Properties

Label 1089.4.a.e.1.1
Level $1089$
Weight $4$
Character 1089.1
Self dual yes
Analytic conductor $64.253$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,4,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.2530799963\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -7.00000 q^{4} +4.00000 q^{5} +26.0000 q^{7} +15.0000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} -7.00000 q^{4} +4.00000 q^{5} +26.0000 q^{7} +15.0000 q^{8} -4.00000 q^{10} +32.0000 q^{13} -26.0000 q^{14} +41.0000 q^{16} +74.0000 q^{17} +60.0000 q^{19} -28.0000 q^{20} +182.000 q^{23} -109.000 q^{25} -32.0000 q^{26} -182.000 q^{28} -90.0000 q^{29} -8.00000 q^{31} -161.000 q^{32} -74.0000 q^{34} +104.000 q^{35} -66.0000 q^{37} -60.0000 q^{38} +60.0000 q^{40} +422.000 q^{41} -408.000 q^{43} -182.000 q^{46} +506.000 q^{47} +333.000 q^{49} +109.000 q^{50} -224.000 q^{52} -348.000 q^{53} +390.000 q^{56} +90.0000 q^{58} +200.000 q^{59} -132.000 q^{61} +8.00000 q^{62} -167.000 q^{64} +128.000 q^{65} -1036.00 q^{67} -518.000 q^{68} -104.000 q^{70} -762.000 q^{71} +542.000 q^{73} +66.0000 q^{74} -420.000 q^{76} +550.000 q^{79} +164.000 q^{80} -422.000 q^{82} -132.000 q^{83} +296.000 q^{85} +408.000 q^{86} -570.000 q^{89} +832.000 q^{91} -1274.00 q^{92} -506.000 q^{94} +240.000 q^{95} +14.0000 q^{97} -333.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 0 0
\(4\) −7.00000 −0.875000
\(5\) 4.00000 0.357771 0.178885 0.983870i \(-0.442751\pi\)
0.178885 + 0.983870i \(0.442751\pi\)
\(6\) 0 0
\(7\) 26.0000 1.40387 0.701934 0.712242i \(-0.252320\pi\)
0.701934 + 0.712242i \(0.252320\pi\)
\(8\) 15.0000 0.662913
\(9\) 0 0
\(10\) −4.00000 −0.126491
\(11\) 0 0
\(12\) 0 0
\(13\) 32.0000 0.682708 0.341354 0.939935i \(-0.389115\pi\)
0.341354 + 0.939935i \(0.389115\pi\)
\(14\) −26.0000 −0.496342
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 74.0000 1.05574 0.527872 0.849324i \(-0.322990\pi\)
0.527872 + 0.849324i \(0.322990\pi\)
\(18\) 0 0
\(19\) 60.0000 0.724471 0.362235 0.932087i \(-0.382014\pi\)
0.362235 + 0.932087i \(0.382014\pi\)
\(20\) −28.0000 −0.313050
\(21\) 0 0
\(22\) 0 0
\(23\) 182.000 1.64998 0.824992 0.565145i \(-0.191180\pi\)
0.824992 + 0.565145i \(0.191180\pi\)
\(24\) 0 0
\(25\) −109.000 −0.872000
\(26\) −32.0000 −0.241374
\(27\) 0 0
\(28\) −182.000 −1.22838
\(29\) −90.0000 −0.576296 −0.288148 0.957586i \(-0.593039\pi\)
−0.288148 + 0.957586i \(0.593039\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.0463498 −0.0231749 0.999731i \(-0.507377\pi\)
−0.0231749 + 0.999731i \(0.507377\pi\)
\(32\) −161.000 −0.889408
\(33\) 0 0
\(34\) −74.0000 −0.373262
\(35\) 104.000 0.502263
\(36\) 0 0
\(37\) −66.0000 −0.293252 −0.146626 0.989192i \(-0.546841\pi\)
−0.146626 + 0.989192i \(0.546841\pi\)
\(38\) −60.0000 −0.256139
\(39\) 0 0
\(40\) 60.0000 0.237171
\(41\) 422.000 1.60745 0.803724 0.595003i \(-0.202849\pi\)
0.803724 + 0.595003i \(0.202849\pi\)
\(42\) 0 0
\(43\) −408.000 −1.44696 −0.723482 0.690344i \(-0.757459\pi\)
−0.723482 + 0.690344i \(0.757459\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −182.000 −0.583357
\(47\) 506.000 1.57038 0.785188 0.619257i \(-0.212566\pi\)
0.785188 + 0.619257i \(0.212566\pi\)
\(48\) 0 0
\(49\) 333.000 0.970845
\(50\) 109.000 0.308299
\(51\) 0 0
\(52\) −224.000 −0.597369
\(53\) −348.000 −0.901915 −0.450957 0.892546i \(-0.648917\pi\)
−0.450957 + 0.892546i \(0.648917\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 390.000 0.930642
\(57\) 0 0
\(58\) 90.0000 0.203751
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) 0 0
\(61\) −132.000 −0.277063 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(62\) 8.00000 0.0163871
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) 128.000 0.244253
\(66\) 0 0
\(67\) −1036.00 −1.88907 −0.944534 0.328414i \(-0.893486\pi\)
−0.944534 + 0.328414i \(0.893486\pi\)
\(68\) −518.000 −0.923775
\(69\) 0 0
\(70\) −104.000 −0.177577
\(71\) −762.000 −1.27370 −0.636850 0.770987i \(-0.719763\pi\)
−0.636850 + 0.770987i \(0.719763\pi\)
\(72\) 0 0
\(73\) 542.000 0.868990 0.434495 0.900674i \(-0.356927\pi\)
0.434495 + 0.900674i \(0.356927\pi\)
\(74\) 66.0000 0.103680
\(75\) 0 0
\(76\) −420.000 −0.633912
\(77\) 0 0
\(78\) 0 0
\(79\) 550.000 0.783289 0.391645 0.920117i \(-0.371906\pi\)
0.391645 + 0.920117i \(0.371906\pi\)
\(80\) 164.000 0.229197
\(81\) 0 0
\(82\) −422.000 −0.568318
\(83\) −132.000 −0.174565 −0.0872824 0.996184i \(-0.527818\pi\)
