.0 q^{91} -71008.0 q^{92} +49456.0 q^{94} +99360.0 q^{95} +70658.0 q^{97} -10194.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 0 0
\(4\) −28.0000 −0.875000
\(5\) −46.0000 −0.822873 −0.411437 0.911438i \(-0.634973\pi\)
−0.411437 + 0.911438i \(0.634973\pi\)
\(6\) 0 0
\(7\) −148.000 −1.14161 −0.570803 0.821087i \(-0.693368\pi\)
−0.570803 + 0.821087i \(0.693368\pi\)
\(8\) 120.000 0.662913
\(9\) 0 0
\(10\) 92.0000 0.290930
\(11\) 0 0
\(12\) 0 0
\(13\) −574.000 −0.942006 −0.471003 0.882132i \(-0.656108\pi\)
−0.471003 + 0.882132i \(0.656108\pi\)
\(14\) 296.000 0.403619
\(15\) 0 0
\(16\) 656.000 0.640625
\(17\) −722.000 −0.605919 −0.302960 0.953003i \(-0.597975\pi\)
−0.302960 + 0.953003i \(0.597975\pi\)
\(18\) 0 0
\(19\) −2160.00 −1.37268 −0.686341 0.727280i \(-0.740784\pi\)
−0.686341 + 0.727280i \(0.740784\pi\)
\(20\) 1288.00 0.720014
\(21\) 0 0
\(22\) 0 0
\(23\) 2536.00 0.999608 0.499804 0.866139i \(-0.333405\pi\)
0.499804 + 0.866139i \(0.333405\pi\)
\(24\) 0 0
\(25\) −1009.00 −0.322880
\(26\) 1148.00 0.333049
\(27\) 0 0
\(28\) 4144.00 0.998906
\(29\) 4650.00 1.02673 0.513367 0.858169i \(-0.328398\pi\)
0.513367 + 0.858169i \(0.328398\pi\)
\(30\) 0 0
\(31\) 5032.00 0.940451 0.470226 0.882546i \(-0.344172\pi\)
0.470226 + 0.882546i \(0.344172\pi\)
\(32\) −5152.00 −0.889408
\(33\) 0 0
\(34\) 1444.00 0.214225
\(35\) 6808.00 0.939398
\(36\) 0 0
\(37\) 8118.00 0.974866 0.487433 0.873161i \(-0.337933\pi\)
0.487433 + 0.873161i \(0.337933\pi\)
\(38\) 4320.00 0.485316
\(39\) 0 0
\(40\) −5520.00 −0.545493
\(41\) −5138.00 −0.477347 −0.238674 0.971100i \(-0.576713\pi\)
−0.238674 + 0.971100i \(0.576713\pi\)
\(42\) 0 0
\(43\) −8304.00 −0.684883 −0.342441 0.939539i \(-0.611254\pi\)
−0.342441 + 0.939539i \(0.611254\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −5072.00 −0.353415
\(47\) −24728.0 −1.63284 −0.816421 0.577457i \(-0.804045\pi\)
−0.816421 + 0.577457i \(0.804045\pi\)
\(48\) 0 0
\(49\) 5097.00 0.303266
\(50\) 2018.00 0.114155
\(51\) 0 0
\(52\) 16072.0 0.824255
\(53\) 28746.0 1.40568 0.702842 0.711346i \(-0.251914\pi\)
0.702842 + 0.711346i \(0.251914\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −17760.0 −0.756786
\(57\) 0 0
\(58\) −9300.00 −0.363005
\(59\) 5860.00 0.219163 0.109582 0.993978i \(-0.465049\pi\)
0.109582 + 0.993978i \(0.465049\pi\)
\(60\) 0 0
\(61\) 53658.0 1.84633 0.923166 0.384401i \(-0.125592\pi\)
0.923166 + 0.384401i \(0.125592\pi\)
\(62\) −10064.0 −0.332500
\(63\) 0 0
\(64\) −10688.0 −0.326172
\(65\) 26404.0 0.775151
\(66\) 0 0
\(67\) 30908.0 0.841170 0.420585 0.907253i \(-0.361825\pi\)
0.420585 + 0.907253i \(0.361825\pi\)
\(68\) 20216.0 0.530180
\(69\) 0 0
\(70\) −13616.0 −0.332127
\(71\) 69648.0 1.63969 0.819847 0.572583i \(-0.194058\pi\)
0.819847 + 0.572583i \(0.194058\pi\)
\(72\) 0 0
\(73\) 18446.0 0.405131 0.202565 0.979269i \(-0.435072\pi\)
0.202565 + 0.979269i \(0.435072\pi\)
\(74\) −16236.0 −0.344667
\(75\) 0 0
\(76\) 60480.0 1.20110
\(77\) 0 0
\(78\) 0 0
\(79\) 25300.0 0.456092 0.228046 0.973650i \(-0.426766\pi\)
0.228046 + 0.973650i \(0.426766\pi\)
\(80\) −30176.0 −0.527153
\(81\) 0 0
\(82\) 10276.0 0.168768
\(83\) −17556.0 −0.279724 −0.139862 0.990171i \(-0.544666\pi\)
−0.139862 + 0.990171i \(0.544666\pi\)
\(84\) 0 0
\(85\) 33212.0 0.498595
\(86\) 16608.0 0.242143
\(87\) 0 0
\(88\) 0 0
\(89\) −132570. −1.77407 −0.887034 0.461704i \(-0.847238\pi\)
−0.887034 + 0.461704i \(0.847238\pi\)
\(90\) 0 0
\(91\) 84952.0 1.07540
\(92\) −71008.0 −0.874657
\(93\) 0 0
\(94\) 49456.0 0.577297
\(95\) 99360.0 1.12954
\(96\) 0 0
\(97\) 70658.0 0.762486 0.381243 0.924475i \(-0.375496\pi\)
0.381243 + 0.924475i \(0.375496\pi\)
\(98\) −10194.0 −0.107221
\(99\) 0 0
\(100\) 28252.0 0.282520
\(101\) −101998. −0.994920 −0.497460 0.867487i \(-0.665734\pi\)
−0.497460 + 0.867487i \(0.665734\pi\)
\(102\) 0 0
\(103\) 130904. 1.21579 0.607897 0.794016i \(-0.292013\pi\)
0.607897 + 0.794016i \(0.292013\pi\)
\(104\) −68880.0 −0.624467
\(105\) 0 0
\(106\) −57492.0 −0.496984
\(107\) −141612. −1.19575 −0.597875 0.801589i \(-0.703988\pi\)
−0.597875 + 0.801589i \(0.703988\pi\)
\(108\) 0 0
\(109\) 239810. 1.93331 0.966654 0.256086i \(-0.0824330\pi\)
0.966654 + 0.256086i \(0.0824330\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −97088.0 −0.731342
