Properties

Label 1089.4.a.g
Level $1089$
Weight $4$
Character orbit 1089.a
Self dual yes
Analytic conductor $64.253$
Analytic rank $1$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(64.2530799963\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

\(f(q)\) \(=\) \( q - 8 q^{4} - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{4} - 20 q^{7} + 70 q^{13} + 64 q^{16} - 56 q^{19} - 125 q^{25} + 160 q^{28} + 308 q^{31} + 110 q^{37} + 520 q^{43} + 57 q^{49} - 560 q^{52} - 182 q^{61} - 512 q^{64} - 880 q^{67} - 1190 q^{73} + 448 q^{76} - 884 q^{79} - 1400 q^{91} - 1330 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −8.00000 0 0 −20.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(11\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.4.a.g 1
3.b odd 2 1 CM 1089.4.a.g 1
11.b odd 2 1 9.4.a.a 1
33.d even 2 1 9.4.a.a 1
44.c even 2 1 144.4.a.d 1
55.d odd 2 1 225.4.a.d 1
55.e even 4 2 225.4.b.g 2
77.b even 2 1 441.4.a.f 1
77.h odd 6 2 441.4.e.i 2
77.i even 6 2 441.4.e.j 2
88.b odd 2 1 576.4.a.m 1
88.g even 2 1 576.4.a.l 1
99.g even 6 2 81.4.c.b 2
99.h odd 6 2 81.4.c.b 2
132.d odd 2 1 144.4.a.d 1
143.d odd 2 1 1521.4.a.g 1
165.d even 2 1 225.4.a.d 1
165.l odd 4 2 225.4.b.g 2
231.h odd 2 1 441.4.a.f 1
231.k odd 6 2 441.4.e.j 2
231.l even 6 2 441.4.e.i 2
264.m even 2 1 576.4.a.m 1
264.p odd 2 1 576.4.a.l 1
429.e even 2 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 11.b odd 2 1
9.4.a.a 1 33.d even 2 1
81.4.c.b 2 99.g even 6 2
81.4.c.b 2 99.h odd 6 2
144.4.a.d 1 44.c even 2 1
144.4.a.d 1 132.d odd 2 1
225.4.a.d 1 55.d odd 2 1
225.4.a.d 1 165.d even 2 1
225.4.b.g 2 55.e even 4 2
225.4.b.g 2 165.l odd 4 2
441.4.a.f 1 77.b even 2 1
441.4.a.f 1 231.h odd 2 1
441.4.e.i 2 77.h odd 6 2
441.4.e.i 2 231.l even 6 2
441.4.e.j 2 77.i even 6 2
441.4.e.j 2 231.k odd 6 2
576.4.a.l 1 88.g even 2 1
576.4.a.l 1 264.p odd 2 1
576.4.a.m 1 88.b odd 2 1
576.4.a.m 1 264.m even 2 1
1089.4.a.g 1 1.a even 1 1 trivial
1089.4.a.g 1 3.b odd 2 1 CM
1521.4.a.g 1 143.d odd 2 1
1521.4.a.g 1 429.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 20 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 70 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 56 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 308 \) Copy content Toggle raw display
$37$ \( T - 110 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 520 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 182 \) Copy content Toggle raw display
$67$ \( T + 880 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 1190 \) Copy content Toggle raw display
$79$ \( T + 884 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 1330 \) Copy content Toggle raw display
show more
show less