−0.0872824 + 0.996184i \(0.527818\pi\)
\(84\) 0 0
\(85\) 296.000 0.377714
\(86\) 408.000 0.511579
\(87\) 0 0
\(88\) 0 0
\(89\) −570.000 −0.678875 −0.339438 0.940629i \(-0.610237\pi\)
−0.339438 + 0.940629i \(0.610237\pi\)
\(90\) 0 0
\(91\) 832.000 0.958432
\(92\) −1274.00 −1.44374
\(93\) 0 0
\(94\) −506.000 −0.555212
\(95\) 240.000 0.259195
\(96\) 0 0
\(97\) 14.0000 0.0146545 0.00732724 0.999973i \(-0.497668\pi\)
0.00732724 + 0.999973i \(0.497668\pi\)
\(98\) −333.000 −0.343246
\(99\) 0 0
\(100\) 763.000 0.763000
\(101\) 1702.00 1.67679 0.838393 0.545067i \(-0.183496\pi\)
0.838393 + 0.545067i \(0.183496\pi\)
\(102\) 0 0
\(103\) −1132.00 −1.08291 −0.541453 0.840731i \(-0.682126\pi\)
−0.541453 + 0.840731i \(0.682126\pi\)
\(104\) 480.000 0.452576
\(105\) 0 0
\(106\) 348.000 0.318875
\(107\) 564.000 0.509570 0.254785 0.966998i \(-0.417995\pi\)
0.254785 + 0.966998i \(0.417995\pi\)
\(108\) 0 0
\(109\) 320.000 0.281197 0.140598 0.990067i \(-0.455097\pi\)
0.140598 + 0.990067i \(0.455097\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1066.00 0.899353
\(113\) 2142.00 1.78321 0.891604 0.452817i \(-0.149581\pi\)
0.891604 + 0.452817i \(0.149581\pi\)
\(114\) 0 0
\(115\) 728.000 0.590316
\(116\) 630.000 0.504259
\(117\) 0 0
\(118\) −200.000 −0.156030
\(119\) 1924.00 1.48212
\(120\) 0 0
\(121\) 0 0
\(122\) 132.000 0.0979567
\(123\) 0 0
\(124\) 56.0000 0.0405560
\(125\) −936.000 −0.669747
\(126\) 0 0
\(127\) 1606.00 1.12212 0.561061 0.827775i \(-0.310393\pi\)
0.561061 + 0.827775i \(0.310393\pi\)
\(128\) 1455.00 1.00473
\(129\) 0 0
\(130\) −128.000 −0.0863565
\(131\) −1908.00 −1.27254 −0.636270 0.771466i \(-0.719524\pi\)
−0.636270 + 0.771466i \(0.719524\pi\)
\(132\) 0 0
\(133\) 1560.00 1.01706
\(134\) 1036.00 0.667886
\(135\) 0 0
\(136\) 1110.00 0.699866
\(137\) 2186.00 1.36323 0.681615 0.731711i \(-0.261278\pi\)
0.681615 + 0.731711i \(0.261278\pi\)
\(138\) 0 0
\(139\) −2740.00 −1.67197 −0.835985 0.548753i \(-0.815103\pi\)
−0.835985 + 0.548753i \(0.815103\pi\)
\(140\) −728.000 −0.439480
\(141\) 0 0
\(142\) 762.000 0.450321
\(143\) 0 0
\(144\) 0 0
\(145\) −360.000 −0.206182
\(146\) −542.000 −0.307235
\(147\) 0 0
\(148\) 462.000 0.256596
\(149\) −1310.00 −0.720264 −0.360132 0.932901i \(-0.617268\pi\)
−0.360132 + 0.932901i \(0.617268\pi\)
\(150\) 0 0
\(151\) 1198.00 0.645641 0.322821 0.946460i \(-0.395369\pi\)
0.322821 + 0.946460i \(0.395369\pi\)
\(152\) 900.000 0.480261
\(153\) 0 0
\(154\) 0 0
\(155\) −32.0000 −0.0165826
\(156\) 0 0
\(157\) 2114.00 1.07462 0.537311 0.843384i \(-0.319440\pi\)
0.537311 + 0.843384i \(0.319440\pi\)
\(158\) −550.000 −0.276934
\(159\) 0 0
\(160\) −644.000 −0.318204
\(161\) 4732.00 2.31636
\(162\) 0 0
\(163\) 3868.00 1.85868 0.929341 0.369223i \(-0.120376\pi\)
0.929341 + 0.369223i \(0.120376\pi\)
\(164\) −2954.00 −1.40652
\(165\) 0 0
\(166\) 132.000 0.0617180
\(167\) 2004.00 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −1173.00 −0.533910
\(170\) −296.000 −0.133542
\(171\) 0 0
\(172\) 2856.00 1.26609
\(173\) 678.000 0.297962 0.148981 0.988840i \(-0.452401\pi\)
0.148981 + 0.988840i \(0.452401\pi\)
\(174\) 0 0
\(175\) −2834.00 −1.22417
\(176\) 0 0
\(177\) 0 0
\(178\) 570.000 0.240019
\(179\) 1680.00 0.701503 0.350752 0.936469i \(-0.385926\pi\)
0.350752 + 0.936469i \(0.385926\pi\)
\(180\) 0 0
\(181\) −4358.00 −1.78966 −0.894828 0.446412i \(-0.852702\pi\)
−0.894828 + 0.446412i \(0.852702\pi\)
\(182\) −832.000 −0.338857
\(183\) 0 0
\(184\) 2730.00 1.09379
\(185\) −264.000 −0.104917
\(186\) 0 0
\(187\) 0 0
\(188\) −3542.00 −1.37408
\(189\) 0 0
\(190\) −240.000 −0.0916391
\(191\) 1778.00 0.673568 0.336784 0.941582i \(-0.390661\pi\)
0.336784 + 0.941582i \(0.390661\pi\)
\(192\) 0 0
\(193\) 3962.00 1.47767 0.738837 0.673884i \(-0.235375\pi\)
0.738837 + 0.673884i \(0.235375\pi\)
\(194\) −14.0000 −0.00518114
\(195\) 0 0
\(196\) −2331.00 −0.849490
\(197\) 374.000 0.135261 0.0676304 0.997710i \(-0.478456\pi\)
0.0676304 + 0.997710i \(0.478456\pi\)
\(198\) 0 0
\(199\) 2100.00 0.748066 0.374033 0.927415i \(-0.377975\pi\)
0.374033 + 0.927415i \(0.377975\pi\)
\(200\) −1635.00 −0.578060
\(201\) 0 0
\(202\) −1702.00 −0.592833
\(203\) −2340.00 −0.809043
\(204\) 0 0
\(205\) 1688.00 0.575098
\(206\) 1132.00 0.382865
\(207\) 0 0
\(208\) 1312.00 0.437360
\(209\) 0 0
\(210\) 0 0
\(211\) −2232.00 −0.728233 −0.364117 0.931353i \(-0.618629\pi\)
−0.364117 + 0.931353i \(0.618629\pi\)