\(113\) 42726.0 0.314772 0.157386 0.987537i \(-0.449693\pi\)
0.157386 + 0.987537i \(0.449693\pi\)
\(114\) 0 0
\(115\) −116656. −0.822550
\(116\) −130200. −0.898392
\(117\) 0 0
\(118\) −11720.0 −0.0774859
\(119\) 106856. 0.691722
\(120\) 0 0
\(121\) 0 0
\(122\) −107316. −0.652777
\(123\) 0 0
\(124\) −140896. −0.822895
\(125\) 190164. 1.08856
\(126\) 0 0
\(127\) −51788.0 −0.284918 −0.142459 0.989801i \(-0.545501\pi\)
−0.142459 + 0.989801i \(0.545501\pi\)
\(128\) 186240. 1.00473
\(129\) 0 0
\(130\) −52808.0 −0.274057
\(131\) 53652.0 0.273154 0.136577 0.990629i \(-0.456390\pi\)
0.136577 + 0.990629i \(0.456390\pi\)
\(132\) 0 0
\(133\) 319680. 1.56706
\(134\) −61816.0 −0.297399
\(135\) 0 0
\(136\) −86640.0 −0.401672
\(137\) 228862. 1.04177 0.520886 0.853627i \(-0.325602\pi\)
0.520886 + 0.853627i \(0.325602\pi\)
\(138\) 0 0
\(139\) −374920. −1.64589 −0.822947 0.568119i \(-0.807671\pi\)
−0.822947 + 0.568119i \(0.807671\pi\)
\(140\) −190624. −0.821973
\(141\) 0 0
\(142\) −139296. −0.579719
\(143\) 0 0
\(144\) 0 0
\(145\) −213900. −0.844872
\(146\) −36892.0 −0.143235
\(147\) 0 0
\(148\) −227304. −0.853007
\(149\) −65830.0 −0.242917 −0.121459 0.992597i \(-0.538757\pi\)
−0.121459 + 0.992597i \(0.538757\pi\)
\(150\) 0 0
\(151\) −154052. −0.549826 −0.274913 0.961469i \(-0.588649\pi\)
−0.274913 + 0.961469i \(0.588649\pi\)
\(152\) −259200. −0.909968
\(153\) 0 0
\(154\) 0 0
\(155\) −231472. −0.773872
\(156\) 0 0
\(157\) 287678. 0.931446 0.465723 0.884931i \(-0.345794\pi\)
0.465723 + 0.884931i \(0.345794\pi\)
\(158\) −50600.0 −0.161253
\(159\) 0 0
\(160\) 236992. 0.731870
\(161\) −375328. −1.14116
\(162\) 0 0
\(163\) 105124. 0.309908 0.154954 0.987922i \(-0.450477\pi\)
0.154954 + 0.987922i \(0.450477\pi\)
\(164\) 143864. 0.417679
\(165\) 0 0
\(166\) 35112.0 0.0988975
\(167\) 150528. 0.417663 0.208832 0.977952i \(-0.433034\pi\)
0.208832 + 0.977952i \(0.433034\pi\)
\(168\) 0 0
\(169\) −41817.0 −0.112625
\(170\) −66424.0 −0.176280
\(171\) 0 0
\(172\) 232512. 0.599272
\(173\) −2166.00 −0.00550229 −0.00275114 0.999996i \(-0.500876\pi\)
−0.00275114 + 0.999996i \(0.500876\pi\)
\(174\) 0 0
\(175\) 149332. 0.368602
\(176\) 0 0
\(177\) 0 0
\(178\) 265140. 0.627228
\(179\) −672780. −1.56942 −0.784712 0.619860i \(-0.787189\pi\)
−0.784712 + 0.619860i \(0.787189\pi\)
\(180\) 0 0
\(181\) −526778. −1.19517 −0.597587 0.801804i \(-0.703874\pi\)
−0.597587 + 0.801804i \(0.703874\pi\)
\(182\) −169904. −0.380211
\(183\) 0 0
\(184\) 304320. 0.662653
\(185\) −373428. −0.802191
\(186\) 0 0
\(187\) 0 0
\(188\) 692384. 1.42874
\(189\) 0 0
\(190\) −198720. −0.399354
\(191\) 305608. 0.606152 0.303076 0.952966i \(-0.401986\pi\)
0.303076 + 0.952966i \(0.401986\pi\)
\(192\) 0 0
\(193\) −116434. −0.225002 −0.112501 0.993652i \(-0.535886\pi\)
−0.112501 + 0.993652i \(0.535886\pi\)
\(194\) −141316. −0.269580
\(195\) 0 0
\(196\) −142716. −0.265358
\(197\) −247742. −0.454814 −0.227407 0.973800i \(-0.573025\pi\)
−0.227407 + 0.973800i \(0.573025\pi\)
\(198\) 0 0
\(199\) −513360. −0.918945 −0.459472 0.888192i \(-0.651961\pi\)
−0.459472 + 0.888192i \(0.651961\pi\)
\(200\) −121080. −0.214041
\(201\) 0 0
\(202\) 203996. 0.351757
\(203\) −688200. −1.17213
\(204\) 0 0
\(205\) 236348. 0.392796
\(206\) −261808. −0.429848
\(207\) 0 0
\(208\) −376544. −0.603472
\(209\) 0 0
\(210\) 0 0
\(211\) 620688. 0.959770 0.479885 0.877331i \(-0.340678\pi\)
0.479885 + 0.877331i \(0.340678\pi\)
\(212\) −804888. −1.22997
\(213\) 0 0
\(214\) 283224. 0.422762
\(215\) 381984. 0.563571
\(216\) 0 0
\(217\) −744736. −1.07363
\(218\) −479620. −0.683528
\(219\) 0 0
\(220\) 0 0
\(221\) 414428. 0.570780
\(222\) 0 0
\(223\) −1.31802e6 −1.77484 −0.887419 0.460964i \(-0.847504\pi\)
−0.887419 + 0.460964i \(0.847504\pi\)
\(224\) 762496. 1.01535
\(225\) 0 0
\(226\) −85452.0 −0.111289
\(227\) −887412. −1.14304 −0.571519 0.820589i \(-0.693646\pi\)
−0.571519 + 0.820589i \(0.693646\pi\)
\(228\) 0 0
\(229\) −237450. −0.299215 −0.149608 0.988745i \(-0.547801\pi\)
−0.149608 + 0.988745i \(0.547801\pi\)
\(230\) 233312. 0.290815
\(231\) 0 0
\(232\) 558000. 0.680635
\(233\) −914706. −1.10380 −0.551902 0.833909i \(-0.686098\pi\)
−0.551902 + 0.833909i \(0.686098\pi\)
\(234\) 0 0
\(235\) 1.13749e6 1.34362
\(236\) −164080. −0.191768
\(237\) 0 0
\(238\) −213712. −0.244561
\(239\) 1.40892e6 1.59548 0.797740 0.603001i \(-0.206029\pi\)
