Properties

Label 1089.6.a.d
Level $1089$
Weight $6$
Character orbit 1089.a
Self dual yes
Analytic conductor $174.658$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(174.657979776\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{2} - 28q^{4} - 46q^{5} - 148q^{7} + 120q^{8} + O(q^{10}) \) \( q - 2q^{2} - 28q^{4} - 46q^{5} - 148q^{7} + 120q^{8} + 92q^{10} - 574q^{13} + 296q^{14} + 656q^{16} - 722q^{17} - 2160q^{19} + 1288q^{20} + 2536q^{23} - 1009q^{25} + 1148q^{26} + 4144q^{28} + 4650q^{29} + 5032q^{31} - 5152q^{32} + 1444q^{34} + 6808q^{35} + 8118q^{37} + 4320q^{38} - 5520q^{40} - 5138q^{41} - 8304q^{43} - 5072q^{46} - 24728q^{47} + 5097q^{49} + 2018q^{50} + 16072q^{52} + 28746q^{53} - 17760q^{56} - 9300q^{58} + 5860q^{59} + 53658q^{61} - 10064q^{62} - 10688q^{64} + 26404q^{65} + 30908q^{67} + 20216q^{68} - 13616q^{70} + 69648q^{71} + 18446q^{73} - 16236q^{74} + 60480q^{76} + 25300q^{79} - 30176q^{80} + 10276q^{82} - 17556q^{83} + 33212q^{85} + 16608q^{86} - 132570q^{89} + 84952q^{91} - 71008q^{92} + 49456q^{94} + 99360q^{95} + 70658q^{97} - 10194q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 −28.0000 −46.0000 0 −148.000 120.000 0 92.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.6.a.d 1
3.b odd 2 1 363.6.a.c 1
11.b odd 2 1 99.6.a.b 1
33.d even 2 1 33.6.a.a 1
132.d odd 2 1 528.6.a.i 1
165.d even 2 1 825.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.6.a.a 1 33.d even 2 1
99.6.a.b 1 11.b odd 2 1
363.6.a.c 1 3.b odd 2 1
528.6.a.i 1 132.d odd 2 1
825.6.a.b 1 165.d even 2 1
1089.6.a.d 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2} + 2 \)
\( T_{5} + 46 \)
\( T_{7} + 148 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 + T \)
$3$ \( T \)
$5$ \( 46 + T \)
$7$ \( 148 + T \)
$11$ \( T \)
$13$ \( 574 + T \)
$17$ \( 722 + T \)
$19$ \( 2160 + T \)
$23$ \( -2536 + T \)
$29$ \( -4650 + T \)
$31$ \( -5032 + T \)
$37$ \( -8118 + T \)
$41$ \( 5138 + T \)
$43$ \( 8304 + T \)
$47$ \( 24728 + T \)
$53$ \( -28746 + T \)
$59$ \( -5860 + T \)
$61$ \( -53658 + T \)
$67$ \( -30908 + T \)
$71$ \( -69648 + T \)
$73$ \( -18446 + T \)
$79$ \( -25300 + T \)
$83$ \( 17556 + T \)
$89$ \( 132570 + T \)
$97$ \( -70658 + T \)
show more
show less