\(212\) 2436.00 0.789175
\(213\) 0 0
\(214\) −564.000 −0.180160
\(215\) −1632.00 −0.517681
\(216\) 0 0
\(217\) −208.000 −0.0650689
\(218\) −320.000 −0.0994180
\(219\) 0 0
\(220\) 0 0
\(221\) 2368.00 0.720764
\(222\) 0 0
\(223\) 2128.00 0.639020 0.319510 0.947583i \(-0.396482\pi\)
0.319510 + 0.947583i \(0.396482\pi\)
\(224\) −4186.00 −1.24861
\(225\) 0 0
\(226\) −2142.00 −0.630459
\(227\) 2964.00 0.866641 0.433321 0.901240i \(-0.357342\pi\)
0.433321 + 0.901240i \(0.357342\pi\)
\(228\) 0 0
\(229\) −2550.00 −0.735846 −0.367923 0.929856i \(-0.619931\pi\)
−0.367923 + 0.929856i \(0.619931\pi\)
\(230\) −728.000 −0.208708
\(231\) 0 0
\(232\) −1350.00 −0.382034
\(233\) −3042.00 −0.855314 −0.427657 0.903941i \(-0.640661\pi\)
−0.427657 + 0.903941i \(0.640661\pi\)
\(234\) 0 0
\(235\) 2024.00 0.561835
\(236\) −1400.00 −0.386154
\(237\) 0 0
\(238\) −1924.00 −0.524010
\(239\) 2700.00 0.730747 0.365373 0.930861i \(-0.380941\pi\)
0.365373 + 0.930861i \(0.380941\pi\)
\(240\) 0 0
\(241\) 578.000 0.154491 0.0772453 0.997012i \(-0.475388\pi\)
0.0772453 + 0.997012i \(0.475388\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 924.000 0.242430
\(245\) 1332.00 0.347340
\(246\) 0 0
\(247\) 1920.00 0.494602
\(248\) −120.000 −0.0307258
\(249\) 0 0
\(250\) 936.000 0.236791
\(251\) −3752.00 −0.943522 −0.471761 0.881726i \(-0.656382\pi\)
−0.471761 + 0.881726i \(0.656382\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1606.00 −0.396730
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) −674.000 −0.163591 −0.0817957 0.996649i \(-0.526065\pi\)
−0.0817957 + 0.996649i \(0.526065\pi\)
\(258\) 0 0
\(259\) −1716.00 −0.411687
\(260\) −896.000 −0.213721
\(261\) 0 0
\(262\) 1908.00 0.449911
\(263\) −4352.00 −1.02036 −0.510182 0.860066i \(-0.670422\pi\)
−0.510182 + 0.860066i \(0.670422\pi\)
\(264\) 0 0
\(265\) −1392.00 −0.322679
\(266\) −1560.00 −0.359585
\(267\) 0 0
\(268\) 7252.00 1.65293
\(269\) −500.000 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(270\) 0 0
\(271\) 6538.00 1.46552 0.732759 0.680489i \(-0.238232\pi\)
0.732759 + 0.680489i \(0.238232\pi\)
\(272\) 3034.00 0.676336
\(273\) 0 0
\(274\) −2186.00 −0.481975
\(275\) 0 0
\(276\) 0 0
\(277\) −124.000 −0.0268969 −0.0134484 0.999910i \(-0.504281\pi\)
−0.0134484 + 0.999910i \(0.504281\pi\)
\(278\) 2740.00 0.591131
\(279\) 0 0
\(280\) 1560.00 0.332957
\(281\) 3642.00 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(282\) 0 0
\(283\) −4648.00 −0.976307 −0.488154 0.872758i \(-0.662329\pi\)
−0.488154 + 0.872758i \(0.662329\pi\)
\(284\) 5334.00 1.11449
\(285\) 0 0
\(286\) 0 0
\(287\) 10972.0 2.25664
\(288\) 0 0
\(289\) 563.000 0.114594
\(290\) 360.000 0.0728963
\(291\) 0 0
\(292\) −3794.00 −0.760367
\(293\) −3102.00 −0.618501 −0.309250 0.950981i \(-0.600078\pi\)
−0.309250 + 0.950981i \(0.600078\pi\)
\(294\) 0 0
\(295\) 800.000 0.157891
\(296\) −990.000 −0.194401
\(297\) 0 0
\(298\) 1310.00 0.254652
\(299\) 5824.00 1.12646
\(300\) 0 0
\(301\) −10608.0 −2.03135
\(302\) −1198.00 −0.228269
\(303\) 0 0
\(304\) 2460.00 0.464114
\(305\) −528.000 −0.0991252
\(306\) 0 0
\(307\) −1244.00 −0.231267 −0.115633 0.993292i \(-0.536890\pi\)
−0.115633 + 0.993292i \(0.536890\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 32.0000 0.00586283
\(311\) −2082.00 −0.379612 −0.189806 0.981822i \(-0.560786\pi\)
−0.189806 + 0.981822i \(0.560786\pi\)
\(312\) 0 0
\(313\) 2378.00 0.429433 0.214716 0.976676i \(-0.431117\pi\)
0.214716 + 0.976676i \(0.431117\pi\)
\(314\) −2114.00 −0.379936
\(315\) 0 0
\(316\) −3850.00 −0.685378
\(317\) 496.000 0.0878806 0.0439403 0.999034i \(-0.486009\pi\)
0.0439403 + 0.999034i \(0.486009\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −668.000 −0.116695
\(321\) 0 0
\(322\) −4732.00 −0.818957
\(323\) 4440.00 0.764855
\(324\) 0 0
\(325\) −3488.00 −0.595321
\(326\) −3868.00 −0.657143
\(327\) 0 0
\(328\) 6330.00 1.06560
\(329\) 13156.0 2.20460
\(330\) 0 0
\(331\) −2708.00 −0.449683 −0.224842 0.974395i \(-0.572186\pi\)
−0.224842 + 0.974395i \(0.572186\pi\)
\(332\) 924.000 0.152744
\(333\) 0 0
\(334\) −2004.00 −0.328305
\(335\) −4144.00 −0.675853
\(336\) 0 0
\(337\) −4034.00 −0.652065 −0.326033 0.945359i \(-0.605712\pi\)
−0.326033 + 0.945359i \(0.605712\pi\)
\(338\) 1173.00 0.188766
\(339\) 0 0
\(340\) −2072.00 −0.330500
\(341\) 0 0
\(342\) 0 0
\(343\) −260.000 −0.0409291
\(344\) −6120.00 −0.959210
\(345\) 0 0