0.797740 + 0.603001i \(0.206029\pi\)
\(240\) 0 0
\(241\) 826358. 0.916486 0.458243 0.888827i \(-0.348479\pi\)
0.458243 + 0.888827i \(0.348479\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.50242e6 −1.61554
\(245\) −234462. −0.249550
\(246\) 0 0
\(247\) 1.23984e6 1.29307
\(248\) 603840. 0.623437
\(249\) 0 0
\(250\) −380328. −0.384865
\(251\) 1.60387e6 1.60688 0.803442 0.595384i \(-0.203000\pi\)
0.803442 + 0.595384i \(0.203000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 103576. 0.100734
\(255\) 0 0
\(256\) −30464.0 −0.0290527
\(257\) −397618. −0.375520 −0.187760 0.982215i \(-0.560123\pi\)
−0.187760 + 0.982215i \(0.560123\pi\)
\(258\) 0 0
\(259\) −1.20146e6 −1.11291
\(260\) −739312. −0.678257
\(261\) 0 0
\(262\) −107304. −0.0965745
\(263\) 2.13166e6 1.90033 0.950166 0.311745i \(-0.100913\pi\)
0.950166 + 0.311745i \(0.100913\pi\)
\(264\) 0 0
\(265\) −1.32232e6 −1.15670
\(266\) −639360. −0.554040
\(267\) 0 0
\(268\) −865424. −0.736024
\(269\) 725810. 0.611564 0.305782 0.952101i \(-0.401082\pi\)
0.305782 + 0.952101i \(0.401082\pi\)
\(270\) 0 0
\(271\) 1.46787e6 1.21413 0.607063 0.794654i \(-0.292348\pi\)
0.607063 + 0.794654i \(0.292348\pi\)
\(272\) −473632. −0.388167
\(273\) 0 0
\(274\) −457724. −0.368322
\(275\) 0 0
\(276\) 0 0
\(277\) −1.52100e6 −1.19105 −0.595524 0.803338i \(-0.703056\pi\)
−0.595524 + 0.803338i \(0.703056\pi\)
\(278\) 749840. 0.581911
\(279\) 0 0
\(280\) 816960. 0.622738
\(281\) 464382. 0.350840 0.175420 0.984494i \(-0.443872\pi\)
0.175420 + 0.984494i \(0.443872\pi\)
\(282\) 0 0
\(283\) 415136. 0.308123 0.154062 0.988061i \(-0.450765\pi\)
0.154062 + 0.988061i \(0.450765\pi\)
\(284\) −1.95014e6 −1.43473
\(285\) 0 0
\(286\) 0 0
\(287\) 760424. 0.544943
\(288\) 0 0
\(289\) −898573. −0.632862
\(290\) 427800. 0.298707
\(291\) 0 0
\(292\) −516488. −0.354489
\(293\) −2.59321e6 −1.76469 −0.882344 0.470605i \(-0.844036\pi\)
−0.882344 + 0.470605i \(0.844036\pi\)
\(294\) 0 0
\(295\) −269560. −0.180343
\(296\) 974160. 0.646251
\(297\) 0 0
\(298\) 131660. 0.0858842
\(299\) −1.45566e6 −0.941636
\(300\) 0 0
\(301\) 1.22899e6 0.781867
\(302\) 308104. 0.194393
\(303\) 0 0
\(304\) −1.41696e6 −0.879374
\(305\) −2.46827e6 −1.51930
\(306\) 0 0
\(307\) 930832. 0.563671 0.281835 0.959463i \(-0.409057\pi\)
0.281835 + 0.959463i \(0.409057\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 462944. 0.273605
\(311\) −2.48527e6 −1.45704 −0.728522 0.685022i \(-0.759793\pi\)
−0.728522 + 0.685022i \(0.759793\pi\)
\(312\) 0 0
\(313\) 1.31719e6 0.759957 0.379978 0.924995i \(-0.375931\pi\)
0.379978 + 0.924995i \(0.375931\pi\)
\(314\) −575356. −0.329316
\(315\) 0 0
\(316\) −708400. −0.399081
\(317\) −2.25540e6 −1.26059 −0.630297 0.776354i \(-0.717067\pi\)
−0.630297 + 0.776354i \(0.717067\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 491648. 0.268398
\(321\) 0 0
\(322\) 750656. 0.403461
\(323\) 1.55952e6 0.831734
\(324\) 0 0
\(325\) 579166. 0.304155
\(326\) −210248. −0.109569
\(327\) 0 0
\(328\) −616560. −0.316440
\(329\) 3.65974e6 1.86406
\(330\) 0 0
\(331\) −3.17071e6 −1.59069 −0.795346 0.606155i \(-0.792711\pi\)
−0.795346 + 0.606155i \(0.792711\pi\)
\(332\) 491568. 0.244759
\(333\) 0 0
\(334\) −301056. −0.147666
\(335\) −1.42177e6 −0.692176
\(336\) 0 0
\(337\) −1.27630e6 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(338\) 83634.0 0.0398191
\(339\) 0 0
\(340\) −929936. −0.436270
\(341\) 0 0
\(342\) 0 0
\(343\) 1.73308e6 0.795396
\(344\) −996480. −0.454017
\(345\) 0 0
\(346\) 4332.00 0.00194535
\(347\) 3.69303e6 1.64649 0.823245 0.567687i \(-0.192162\pi\)
0.823245 + 0.567687i \(0.192162\pi\)
\(348\) 0 0
\(349\) −1.70919e6 −0.751150 −0.375575 0.926792i \(-0.622555\pi\)
−0.375575 + 0.926792i \(0.622555\pi\)
\(350\) −298664. −0.130321
\(351\) 0 0
\(352\) 0 0
\(353\) −4.36859e6 −1.86597 −0.932986 0.359914i \(-0.882806\pi\)
−0.932986 + 0.359914i \(0.882806\pi\)
\(354\) 0 0
\(355\) −3.20381e6 −1.34926
\(356\) 3.71196e6 1.55231
\(357\) 0 0
\(358\) 1.34556e6 0.554875
\(359\) −3.51284e6 −1.43854 −0.719271 0.694730i \(-0.755524\pi\)
−0.719271 + 0.694730i \(0.755524\pi\)
\(360\) 0 0
\(361\) 2.18950e6 0.884254
\(362\) 1.05356e6 0.422558
\(363\) 0 0
\(364\) −2.37866e6 −0.940975
\(365\) −848516. −0.333371
\(366\) 0 0
\(367\) −2.15259e6 −0.834251 −0.417125 0.908849i \(-0.636962\pi\)
−0.417125 + 0.908849i \(0.636962\pi\)
\(368\) 1.66362e6 0.640374
\(369\) 0 0
\(370\) 746856. 0.283617
\(371\) −4.25441e6 −1.60474
\(372\) 0 0
\(373\) 2.24247e6 0.834553 0.417276 0.908780i \(-0.362985\pi\)
0.417276 + 0.908780i \(0.362985\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.96736e6 −1.08243
\(377\) −2.66910e6 −0.967189
\(378\) 0 0
\(379\) −2.40986e6 −0.861775 −0.430887 0.902406i \(-0.641799\pi\)
−0.430887 + 0.902406i \(0.641799\pi\)
\(380\) −2.78208e6 −0.988350
\(381\) 0 0
\(382\) −611216. −0.214307
\(383\) 1.01066e6 0.352052 0.176026 0.984386i \(-0.443676\pi\)
0.176026 + 0.984386i \(0.443676\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 232868. 0.0795503
\(387\) 0 0
\(388\) −1.97842e6 −0.667175
\(389\) −1.27779e6 −0.428140 −0.214070 0.976818i \(-0.568672\pi\)
−0.214070 + 0.976818i \(0.568672\pi\)
\(390\) 0 0
\(391\) −1.83099e6 −0.605682
\(392\) 611640. 0.201039
\(393\) 0 0
\(394\) 495484. 0.160801
\(395\) −1.16380e6 −0.375306
\(396\) 0 0
\(397\) 5.45400e6 1.73676 0.868378 0.495903i \(-0.165163\pi\)
0.868378 + 0.495903i \(0.165163\pi\)
\(398\) 1.02672e6 0.324896
\(399\) 0 0
\(400\) −661904. −0.206845
\(401\) 1.48980e6 0.462665 0.231332 0.972875i \(-0.425692\pi\)
0.231332 + 0.972875i \(0.425692\pi\)
\(402\) 0 0
\(403\) −2.88837e6 −0.885911
\(404\) 2.85594e6 0.870555
\(405\) 0 0
\(406\) 1.37640e6 0.414409
\(407\) 0 0
\(408\) 0 0
\(409\) 4.39899e6 1.30030 0.650152 0.759804i \(-0.274705\pi\)
0.650152 + 0.759804i \(0.274705\pi\)
\(410\) −472696. −0.138874
\(411\) 0 0
\(412\) −3.66531e6 −1.06382
\(413\) −867280. −0.250198
\(414\) 0 0
\(415\) 807576. 0.230178
\(416\) 2.95725e6 0.837827
\(417\) 0 0
\(418\) 0 0
\(419\) 280420. 0.0780322 0.0390161 0.999239i \(-0.487578\pi\)
0.0390161 + 0.999239i \(0.487578\pi\)
\(420\) 0 0
\(421\) 817462. 0.224782 0.112391 0.993664i \(-0.464149\pi\)
0.112391 + 0.993664i \(0.464149\pi\)
\(422\) −1.24138e6 −0.339330
\(423\) 0 0
\(424\) 3.44952e6 0.931846
\(425\) 728498. 0.195639
\(426\) 0 0
\(427\) −7.94138e6 −2.10779
\(428\) 3.96514e6 1.04628
\(429\) 0 0
\(430\) −763968. −0.199253
\(431\) 1.88599e6 0.489043 0.244521 0.969644i \(-0.421369\pi\)
0.244521 + 0.969644i \(0.421369\pi\)
\(432\) 0 0
\(433\) 5.84067e6 1.49707 0.748537 0.663093i \(-0.230757\pi\)
0.748537 + 0.663093i \(0.230757\pi\)
\(434\) 1.48947e6 0.379584
\(435\) 0 0
\(436\) −6.71468e6 −1.69164
\(437\) −5.47776e6 −1.37214
\(438\) 0 0
\(439\) 509540. 0.126188 0.0630938 0.998008i \(-0.479903\pi\)
0.0630938 + 0.998008i \(0.479903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −828856. −0.201801
\(443\) −4.10268e6 −0.993250 −0.496625 0.867965i \(-0.665428\pi\)
−0.496625 + 0.867965i \(0.665428\pi\)
\(444\) 0 0
\(445\) 6.09822e6 1.45983
\(446\) 2.63603e6 0.627500
\(447\) 0 0
\(448\) 1.58182e6 0.372360
\(449\) −513410. −0.120185 −0.0600923 0.998193i \(-0.519139\pi\)
−0.0600923 + 0.998193i \(0.519139\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.19633e6 −0.275426
\(453\) 0 0
\(454\) 1.77482e6 0.404125
\(455\) −3.90779e6 −0.884918
\(456\) 0 0
\(457\) −1.22738e6 −0.274908 −0.137454 0.990508i \(-0.543892\pi\)
−0.137454 + 0.990508i \(0.543892\pi\)
\(458\) 474900. 0.105789
\(459\) 0 0
\(460\) 3.26637e6 0.719732
\(461\) −6.41000e6 −1.40477 −0.702386 0.711797i \(-0.747882\pi\)
−0.702386 + 0.711797i \(0.747882\pi\)
\(462\) 0 0
\(463\) 6.63030e6 1.43741 0.718705 0.695315i \(-0.244735\pi\)
0.718705 + 0.695315i \(0.244735\pi\)
\(464\) 3.05040e6 0.657751
\(465\) 0 0
\(466\) 1.82941e6 0.390253
\(467\) 4.14769e6 0.880064 0.440032 0.897982i \(-0.354967\pi\)
0.440032 + 0.897982i \(0.354967\pi\)
\(468\) 0 0
\(469\) −4.57438e6 −0.960286
\(470\) −2.27498e6 −0.475042
\(471\) 0 0
\(472\) 703200. 0.145286
\(473\) 0 0
\(474\) 0 0
\(475\) 2.17944e6 0.443211
\(476\) −2.99197e6 −0.605257
\(477\) 0 0
\(478\) −2.81784e6 −0.564088
\(479\) −5.05132e6 −1.00593 −0.502963 0.864308i \(-0.667757\pi\)
−0.502963 + 0.864308i \(0.667757\pi\)
\(480\) 0 0
\(481\) −4.65973e6 −0.918329
\(482\) −1.65272e6 −0.324027
\(483\) 0 0
\(484\) 0 0
\(485\) −3.25027e6 −0.627429
\(486\) 0 0
\(487\) 2.66221e6 0.508651 0.254325 0.967119i \(-0.418147\pi\)
0.254325 + 0.967119i \(0.418147\pi\)
\(488\) 6.43896e6 1.22396
\(489\) 0 0
\(490\) 468924. 0.0882292
\(491\) −5.54659e6 −1.03830 −0.519149 0.854684i \(-0.673751\pi\)