\(346\) −678.000 −0.105345
\(347\) 11084.0 1.71476 0.857378 0.514687i \(-0.172092\pi\)
0.857378 + 0.514687i \(0.172092\pi\)
\(348\) 0 0
\(349\) 3120.00 0.478538 0.239269 0.970953i \(-0.423092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(350\) 2834.00 0.432810
\(351\) 0 0
\(352\) 0 0
\(353\) 5622.00 0.847674 0.423837 0.905739i \(-0.360683\pi\)
0.423837 + 0.905739i \(0.360683\pi\)
\(354\) 0 0
\(355\) −3048.00 −0.455693
\(356\) 3990.00 0.594016
\(357\) 0 0
\(358\) −1680.00 −0.248019
\(359\) −8500.00 −1.24962 −0.624809 0.780778i \(-0.714823\pi\)
−0.624809 + 0.780778i \(0.714823\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 4358.00 0.632739
\(363\) 0 0
\(364\) −5824.00 −0.838628
\(365\) 2168.00 0.310899
\(366\) 0 0
\(367\) 7144.00 1.01611 0.508057 0.861324i \(-0.330364\pi\)
0.508057 + 0.861324i \(0.330364\pi\)
\(368\) 7462.00 1.05702
\(369\) 0 0
\(370\) 264.000 0.0370938
\(371\) −9048.00 −1.26617
\(372\) 0 0
\(373\) 632.000 0.0877312 0.0438656 0.999037i \(-0.486033\pi\)
0.0438656 + 0.999037i \(0.486033\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 7590.00 1.04102
\(377\) −2880.00 −0.393442
\(378\) 0 0
\(379\) −4220.00 −0.571944 −0.285972 0.958238i \(-0.592316\pi\)
−0.285972 + 0.958238i \(0.592316\pi\)
\(380\) −1680.00 −0.226795
\(381\) 0 0
\(382\) −1778.00 −0.238142
\(383\) −8458.00 −1.12842 −0.564208 0.825632i \(-0.690819\pi\)
−0.564208 + 0.825632i \(0.690819\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3962.00 −0.522437
\(387\) 0 0
\(388\) −98.0000 −0.0128227
\(389\) −1740.00 −0.226790 −0.113395 0.993550i \(-0.536173\pi\)
−0.113395 + 0.993550i \(0.536173\pi\)
\(390\) 0 0
\(391\) 13468.0 1.74196
\(392\) 4995.00 0.643586
\(393\) 0 0
\(394\) −374.000 −0.0478219
\(395\) 2200.00 0.280238
\(396\) 0 0
\(397\) −5126.00 −0.648027 −0.324013 0.946053i \(-0.605032\pi\)
−0.324013 + 0.946053i \(0.605032\pi\)
\(398\) −2100.00 −0.264481
\(399\) 0 0
\(400\) −4469.00 −0.558625
\(401\) 3098.00 0.385802 0.192901 0.981218i \(-0.438210\pi\)
0.192901 + 0.981218i \(0.438210\pi\)
\(402\) 0 0
\(403\) −256.000 −0.0316433
\(404\) −11914.0 −1.46719
\(405\) 0 0
\(406\) 2340.00 0.286040
\(407\) 0 0
\(408\) 0 0
\(409\) −6390.00 −0.772531 −0.386265 0.922388i \(-0.626235\pi\)
−0.386265 + 0.922388i \(0.626235\pi\)
\(410\) −1688.00 −0.203328
\(411\) 0 0
\(412\) 7924.00 0.947542
\(413\) 5200.00 0.619553
\(414\) 0 0
\(415\) −528.000 −0.0624542
\(416\) −5152.00 −0.607206
\(417\) 0 0
\(418\) 0 0
\(419\) −9760.00 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(420\) 0 0
\(421\) −5138.00 −0.594800 −0.297400 0.954753i \(-0.596119\pi\)
−0.297400 + 0.954753i \(0.596119\pi\)
\(422\) 2232.00 0.257469
\(423\) 0 0
\(424\) −5220.00 −0.597891
\(425\) −8066.00 −0.920608
\(426\) 0 0
\(427\) −3432.00 −0.388960
\(428\) −3948.00 −0.445873
\(429\) 0 0
\(430\) 1632.00 0.183028
\(431\) −7008.00 −0.783210 −0.391605 0.920133i \(-0.628080\pi\)
−0.391605 + 0.920133i \(0.628080\pi\)
\(432\) 0 0
\(433\) 5578.00 0.619080 0.309540 0.950886i \(-0.399825\pi\)
0.309540 + 0.950886i \(0.399825\pi\)
\(434\) 208.000 0.0230053
\(435\) 0 0
\(436\) −2240.00 −0.246047
\(437\) 10920.0 1.19536
\(438\) 0 0
\(439\) 10430.0 1.13393 0.566967 0.823741i \(-0.308117\pi\)
0.566967 + 0.823741i \(0.308117\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2368.00 −0.254829
\(443\) 4432.00 0.475329 0.237664 0.971347i \(-0.423618\pi\)
0.237664 + 0.971347i \(0.423618\pi\)
\(444\) 0 0
\(445\) −2280.00 −0.242882
\(446\) −2128.00 −0.225928
\(447\) 0 0
\(448\) −4342.00 −0.457902
\(449\) 6290.00 0.661121 0.330561 0.943785i \(-0.392762\pi\)
0.330561 + 0.943785i \(0.392762\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −14994.0 −1.56031
\(453\) 0 0
\(454\) −2964.00 −0.306404
\(455\) 3328.00 0.342899
\(456\) 0 0
\(457\) −3054.00 −0.312604 −0.156302 0.987709i \(-0.549957\pi\)
−0.156302 + 0.987709i \(0.549957\pi\)
\(458\) 2550.00 0.260161
\(459\) 0 0
\(460\) −5096.00 −0.516527
\(461\) 12882.0 1.30146 0.650732 0.759308i \(-0.274462\pi\)
0.650732 + 0.759308i \(0.274462\pi\)
\(462\) 0 0
\(463\) 6148.00 0.617110 0.308555 0.951207i \(-0.400155\pi\)
0.308555 + 0.951207i \(0.400155\pi\)
\(464\) −3690.00 −0.369190
\(465\) 0 0
\(466\) 3042.00 0.302399
\(467\) −5124.00 −0.507731 −0.253866 0.967240i \(-0.581702\pi\)
−0.253866 + 0.967240i \(0.581702\pi\)
\(468\) 0 0
\(469\) −26936.0 −2.65200
\(470\) −2024.00 −0.198639
\(471\) 0 0
\(472\) 3000.00 0.292555