−0.519149 + 0.854684i \(0.673751\pi\)
\(492\) 0 0
\(493\) −3.35730e6 −0.622118
\(494\) −2.47968e6 −0.457171
\(495\) 0 0
\(496\) 3.30099e6 0.602477
\(497\) −1.03079e7 −1.87189
\(498\) 0 0
\(499\) −6820.00 −0.00122612 −0.000613060 1.00000i \(-0.500195\pi\)
−0.000613060 1.00000i \(0.500195\pi\)
\(500\) −5.32459e6 −0.952492
\(501\) 0 0
\(502\) −3.20774e6 −0.568119
\(503\) −451136. −0.0795037 −0.0397519 0.999210i \(-0.512657\pi\)
−0.0397519 + 0.999210i \(0.512657\pi\)
\(504\) 0 0
\(505\) 4.69191e6 0.818693
\(506\) 0 0
\(507\) 0 0
\(508\) 1.45006e6 0.249303
\(509\) −393390. −0.0673021 −0.0336511 0.999434i \(-0.510713\pi\)
−0.0336511 + 0.999434i \(0.510713\pi\)
\(510\) 0 0
\(511\) −2.73001e6 −0.462500
\(512\) −5.89875e6 −0.994455
\(513\) 0 0
\(514\) 795236. 0.132766
\(515\) −6.02158e6 −1.00044
\(516\) 0 0
\(517\) 0 0
\(518\) 2.40293e6 0.393474
\(519\) 0 0
\(520\) 3.16848e6 0.513857
\(521\) −3.28432e6 −0.530092 −0.265046 0.964236i \(-0.585387\pi\)
−0.265046 + 0.964236i \(0.585387\pi\)
\(522\) 0 0
\(523\) 1.68266e6 0.268993 0.134497 0.990914i \(-0.457058\pi\)
0.134497 + 0.990914i \(0.457058\pi\)
\(524\) −1.50226e6 −0.239010
\(525\) 0 0
\(526\) −4.26333e6 −0.671869
\(527\) −3.63310e6 −0.569838
\(528\) 0 0
\(529\) −5047.00 −0.000784141 0
\(530\) 2.64463e6 0.408955
\(531\) 0 0
\(532\) −8.95104e6 −1.37118
\(533\) 2.94921e6 0.449664
\(534\) 0 0
\(535\) 6.51415e6 0.983951
\(536\) 3.70896e6 0.557622
\(537\) 0 0
\(538\) −1.45162e6 −0.216221
\(539\) 0 0
\(540\) 0 0
\(541\) −9.48158e6 −1.39280 −0.696398 0.717656i \(-0.745215\pi\)
−0.696398 + 0.717656i \(0.745215\pi\)
\(542\) −2.93574e6 −0.429258
\(543\) 0 0
\(544\) 3.71974e6 0.538909
\(545\) −1.10313e7 −1.59087
\(546\) 0 0
\(547\) 6.09239e6 0.870602 0.435301 0.900285i \(-0.356642\pi\)
0.435301 + 0.900285i \(0.356642\pi\)
\(548\) −6.40814e6 −0.911550
\(549\) 0 0
\(550\) 0 0
\(551\) −1.00440e7 −1.40938
\(552\) 0 0
\(553\) −3.74440e6 −0.520678
\(554\) 3.04200e6 0.421099
\(555\) 0 0
\(556\) 1.04978e7 1.44016
\(557\) 8.49594e6 1.16031 0.580154 0.814507i \(-0.302992\pi\)
0.580154 + 0.814507i \(0.302992\pi\)
\(558\) 0 0
\(559\) 4.76650e6 0.645163
\(560\) 4.46605e6 0.601802
\(561\) 0 0
\(562\) −928764. −0.124041
\(563\) −7.02216e6 −0.933683 −0.466842 0.884341i \(-0.654608\pi\)
−0.466842 + 0.884341i \(0.654608\pi\)
\(564\) 0 0
\(565\) −1.96540e6 −0.259017
\(566\) −830272. −0.108938
\(567\) 0 0
\(568\) 8.35776e6 1.08697
\(569\) 9.41847e6 1.21955 0.609775 0.792574i \(-0.291260\pi\)
0.609775 + 0.792574i \(0.291260\pi\)
\(570\) 0 0
\(571\) −7.29699e6 −0.936599 −0.468299 0.883570i \(-0.655133\pi\)
−0.468299 + 0.883570i \(0.655133\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.52085e6 −0.192666
\(575\) −2.55882e6 −0.322753
\(576\) 0 0
\(577\) −3.29590e6 −0.412131 −0.206065 0.978538i \(-0.566066\pi\)
−0.206065 + 0.978538i \(0.566066\pi\)
\(578\) 1.79715e6 0.223750
\(579\) 0 0
\(580\) 5.98920e6 0.739263
\(581\) 2.59829e6 0.319335
\(582\) 0 0
\(583\) 0 0
\(584\) 2.21352e6 0.268566
\(585\) 0 0
\(586\) 5.18641e6 0.623911
\(587\) −4.39827e6 −0.526849 −0.263425 0.964680i \(-0.584852\pi\)
−0.263425 + 0.964680i \(0.584852\pi\)
\(588\) 0 0
\(589\) −1.08691e7 −1.29094
\(590\) 539120. 0.0637610
\(591\) 0 0
\(592\) 5.32541e6 0.624523
\(593\) 9.21781e6 1.07644 0.538222 0.842803i \(-0.319096\pi\)
0.538222 + 0.842803i \(0.319096\pi\)
\(594\) 0 0
\(595\) −4.91538e6 −0.569199
\(596\) 1.84324e6 0.212553
\(597\) 0 0
\(598\) 2.91133e6 0.332919
\(599\) −3.77140e6 −0.429473 −0.214736 0.976672i \(-0.568889\pi\)
−0.214736 + 0.976672i \(0.568889\pi\)
\(600\) 0 0
\(601\) −4.19724e6 −0.473999 −0.237000 0.971510i \(-0.576164\pi\)
−0.237000 + 0.971510i \(0.576164\pi\)
\(602\) −2.45798e6 −0.276432
\(603\) 0 0
\(604\) 4.31346e6 0.481097
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00133e6 0.110308 0.0551539 0.998478i \(-0.482435\pi\)
0.0551539 + 0.998478i \(0.482435\pi\)
\(608\) 1.11283e7 1.22087
\(609\) 0 0
\(610\) 4.93654e6 0.537153
\(611\) 1.41939e7 1.53815
\(612\) 0 0
\(613\) 7.38239e6 0.793498 0.396749 0.917927i \(-0.370138\pi\)
0.396749 + 0.917927i \(0.370138\pi\)
\(614\) −1.86166e6 −0.199288
\(615\) 0 0
\(616\) 0 0
\(617\) 1.54025e7 1.62884 0.814418 0.580279i \(-0.197056\pi\)
0.814418 + 0.580279i \(0.197056\pi\)
\(618\) 0 0
\(619\) −7.12402e6 −0.747306 −0.373653 0.927569i \(-0.621895\pi\)
−0.373653 + 0.927569i \(0.621895\pi\)
\(620\) 6.48122e6 0.677138
\(621\) 0 0
\(622\) 4.97054e6 0.515143
\(623\) 1.96204e7 2.02529
\(624\) 0 0
\(625\) −5.59442e6 −0.572869
\(626\) −2.63439e6 −0.268685
\(627\) 0 0
\(628\) −8.05498e6 −0.815015
\(629\) −5.86120e6 −0.590690
\(630\) 0 0
\(631\) 1.16696e7 1.16677 0.583383 0.812197i \(-0.301729\pi\)
0.583383 + 0.812197i \(0.301729\pi\)
\(632\) 3.03600e6 0.302349
\(633\) 0 0
\(634\) 4.51080e6 0.445687
\(635\) 2.38225e6 0.234451
\(636\) 0 0
\(637\) −2.92568e6 −0.285679
\(638\) 0 0
\(639\) 0 0
\(640\) −8.56704e6 −0.826763
\(641\) 1.10271e7 1.06003 0.530014 0.847989i \(-0.322187\pi\)
0.530014 + 0.847989i \(0.322187\pi\)
\(642\) 0 0
\(643\) −9.56024e6 −0.911887 −0.455944 0.890009i \(-0.650698\pi\)
−0.455944 + 0.890009i \(0.650698\pi\)
\(644\) 1.05092e7 0.998514
\(645\) 0 0
\(646\) −3.11904e6 −0.294063
\(647\) 1.09942e7 1.03253 0.516263 0.856430i \(-0.327323\pi\)
0.516263 + 0.856430i \(0.327323\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −1.15833e6 −0.107535
\(651\) 0 0
\(652\) −2.94347e6 −0.271170
\(653\) 295346. 0.0271049 0.0135525 0.999908i \(-0.495686\pi\)
0.0135525 + 0.999908i \(0.495686\pi\)
\(654\) 0 0
\(655\) −2.46799e6 −0.224771
\(656\) −3.37053e6 −0.305801
\(657\) 0 0
\(658\) −7.31949e6 −0.659046
\(659\) −1.65613e7 −1.48553 −0.742766 0.669551i \(-0.766486\pi\)
−0.742766 + 0.669551i \(0.766486\pi\)
\(660\) 0 0
\(661\) 1.97042e6 0.175411 0.0877053 0.996146i \(-0.472047\pi\)
0.0877053 + 0.996146i \(0.472047\pi\)
\(662\) 6.34142e6 0.562395
\(663\) 0 0
\(664\) −2.10672e6 −0.185433
\(665\) −1.47053e7 −1.28949
\(666\) 0 0
\(667\) 1.17924e7 1.02633
\(668\) −4.21478e6 −0.365455
\(669\) 0 0
\(670\) 2.84354e6 0.244721
\(671\) 0 0
\(672\) 0 0
\(673\) 1.63733e6 0.139347 0.0696735 0.997570i \(-0.477804\pi\)
0.0696735 + 0.997570i \(0.477804\pi\)
\(674\) 2.55260e6 0.216437
\(675\) 0 0
\(676\) 1.17088e6 0.0985472
\(677\) −6.35878e6 −0.533215 −0.266607 0.963805i \(-0.585903\pi\)
−0.266607 + 0.963805i \(0.585903\pi\)
\(678\) 0 0
\(679\) −1.04574e7 −0.870460
\(680\) 3.98544e6 0.330525
\(681\) 0 0
\(682\) 0 0
\(683\) −1.11033e7 −0.910751 −0.455376 0.890299i \(-0.650495\pi\)
−0.455376 + 0.890299i \(0.650495\pi\)
\(684\) 0 0
\(685\) −1.05277e7 −0.857245
\(686\) −3.46616e6 −0.281215
\(687\) 0 0
\(688\) −5.44742e6 −0.438753
\(689\) −1.65002e7 −1.32416
\(690\) 0 0
\(691\) 1.70189e7 1.35592 0.677962 0.735097i \(-0.262864\pi\)
0.677962 + 0.735097i \(0.262864\pi\)
\(692\) 60648.0 0.00481450
\(693\) 0 0
\(694\) −7.38606e6 −0.582122
\(695\) 1.72463e7 1.35436
\(696\) 0 0
\(697\) 3.70964e6 0.289234
\(698\) 3.41838e6 0.265572
\(699\) 0 0
\(700\) −4.18130e6 −0.322527
\(701\) 1.58021e7 1.21456 0.607280 0.794488i \(-0.292260\pi\)
0.607280 + 0.794488i \(0.292260\pi\)
\(702\) 0 0
\(703\) −1.75349e7 −1.33818
\(704\) 0 0
\(705\) 0 0
\(706\) 8.73719e6 0.659720
\(707\) 1.50957e7 1.13581
\(708\) 0 0
\(709\) 1.24834e7 0.932643 0.466322 0.884615i \(-0.345579\pi\)
0.466322 + 0.884615i \(0.345579\pi\)
\(710\) 6.40762e6 0.477035
\(711\) 0 0
\(712\) −1.59084e7 −1.17605
\(713\) 1.27612e7 0.940083
\(714\) 0 0
\(715\) 0 0
\(716\) 1.88378e7 1.37325
\(717\) 0 0
\(718\) 7.02568e6 0.508601
\(719\) −2.00724e6 −0.144803 −0.0724014 0.997376i \(-0.523066\pi\)
−0.0724014 + 0.997376i \(0.523066\pi\)
\(720\) 0 0
\(721\) −1.93738e7 −1.38796
\(722\) −4.37900e6 −0.312631
\(723\) 0 0
\(724\) 1.47498e7 1.04578
\(725\) −4.69185e6 −0.331512
\(726\) 0 0
\(727\) 6.97301e6 0.489310 0.244655 0.969610i \(-0.421325\pi\)
0.244655 + 0.969610i \(0.421325\pi\)
\(728\) 1.01942e7 0.712896
\(729\) 0 0
\(730\) 1.69703e6 0.117864
\(731\) 5.99549e6 0.414984
\(732\) 0 0
\(733\) 2.34965e7 1.61527 0.807633 0.589685i \(-0.200748\pi\)
0.807633 + 0.589685i \(0.200748\pi\)
\(734\) 4.30518e6 0.294952
\(735\) 0 0
\(736\) −1.30655e7 −0.889059
\(737\) 0 0
\(738\) 0 0
\(739\) 1.39901e7 0.942346 0.471173 0.882041i \(-0.343831\pi\)
0.471173 + 0.882041i \(0.343831\pi\)
\(740\) 1.04560e7 0.701917
\(741\) 0 0
\(742\) 8.50882e6 0.567361
\(743\) 2.42745e7 1.61316 0.806582 0.591123i \(-0.201315\pi\)
0.806582 + 0.591123i \(0.201315\pi\)
\(744\) 0 0
\(745\) 3.02818e6 0.199890
\(746\) −4.48493e6 −0.295059
\(747\) 0 0
\(748\) 0 0
\(749\) 2.09586e7 1.36508
\(750\) 0 0