\(473\) 0 0
\(474\) 0 0
\(475\) −6540.00 −0.631738
\(476\) −13468.0 −1.29686
\(477\) 0 0
\(478\) −2700.00 −0.258358
\(479\) −16520.0 −1.57582 −0.787910 0.615790i \(-0.788837\pi\)
−0.787910 + 0.615790i \(0.788837\pi\)
\(480\) 0 0
\(481\) −2112.00 −0.200206
\(482\) −578.000 −0.0546207
\(483\) 0 0
\(484\) 0 0
\(485\) 56.0000 0.00524295
\(486\) 0 0
\(487\) 524.000 0.0487571 0.0243785 0.999703i \(-0.492239\pi\)
0.0243785 + 0.999703i \(0.492239\pi\)
\(488\) −1980.00 −0.183669
\(489\) 0 0
\(490\) −1332.00 −0.122803
\(491\) −15028.0 −1.38127 −0.690636 0.723203i \(-0.742669\pi\)
−0.690636 + 0.723203i \(0.742669\pi\)
\(492\) 0 0
\(493\) −6660.00 −0.608421
\(494\) −1920.00 −0.174868
\(495\) 0 0
\(496\) −328.000 −0.0296928
\(497\) −19812.0 −1.78811
\(498\) 0 0
\(499\) 9020.00 0.809200 0.404600 0.914494i \(-0.367411\pi\)
0.404600 + 0.914494i \(0.367411\pi\)
\(500\) 6552.00 0.586029
\(501\) 0 0
\(502\) 3752.00 0.333586
\(503\) −14812.0 −1.31299 −0.656495 0.754330i \(-0.727962\pi\)
−0.656495 + 0.754330i \(0.727962\pi\)
\(504\) 0 0
\(505\) 6808.00 0.599905
\(506\) 0 0
\(507\) 0 0
\(508\) −11242.0 −0.981856
\(509\) −12660.0 −1.10245 −0.551223 0.834358i \(-0.685839\pi\)
−0.551223 + 0.834358i \(0.685839\pi\)
\(510\) 0 0
\(511\) 14092.0 1.21995
\(512\) −11521.0 −0.994455
\(513\) 0 0
\(514\) 674.000 0.0578383
\(515\) −4528.00 −0.387432
\(516\) 0 0
\(517\) 0 0
\(518\) 1716.00 0.145553
\(519\) 0 0
\(520\) 1920.00 0.161918
\(521\) 3738.00 0.314328 0.157164 0.987573i \(-0.449765\pi\)
0.157164 + 0.987573i \(0.449765\pi\)
\(522\) 0 0
\(523\) 6352.00 0.531078 0.265539 0.964100i \(-0.414450\pi\)
0.265539 + 0.964100i \(0.414450\pi\)
\(524\) 13356.0 1.11347
\(525\) 0 0
\(526\) 4352.00 0.360753
\(527\) −592.000 −0.0489334
\(528\) 0 0
\(529\) 20957.0 1.72245
\(530\) 1392.00 0.114084
\(531\) 0 0
\(532\) −10920.0 −0.889929
\(533\) 13504.0 1.09742
\(534\) 0 0
\(535\) 2256.00 0.182309
\(536\) −15540.0 −1.25229
\(537\) 0 0
\(538\) 500.000 0.0400679
\(539\) 0 0
\(540\) 0 0
\(541\) 24728.0 1.96514 0.982569 0.185898i \(-0.0595193\pi\)
0.982569 + 0.185898i \(0.0595193\pi\)
\(542\) −6538.00 −0.518139
\(543\) 0 0
\(544\) −11914.0 −0.938986
\(545\) 1280.00 0.100604
\(546\) 0 0
\(547\) 22756.0 1.77875 0.889375 0.457178i \(-0.151140\pi\)
0.889375 + 0.457178i \(0.151140\pi\)
\(548\) −15302.0 −1.19283
\(549\) 0 0
\(550\) 0 0
\(551\) −5400.00 −0.417509
\(552\) 0 0
\(553\) 14300.0 1.09963
\(554\) 124.000 0.00950949
\(555\) 0 0
\(556\) 19180.0 1.46297
\(557\) −9526.00 −0.724649 −0.362325 0.932052i \(-0.618017\pi\)
−0.362325 + 0.932052i \(0.618017\pi\)
\(558\) 0 0
\(559\) −13056.0 −0.987853
\(560\) 4264.00 0.321762
\(561\) 0 0
\(562\) −3642.00 −0.273360
\(563\) 12068.0 0.903385 0.451692 0.892174i \(-0.350820\pi\)
0.451692 + 0.892174i \(0.350820\pi\)
\(564\) 0 0
\(565\) 8568.00 0.637980
\(566\) 4648.00 0.345177
\(567\) 0 0
\(568\) −11430.0 −0.844352
\(569\) 15090.0 1.11179 0.555893 0.831254i \(-0.312377\pi\)
0.555893 + 0.831254i \(0.312377\pi\)
\(570\) 0 0
\(571\) −4412.00 −0.323356 −0.161678 0.986844i \(-0.551691\pi\)
−0.161678 + 0.986844i \(0.551691\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −10972.0 −0.797844
\(575\) −19838.0 −1.43879
\(576\) 0 0
\(577\) −3906.00 −0.281818 −0.140909 0.990023i \(-0.545002\pi\)
−0.140909 + 0.990023i \(0.545002\pi\)
\(578\) −563.000 −0.0405151
\(579\) 0 0
\(580\) 2520.00 0.180409
\(581\) −3432.00 −0.245066
\(582\) 0 0
\(583\) 0 0
\(584\) 8130.00 0.576065
\(585\) 0 0
\(586\) 3102.00 0.218673
\(587\) 12016.0 0.844895 0.422448 0.906387i \(-0.361171\pi\)
0.422448 + 0.906387i \(0.361171\pi\)
\(588\) 0 0
\(589\) −480.000 −0.0335790
\(590\) −800.000 −0.0558228
\(591\) 0 0
\(592\) −2706.00 −0.187865
\(593\) −11342.0 −0.785430 −0.392715 0.919660i \(-0.628464\pi\)
−0.392715 + 0.919660i \(0.628464\pi\)
\(594\) 0 0
\(595\) 7696.00 0.530261
\(596\) 9170.00 0.630231
\(597\) 0 0
\(598\) −5824.00 −0.398263
\(599\) −20690.0 −1.41130 −0.705651 0.708559i \(-0.749346\pi\)
−0.705651 + 0.708559i \(0.749346\pi\)
\(600\) 0 0
\(601\) 598.000 0.0405872 0.0202936 0.999794i \(-0.493540\pi\)
0.0202936 + 0.999794i \(0.493540\pi\)
\(602\) 10608.0 0.718189
\(603\) 0 0
\(604\) −8386.00 −0.564936
\(605\) 0 0
\(606\) 0 0
\(607\) 166.000 0.0111001 0.00555003 0.999985i \(-0.498233\pi\)
0.00555003 + 0.999985i \(0.498233\pi\)
\(608\) −9660.00 −0.644350
\(609\) 0 0
\(610\) 528.000 0.0350461
\(611\) 16192.0 1.07211
\(612\) 0 0
\(613\) −20108.0 −1.32488 −0.662442 0.749113i \(-0.730480\pi\)
−0.662442 + 0.749113i \(0.730480\pi\)
\(614\) 1244.00 0.0817651
\(615\) 0 0
\(616\) 0 0
\(617\) 2286.00 0.149159 0.0745793 0.997215i \(-0.476239\pi\)
0.0745793 + 0.997215i \(0.476239\pi\)
\(618\) 0 0
\(619\) −25660.0 −1.66618 −0.833088 0.553141i \(-0.813429\pi\)
−0.833088 + 0.553141i \(0.813429\pi\)
\(620\) 224.000 0.0145098
\(621\) 0 0
\(622\) 2082.00 0.134213
\(623\) −14820.0 −0.953051
\(624\) 0 0
\(625\) 9881.00 0.632384
\(626\) −2378.00 −0.151827
\(627\) 0 0
\(628\) −14798.0 −0.940294
\(629\) −4884.00 −0.309599
\(630\) 0 0
\(631\) −11408.0 −0.719723 −0.359862 0.933006i \(-0.617176\pi\)
−0.359862 + 0.933006i \(0.617176\pi\)
\(632\) 8250.00 0.519252
\(633\) 0 0
\(634\) −496.000 −0.0310705
\(635\) 6424.00 0.401462
\(636\) 0 0
\(637\) 10656.0 0.662804
\(638\) 0 0
\(639\) 0 0
\(640\) 5820.00 0.359462
\(641\) 3378.00 0.208148 0.104074 0.994570i \(-0.466812\pi\)
0.104074 + 0.994570i \(0.466812\pi\)
\(642\) 0 0
\(643\) −11212.0 −0.687649 −0.343824 0.939034i \(-0.611722\pi\)
−0.343824 + 0.939034i \(0.611722\pi\)
\(644\) −33124.0 −2.02681
\(645\) 0 0
\(646\) −4440.00 −0.270417
\(647\) 86.0000 0.00522567 0.00261284 0.999997i \(-0.499168\pi\)
0.00261284 + 0.999997i \(0.499168\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 3488.00 0.210478
\(651\) 0 0
\(652\) −27076.0 −1.62635
\(653\) 4432.00 0.265601 0.132801 0.991143i \(-0.457603\pi\)
0.132801 + 0.991143i \(0.457603\pi\)
\(654\) 0 0
\(655\) −7632.00 −0.455278
\(656\) 17302.0 1.02977
\(657\) 0 0
\(658\) −13156.0 −0.779444
\(659\) 4580.00 0.270731 0.135365 0.990796i \(-0.456779\pi\)
0.135365 + 0.990796i \(0.456779\pi\)
\(660\) 0 0
\(661\) 4282.00 0.251967 0.125984 0.992032i \(-0.459791\pi\)
0.125984 + 0.992032i \(0.459791\pi\)
\(662\) 2708.00 0.158987
\(663\) 0 0
\(664\) −1980.00 −0.115721
\(665\) 6240.00 0.363875
\(666\) 0 0
\(667\) −16380.0 −0.950879
\(668\) −14028.0 −0.812514
\(669\) 0 0
\(670\) 4144.00 0.238950
\(671\) 0 0
\(672\) 0 0
\(673\) −8438.00 −0.483300 −0.241650 0.970363i \(-0.577689\pi\)
−0.241650 + 0.970363i \(0.577689\pi\)
\(674\) 4034.00 0.230540
\(675\) 0 0
\(676\) 8211.00 0.467171
\(677\) 34494.0 1.95822 0.979108 0.203341i \(-0.0651801\pi\)
0.979108 + 0.203341i \(0.0651801\pi\)
\(678\) 0 0
\(679\) 364.000 0.0205730
\(680\) 4440.00 0.250392
\(681\) 0 0
\(682\) 0 0
\(683\) 13712.0 0.768192 0.384096 0.923293i \(-0.374513\pi\)
0.384096 + 0.923293i \(0.374513\pi\)
\(684\) 0 0
\(685\) 8744.00 0.487724
\(686\) 260.000 0.0144706
\(687\) 0 0
\(688\) −16728.0 −0.926961
\(689\) −11136.0 −0.615744
\(690\) 0 0
\(691\) 11372.0 0.626066 0.313033 0.949742i \(-0.398655\pi\)
0.313033 + 0.949742i \(0.398655\pi\)
\(692\) −4746.00 −0.260717
\(693\) 0 0
\(694\) −11084.0 −0.606258
\(695\) −10960.0 −0.598182
\(696\) 0 0
\(697\) 31228.0 1.69705
\(698\) −3120.00 −0.169189
\(699\) 0 0
\(700\) 19838.0 1.07115
\(701\) −6398.00 −0.344721 −0.172360 0.985034i \(-0.555139\pi\)
−0.172360 + 0.985034i \(0.555139\pi\)
\(702\) 0 0
\(703\) −3960.00 −0.212453
\(704\) 0 0
\(705\) 0 0
\(706\) −5622.00 −0.299698
\(707\) 44252.0 2.35399
\(708\) 0 0
\(709\) −5830.00 −0.308816 −0.154408 0.988007i \(-0.549347\pi\)
−0.154408 + 0.988007i \(0.549347\pi\)
\(710\) 3048.00 0.161112
\(711\) 0 0
\(712\) −8550.00 −0.450035
\(713\) −1456.00 −0.0764763
\(714\) 0 0
\(715\) 0 0
\(716\) −11760.0 −0.613815
\(717\) 0 0
\(718\) 8500.00 0.441807
\(719\) −34530.0 −1.79103 −0.895516 0.445030i \(-0.853193\pi\)
−0.895516 + 0.445030i \(0.853193\pi\)
\(720\) 0 0
\(721\) −29432.0 −1.52026
\(722\) 3259.00 0.167988
\(723\) 0 0
\(724\) 30506.0 1.56595
\(725\) 9810.00 0.502530
\(726\) 0 0
\(727\) −17316.0 −0.883377 −0.441688 0.897169i \(-0.645620\pi\)
−0.441688 + 0.897169i \(0.645620\pi\)
\(728\) 12480.0 0.635357
\(729\) 0 0
\(730\) −2168.00 −0.109920
\(731\) −30192.0 −1.52762
\(732\) 0 0
\(733\) 27072.0 1.36416 0.682079 0.731279i \(-0.261076\pi\)
0.682079 + 0.731279i \(0.261076\pi\)
\(734\) −7144.00 −0.359250
\(735\) 0 0
\(736\) −29302.0 −1.46751
\(737\) 0 0
\(738\) 0 0
\(739\) 17320.0 0.862147 0.431073 0.902317i \(-0.358135\pi\)
0.431073 + 0.902317i \(0.358135\pi\)
\(740\) 1848.00 0.0918025
\(741\) 0 0
\(742\) 9048.00 0.447658
\(743\) 14588.0 0.720299 0.360149 0.932895i \(-0.382726\pi\)
0.360149 + 0.932895i \(0.382726\pi\)
\(744\) 0 0
\(745\) −5240.00 −0.257690
\(746\) −632.000 −0.0310176
\(747\) 0 0
\(748\) 0 0