\(751\) 1.53660e7 0.994170 0.497085 0.867702i \(-0.334404\pi\)
0.497085 + 0.867702i \(0.334404\pi\)
\(752\) −1.62216e7 −1.04604
\(753\) 0 0
\(754\) 5.33820e6 0.341953
\(755\) 7.08639e6 0.452437
\(756\) 0 0
\(757\) 2.07605e7 1.31674 0.658368 0.752697i \(-0.271247\pi\)
0.658368 + 0.752697i \(0.271247\pi\)
\(758\) 4.81972e6 0.304683
\(759\) 0 0
\(760\) 1.19232e7 0.748788
\(761\) 5.83810e6 0.365435 0.182717 0.983165i \(-0.441511\pi\)
0.182717 + 0.983165i \(0.441511\pi\)
\(762\) 0 0
\(763\) −3.54919e7 −2.20708
\(764\) −8.55702e6 −0.530383
\(765\) 0 0
\(766\) −2.02131e6 −0.124469
\(767\) −3.36364e6 −0.206453
\(768\) 0 0
\(769\) 1.39197e7 0.848818 0.424409 0.905471i \(-0.360482\pi\)
0.424409 + 0.905471i \(0.360482\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.26015e6 0.196877
\(773\) 4.17883e6 0.251539 0.125770 0.992059i \(-0.459860\pi\)
0.125770 + 0.992059i \(0.459860\pi\)
\(774\) 0 0
\(775\) −5.07729e6 −0.303653
\(776\) 8.47896e6 0.505462
\(777\) 0 0
\(778\) 2.55558e6 0.151370
\(779\) 1.10981e7 0.655246
\(780\) 0 0
\(781\) 0 0
\(782\) 3.66198e6 0.214141
\(783\) 0 0
\(784\) 3.34363e6 0.194280
\(785\) −1.32332e7 −0.766461
\(786\) 0 0
\(787\) −9.66705e6 −0.556361 −0.278181 0.960529i \(-0.589731\pi\)
−0.278181 + 0.960529i \(0.589731\pi\)
\(788\) 6.93678e6 0.397962
\(789\) 0 0
\(790\) 2.32760e6 0.132691
\(791\) −6.32345e6 −0.359346
\(792\) 0 0
\(793\) −3.07997e7 −1.73926
\(794\) −1.09080e7 −0.614036
\(795\) 0 0
\(796\) 1.43741e7 0.804077
\(797\) 5.79884e6 0.323367 0.161683 0.986843i \(-0.448308\pi\)
0.161683 + 0.986843i \(0.448308\pi\)
\(798\) 0 0
\(799\) 1.78536e7 0.989371
\(800\) 5.19837e6 0.287172
\(801\) 0 0
\(802\) −2.97960e6 −0.163577
\(803\) 0 0
\(804\) 0 0
\(805\) 1.72651e7 0.939029
\(806\) 5.77674e6 0.313217
\(807\) 0 0
\(808\) −1.22398e7 −0.659545
\(809\) −1.92543e7 −1.03433 −0.517163 0.855887i \(-0.673012\pi\)
−0.517163 + 0.855887i \(0.673012\pi\)
\(810\) 0 0
\(811\) 1.31938e7 0.704396 0.352198 0.935926i \(-0.385434\pi\)
0.352198 + 0.935926i \(0.385434\pi\)
\(812\) 1.92696e7 1.02561
\(813\) 0 0
\(814\) 0 0
\(815\) −4.83570e6 −0.255015
\(816\) 0 0
\(817\) 1.79366e7 0.940126
\(818\) −8.79798e6 −0.459727
\(819\) 0 0
\(820\) −6.61774e6 −0.343697
\(821\) 1.33779e7 0.692677 0.346338 0.938110i \(-0.387425\pi\)
0.346338 + 0.938110i \(0.387425\pi\)
\(822\) 0 0
\(823\) −1.88613e7 −0.970673 −0.485336 0.874327i \(-0.661303\pi\)
−0.485336 + 0.874327i \(0.661303\pi\)
\(824\) 1.57085e7 0.805965
\(825\) 0 0
\(826\) 1.73456e6 0.0884584
\(827\) 1.62680e7 0.827123 0.413561 0.910476i \(-0.364285\pi\)
0.413561 + 0.910476i \(0.364285\pi\)
\(828\) 0 0
\(829\) −2.18098e7 −1.10221 −0.551107 0.834435i \(-0.685794\pi\)
−0.551107 + 0.834435i \(0.685794\pi\)
\(830\) −1.61515e6 −0.0813801
\(831\) 0 0
\(832\) 6.13491e6 0.307256
\(833\) −3.68003e6 −0.183755
\(834\) 0 0
\(835\) −6.92429e6 −0.343684
\(836\) 0 0
\(837\) 0 0
\(838\) −560840. −0.0275886
\(839\) −1.17771e7 −0.577607 −0.288804 0.957388i \(-0.593257\pi\)
−0.288804 + 0.957388i \(0.593257\pi\)
\(840\) 0 0
\(841\) 1.11135e6 0.0541828
\(842\) −1.63492e6 −0.0794726
\(843\) 0 0
\(844\) −1.73793e7 −0.839799
\(845\) 1.92358e6 0.0926764
\(846\) 0 0
\(847\) 0 0
\(848\) 1.88574e7 0.900516
\(849\) 0 0
\(850\) −1.45700e6 −0.0691689
\(851\) 2.05872e7 0.974483
\(852\) 0 0
\(853\) 1.43993e7 0.677591 0.338796 0.940860i \(-0.389980\pi\)
0.338796 + 0.940860i \(0.389980\pi\)
\(854\) 1.58828e7 0.745215
\(855\) 0 0
\(856\) −1.69934e7 −0.792678
\(857\) 6.27604e6 0.291900 0.145950 0.989292i \(-0.453376\pi\)
0.145950 + 0.989292i \(0.453376\pi\)
\(858\) 0 0
\(859\) −4.71738e6 −0.218131 −0.109066 0.994035i \(-0.534786\pi\)
−0.109066 + 0.994035i \(0.534786\pi\)
\(860\) −1.06956e7 −0.493125
\(861\) 0 0
\(862\) −3.77198e6 −0.172903
\(863\) −7.53926e6 −0.344589 −0.172295 0.985045i \(-0.555118\pi\)
−0.172295 + 0.985045i \(0.555118\pi\)
\(864\) 0 0
\(865\) 99636.0 0.00452768
\(866\) −1.16813e7 −0.529296
\(867\) 0 0
\(868\) 2.08526e7 0.939423
\(869\) 0 0
\(870\) 0 0
\(871\) −1.77412e7 −0.792387
\(872\) 2.87772e7 1.28161
\(873\) 0 0
\(874\) 1.09555e7 0.485126
\(875\) −2.81443e7 −1.24271
\(876\) 0 0
\(877\) 1.04331e7 0.458051 0.229025 0.973420i \(-0.426446\pi\)
0.229025 + 0.973420i \(0.426446\pi\)
\(878\) −1.01908e6 −0.0446141
\(879\) 0 0
\(880\) 0 0
\(881\) −3.91076e7 −1.69755 −0.848774 0.528756i \(-0.822658\pi\)
−0.848774 + 0.528756i \(0.822658\pi\)
\(882\) 0 0
\(883\) 1.29282e7 0.558003 0.279001 0.960291i \(-0.409997\pi\)
0.279001 + 0.960291i \(0.409997\pi\)
\(884\) −1.16040e7 −0.499432
\(885\) 0 0
\(886\) 8.20537e6 0.351167
\(887\) 3.36466e7 1.43592 0.717962 0.696082i \(-0.245075\pi\)
0.717962 + 0.696082i \(0.245075\pi\)
\(888\) 0 0
\(889\) 7.66462e6 0.325264
\(890\) −1.21964e7 −0.516129
\(891\) 0 0
\(892\) 3.69044e7 1.55298
\(893\) 5.34125e7 2.24137
\(894\) 0 0
\(895\) 3.09479e7 1.29144
\(896\) −2.75635e7 −1.14700
\(897\) 0 0
\(898\) 1.02682e6 0.0424916
\(899\) 2.33988e7 0.965594
\(900\) 0 0
\(901\) −2.07546e7 −0.851731
\(902\) 0 0
\(903\) 0 0
\(904\) 5.12712e6 0.208666
\(905\) 2.42318e7 0.983477
\(906\) 0 0
\(907\) −4.19629e7 −1.69374 −0.846872 0.531797i \(-0.821517\pi\)
−0.846872 + 0.531797i \(0.821517\pi\)
\(908\) 2.48475e7 1.00016
\(909\) 0 0
\(910\) 7.81558e6 0.312866
\(911\) 1.92521e6 0.0768567 0.0384283 0.999261i \(-0.487765\pi\)
0.0384283 + 0.999261i \(0.487765\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.45476e6 0.0971948
\(915\) 0 0
\(916\) 6.64860e6 0.261813
\(917\) −7.94050e6 −0.311835
\(918\) 0 0
\(919\) 1.72481e7 0.673678 0.336839 0.941562i \(-0.390642\pi\)
0.336839 + 0.941562i \(0.390642\pi\)
\(920\) −1.39987e7 −0.545279
\(921\) 0 0
\(922\) 1.28200e7 0.496662
\(923\) −3.99780e7 −1.54460
\(924\) 0 0
\(925\) −8.19106e6 −0.314765
\(926\) −1.32606e7 −0.508202
\(927\) 0 0
\(928\) −2.39568e7 −0.913185
\(929\) −2.51145e6 −0.0954740 −0.0477370 0.998860i \(-0.515201\pi\)
−0.0477370 + 0.998860i \(0.515201\pi\)
\(930\) 0 0
\(931\) −1.10095e7 −0.416288
\(932\) 2.56118e7 0.965828
\(933\) 0 0
\(934\) −8.29538e6 −0.311150
\(935\) 0 0
\(936\) 0 0
\(937\) −1.79853e7 −0.669221 −0.334611 0.942357i \(-0.608605\pi\)
−0.334611 + 0.942357i \(0.608605\pi\)
\(938\) 9.14877e6 0.339512
\(939\) 0 0
\(940\) −3.18497e7 −1.17567
\(941\) −3.22586e7 −1.18760 −0.593802 0.804611i \(-0.702374\pi\)
−0.593802 + 0.804611i \(0.702374\pi\)
\(942\) 0 0
\(943\) −1.30300e7 −0.477160
\(944\) 3.84416e6 0.140401
\(945\) 0 0
\(946\) 0 0
\(947\) −4.41659e7 −1.60034 −0.800169 0.599774i \(-0.795257\pi\)
−0.800169 + 0.599774i \(0.795257\pi\)
\(948\) 0 0
\(949\) −1.05880e7 −0.381635
\(950\) −4.35888e6 −0.156699
\(951\) 0 0
\(952\) 1.28227e7 0.458551
\(953\) 1.87488e7 0.668714 0.334357 0.942446i \(-0.391481\pi\)
0.334357 + 0.942446i \(0.391481\pi\)
\(954\) 0 0
\(955\) −1.40580e7 −0.498786
\(956\) −3.94498e7 −1.39605
\(957\) 0 0
\(958\) 1.01026e7 0.355649
\(959\) −3.38716e7 −1.18929
\(960\) 0 0
\(961\) −3.30813e6 −0.115551
\(962\) 9.31946e6 0.324678
\(963\) 0 0
\(964\) −2.31380e7 −0.801925
\(965\) 5.35596e6 0.185148
\(966\) 0 0
\(967\) −1.08673e7 −0.373730 −0.186865 0.982386i \(-0.559833\pi\)
−0.186865 + 0.982386i \(0.559833\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 6.50054e6 0.221830
\(971\) 4.79123e7 1.63079 0.815397 0.578902i \(-0.196519\pi\)
0.815397 + 0.578902i \(0.196519\pi\)
\(972\) 0 0
\(973\) 5.54882e7 1.87896
\(974\) −5.32442e6 −0.179835
\(975\) 0 0
\(976\) 3.51996e7 1.18281
\(977\) −4.01385e7 −1.34532 −0.672658 0.739954i \(-0.734847\pi\)
−0.672658 + 0.739954i \(0.734847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.56494e6 0.218356
\(981\) 0 0
\(982\) 1.10932e7 0.367094
\(983\) −3.22682e6 −0.106510 −0.0532551 0.998581i \(-0.516960\pi\)
−0.0532551 + 0.998581i \(0.516960\pi\)
\(984\) 0 0
\(985\) 1.13961e7 0.374254
\(986\) 6.71460e6 0.219952
\(987\) 0 0
\(988\) −3.47155e7 −1.13144
\(989\) −2.10589e7 −0.684614
\(990\) 0 0
\(991\) −5.95345e6 −0.192568 −0.0962841 0.995354i \(-0.530696\pi\)
−0.0962841 + 0.995354i \(0.530696\pi\)
\(992\) −2.59249e7 −0.836445
\(993\) 0 0
\(994\) 2.06158e7 0.661812
\(995\) 2.36146e7 0.756175
\(996\) 0 0
\(997\) −3.20783e7 −1.02205 −0.511027 0.859565i \(-0.670735\pi\)
−0.511027 + 0.859565i \(0.670735\pi\)
\(998\) 13640.0 0.000433499 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.6.a.d.1.1 1
3.2 odd 2 363.6.a.c.1.1 1
11.10 odd 2 99.6.a.b.1.1 1
33.32 even 2 33.6.a.a.1.1 1
132.131 odd 2 528.6.a.i.1.1 1
165.164 even 2 825.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.6.a.a.1.1 1 33.32 even 2
99.6.a.b.1.1 1 11.10 odd 2
363.6.a.c.1.1 1 3.2 odd 2
528.6.a.i.1.1 1 132.131 odd 2
825.6.a.b.1.1 1 165.164 even 2
1089.6.a.d.1.1 1 1.1 even 1 trivial