\(749\) 14664.0 0.715368
\(750\) 0 0
\(751\) 26152.0 1.27071 0.635353 0.772222i \(-0.280855\pi\)
0.635353 + 0.772222i \(0.280855\pi\)
\(752\) 20746.0 1.00602
\(753\) 0 0
\(754\) 2880.00 0.139103
\(755\) 4792.00 0.230992
\(756\) 0 0
\(757\) −1066.00 −0.0511815 −0.0255908 0.999673i \(-0.508147\pi\)
−0.0255908 + 0.999673i \(0.508147\pi\)
\(758\) 4220.00 0.202213
\(759\) 0 0
\(760\) 3600.00 0.171823
\(761\) −37518.0 −1.78716 −0.893578 0.448907i \(-0.851813\pi\)
−0.893578 + 0.448907i \(0.851813\pi\)
\(762\) 0 0
\(763\) 8320.00 0.394763
\(764\) −12446.0 −0.589372
\(765\) 0 0
\(766\) 8458.00 0.398956
\(767\) 6400.00 0.301292
\(768\) 0 0
\(769\) 17290.0 0.810785 0.405392 0.914143i \(-0.367135\pi\)
0.405392 + 0.914143i \(0.367135\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −27734.0 −1.29296
\(773\) 17172.0 0.799009 0.399504 0.916731i \(-0.369182\pi\)
0.399504 + 0.916731i \(0.369182\pi\)
\(774\) 0 0
\(775\) 872.000 0.0404170
\(776\) 210.000 0.00971464
\(777\) 0 0
\(778\) 1740.00 0.0801825
\(779\) 25320.0 1.16455
\(780\) 0 0
\(781\) 0 0
\(782\) −13468.0 −0.615876
\(783\) 0 0
\(784\) 13653.0 0.621948
\(785\) 8456.00 0.384468
\(786\) 0 0
\(787\) 9536.00 0.431921 0.215960 0.976402i \(-0.430712\pi\)
0.215960 + 0.976402i \(0.430712\pi\)
\(788\) −2618.00 −0.118353
\(789\) 0 0
\(790\) −2200.00 −0.0990791
\(791\) 55692.0 2.50339
\(792\) 0 0
\(793\) −4224.00 −0.189153
\(794\) 5126.00 0.229112
\(795\) 0 0
\(796\) −14700.0 −0.654557
\(797\) 20516.0 0.911812 0.455906 0.890028i \(-0.349315\pi\)
0.455906 + 0.890028i \(0.349315\pi\)
\(798\) 0 0
\(799\) 37444.0 1.65791
\(800\) 17549.0 0.775564
\(801\) 0 0
\(802\) −3098.00 −0.136402
\(803\) 0 0
\(804\) 0 0
\(805\) 18928.0 0.828726
\(806\) 256.000 0.0111876
\(807\) 0 0
\(808\) 25530.0 1.11156
\(809\) 22470.0 0.976518 0.488259 0.872699i \(-0.337632\pi\)
0.488259 + 0.872699i \(0.337632\pi\)
\(810\) 0 0
\(811\) 3368.00 0.145828 0.0729140 0.997338i \(-0.476770\pi\)
0.0729140 + 0.997338i \(0.476770\pi\)
\(812\) 16380.0 0.707913
\(813\) 0 0
\(814\) 0 0
\(815\) 15472.0 0.664982
\(816\) 0 0
\(817\) −24480.0 −1.04828
\(818\) 6390.00 0.273131
\(819\) 0 0
\(820\) −11816.0 −0.503211
\(821\) −10738.0 −0.456466 −0.228233 0.973607i \(-0.573295\pi\)
−0.228233 + 0.973607i \(0.573295\pi\)
\(822\) 0 0
\(823\) −15912.0 −0.673946 −0.336973 0.941514i \(-0.609403\pi\)
−0.336973 + 0.941514i \(0.609403\pi\)
\(824\) −16980.0 −0.717872
\(825\) 0 0
\(826\) −5200.00 −0.219045
\(827\) 22924.0 0.963900 0.481950 0.876199i \(-0.339929\pi\)
0.481950 + 0.876199i \(0.339929\pi\)
\(828\) 0 0
\(829\) −41690.0 −1.74663 −0.873313 0.487159i \(-0.838033\pi\)
−0.873313 + 0.487159i \(0.838033\pi\)
\(830\) 528.000 0.0220809
\(831\) 0 0
\(832\) −5344.00 −0.222680
\(833\) 24642.0 1.02496
\(834\) 0 0
\(835\) 8016.00 0.332222
\(836\) 0 0
\(837\) 0 0
\(838\) 9760.00 0.402331
\(839\) 16450.0 0.676898 0.338449 0.940985i \(-0.390098\pi\)
0.338449 + 0.940985i \(0.390098\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) 5138.00 0.210294
\(843\) 0 0
\(844\) 15624.0 0.637204
\(845\) −4692.00 −0.191017
\(846\) 0 0
\(847\) 0 0
\(848\) −14268.0 −0.577789
\(849\) 0 0
\(850\) 8066.00 0.325484
\(851\) −12012.0 −0.483861
\(852\) 0 0
\(853\) 30892.0 1.24000 0.620001 0.784601i \(-0.287132\pi\)
0.620001 + 0.784601i \(0.287132\pi\)
\(854\) 3432.00 0.137518
\(855\) 0 0
\(856\) 8460.00 0.337800
\(857\) −38906.0 −1.55076 −0.775381 0.631493i \(-0.782442\pi\)
−0.775381 + 0.631493i \(0.782442\pi\)
\(858\) 0 0
\(859\) −1020.00 −0.0405145 −0.0202572 0.999795i \(-0.506449\pi\)
−0.0202572 + 0.999795i \(0.506449\pi\)
\(860\) 11424.0 0.452971
\(861\) 0 0
\(862\) 7008.00 0.276907
\(863\) −15078.0 −0.594741 −0.297370 0.954762i \(-0.596110\pi\)
−0.297370 + 0.954762i \(0.596110\pi\)
\(864\) 0 0
\(865\) 2712.00 0.106602
\(866\) −5578.00 −0.218878
\(867\) 0 0
\(868\) 1456.00 0.0569353
\(869\) 0 0
\(870\) 0 0
\(871\) −33152.0 −1.28968
\(872\) 4800.00 0.186409
\(873\) 0 0
\(874\) −10920.0 −0.422625
\(875\) −24336.0 −0.940237
\(876\) 0 0
\(877\) −22704.0 −0.874184 −0.437092 0.899417i \(-0.643992\pi\)
−0.437092 + 0.899417i \(0.643992\pi\)
\(878\) −10430.0 −0.400906
\(879\) 0 0
\(880\) 0 0
\(881\) 19358.0 0.740281 0.370141 0.928976i \(-0.379310\pi\)
0.370141 + 0.928976i \(0.379310\pi\)
\(882\) 0 0
\(883\) −11252.0 −0.428833 −0.214417 0.976742i \(-0.568785\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(884\) −16576.0 −0.630669
\(885\) 0 0
\(886\) −4432.00 −0.168054
\(887\) 43684.0 1.65362 0.826812 0.562478i \(-0.190152\pi\)
0.826812 + 0.562478i \(0.190152\pi\)
\(888\) 0 0
\(889\) 41756.0 1.57531
\(890\) 2280.00 0.0858717
\(891\) 0 0
\(892\) −14896.0 −0.559142
\(893\) 30360.0 1.13769
\(894\) 0 0
\(895\) 6720.00 0.250977
\(896\) 37830.0 1.41050
\(897\) 0 0
\(898\) −6290.00 −0.233742
\(899\) 720.000 0.0267112
\(900\) 0 0
\(901\) −25752.0 −0.952190
\(902\) 0 0
\(903\) 0 0
\(904\) 32130.0 1.18211
\(905\) −17432.0 −0.640287
\(906\) 0 0
\(907\) 45804.0 1.67684 0.838422 0.545022i \(-0.183479\pi\)
0.838422 + 0.545022i \(0.183479\pi\)
\(908\) −20748.0 −0.758311
\(909\) 0 0
\(910\) −3328.00 −0.121233
\(911\) 15318.0 0.557089 0.278544 0.960423i \(-0.410148\pi\)
0.278544 + 0.960423i \(0.410148\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 3054.00 0.110522
\(915\) 0 0
\(916\) 17850.0 0.643865
\(917\) −49608.0 −1.78648
\(918\) 0 0
\(919\) −11350.0 −0.407401 −0.203701 0.979033i \(-0.565297\pi\)
−0.203701 + 0.979033i \(0.565297\pi\)
\(920\) 10920.0 0.391328
\(921\) 0 0
\(922\) −12882.0 −0.460137
\(923\) −24384.0 −0.869566
\(924\) 0 0
\(925\) 7194.00 0.255716
\(926\) −6148.00 −0.218181
\(927\) 0 0
\(928\) 14490.0 0.512562
\(929\) −33030.0 −1.16650 −0.583250 0.812292i \(-0.698219\pi\)
−0.583250 + 0.812292i \(0.698219\pi\)
\(930\) 0 0
\(931\) 19980.0 0.703349
\(932\) 21294.0 0.748399
\(933\) 0 0
\(934\) 5124.00 0.179510
\(935\) 0 0
\(936\) 0 0
\(937\) 10006.0 0.348860 0.174430 0.984670i \(-0.444192\pi\)
0.174430 + 0.984670i \(0.444192\pi\)
\(938\) 26936.0 0.937624
\(939\) 0 0
\(940\) −14168.0 −0.491606
\(941\) 2622.00 0.0908340 0.0454170 0.998968i \(-0.485538\pi\)
0.0454170 + 0.998968i \(0.485538\pi\)
\(942\) 0 0
\(943\) 76804.0 2.65226
\(944\) 8200.00 0.282720
\(945\) 0 0
\(946\) 0 0
\(947\) 39876.0 1.36832 0.684158 0.729334i \(-0.260170\pi\)
0.684158 + 0.729334i \(0.260170\pi\)
\(948\) 0 0
\(949\) 17344.0 0.593267
\(950\) 6540.00 0.223353
\(951\) 0 0
\(952\) 28860.0 0.982519
\(953\) 38918.0 1.32285 0.661426 0.750011i \(-0.269952\pi\)
0.661426 + 0.750011i \(0.269952\pi\)
\(954\) 0 0
\(955\) 7112.00 0.240983
\(956\) −18900.0 −0.639403
\(957\) 0 0
\(958\) 16520.0 0.557137
\(959\) 56836.0 1.91380
\(960\) 0 0
\(961\) −29727.0 −0.997852
\(962\) 2112.00 0.0707834
\(963\) 0 0
\(964\) −4046.00 −0.135179
\(965\) 15848.0 0.528669
\(966\) 0 0
\(967\) −1114.00 −0.0370464 −0.0185232 0.999828i \(-0.505896\pi\)
−0.0185232 + 0.999828i \(0.505896\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −56.0000 −0.00185366
\(971\) 1688.00 0.0557884 0.0278942 0.999611i \(-0.491120\pi\)
0.0278942 + 0.999611i \(0.491120\pi\)
\(972\) 0 0
\(973\) −71240.0 −2.34722
\(974\) −524.000 −0.0172382
\(975\) 0 0
\(976\) −5412.00 −0.177494
\(977\) 41826.0 1.36963 0.684817 0.728715i \(-0.259882\pi\)
0.684817 + 0.728715i \(0.259882\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −9324.00 −0.303923
\(981\) 0 0
\(982\) 15028.0 0.488353
\(983\) −978.000 −0.0317328 −0.0158664 0.999874i \(-0.505051\pi\)
−0.0158664 + 0.999874i \(0.505051\pi\)
\(984\) 0 0
\(985\) 1496.00 0.0483924
\(986\) 6660.00 0.215109
\(987\) 0 0
\(988\) −13440.0 −0.432777
\(989\) −74256.0 −2.38747
\(990\) 0 0
\(991\) 47272.0 1.51528 0.757641 0.652671i \(-0.226352\pi\)
0.757641 + 0.652671i \(0.226352\pi\)
\(992\) 1288.00 0.0412238
\(993\) 0 0
\(994\) 19812.0 0.632192
\(995\) 8400.00 0.267636
\(996\) 0 0
\(997\) −51104.0 −1.62335 −0.811675 0.584109i \(-0.801444\pi\)
−0.811675 + 0.584109i \(0.801444\pi\)
\(998\) −9020.00 −0.286095
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.4.a.e.1.1 1
3.2 odd 2 363.4.a.d.1.1 1
11.10 odd 2 99.4.a.a.1.1 1
33.32 even 2 33.4.a.b.1.1 1
44.43 even 2 1584.4.a.l.1.1 1
55.54 odd 2 2475.4.a.e.1.1 1
132.131 odd 2 528.4.a.h.1.1 1
165.32 odd 4 825.4.c.f.199.1 2
165.98 odd 4 825.4.c.f.199.2 2
165.164 even 2 825.4.a.f.1.1 1
231.230 odd 2 1617.4.a.d.1.1 1
264.131 odd 2 2112.4.a.h.1.1 1
264.197 even 2 2112.4.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.b.1.1 1 33.32 even 2
99.4.a.a.1.1 1 11.10 odd 2
363.4.a.d.1.1 1 3.2 odd 2
528.4.a.h.1.1 1 132.131 odd 2
825.4.a.f.1.1 1 165.164 even 2
825.4.c.f.199.1 2 165.32 odd 4
825.4.c.f.199.2 2 165.98 odd 4
1089.4.a.e.1.1 1 1.1 even 1 trivial
1584.4.a.l.1.1 1 44.43 even 2
1617.4.a.d.1.1 1 231.230 odd 2
2112.4.a.h.1.1 1 264.131 odd 2
2112.4.a.u.1.1 1 264.197 even 2
2475.4.a.e.1.1 1 55.54 odd 2