Properties

Label 1089.4.a.bi.1.1
Level $1089$
Weight $4$
Character 1089.1
Self dual yes
Analytic conductor $64.253$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,4,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.2530799963\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 30x^{4} + 3x^{3} + 211x^{2} + 208x + 44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.12458\) of defining polynomial
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.12458 q^{2} +18.2613 q^{4} -14.9367 q^{5} -12.3403 q^{7} -52.5849 q^{8} +76.5442 q^{10} +30.5222 q^{13} +63.2387 q^{14} +123.385 q^{16} -132.065 q^{17} -22.3068 q^{19} -272.763 q^{20} +158.801 q^{23} +98.1044 q^{25} -156.413 q^{26} -225.349 q^{28} +47.7165 q^{29} +68.0343 q^{31} -211.617 q^{32} +676.778 q^{34} +184.323 q^{35} +158.409 q^{37} +114.313 q^{38} +785.444 q^{40} -286.159 q^{41} +103.549 q^{43} -813.790 q^{46} +464.238 q^{47} -190.718 q^{49} -502.744 q^{50} +557.375 q^{52} +6.04835 q^{53} +648.912 q^{56} -244.527 q^{58} +221.619 q^{59} -274.338 q^{61} -348.647 q^{62} +97.3683 q^{64} -455.900 q^{65} +187.178 q^{67} -2411.68 q^{68} -944.576 q^{70} +457.714 q^{71} -270.332 q^{73} -811.780 q^{74} -407.352 q^{76} +493.647 q^{79} -1842.96 q^{80} +1466.45 q^{82} +271.033 q^{83} +1972.61 q^{85} -530.646 q^{86} +77.4891 q^{89} -376.652 q^{91} +2899.92 q^{92} -2379.02 q^{94} +333.190 q^{95} -1269.39 q^{97} +977.348 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{2} + 17 q^{4} - 9 q^{5} + q^{7} - 24 q^{8} + 50 q^{10} + 66 q^{13} + 42 q^{14} - 71 q^{16} - 80 q^{17} - 90 q^{19} - 455 q^{20} + 196 q^{23} + 351 q^{25} - 93 q^{26} - 52 q^{28} - 579 q^{29}+ \cdots - 1405 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.12458 −1.81181 −0.905906 0.423478i \(-0.860809\pi\)
−0.905906 + 0.423478i \(0.860809\pi\)
\(3\) 0 0
\(4\) 18.2613 2.28266
\(5\) −14.9367 −1.33598 −0.667989 0.744172i \(-0.732845\pi\)
−0.667989 + 0.744172i \(0.732845\pi\)
\(6\) 0 0
\(7\) −12.3403 −0.666312 −0.333156 0.942872i \(-0.608114\pi\)
−0.333156 + 0.942872i \(0.608114\pi\)
\(8\) −52.5849 −2.32395
\(9\) 0 0
\(10\) 76.5442 2.42054
\(11\) 0 0
\(12\) 0 0
\(13\) 30.5222 0.651179 0.325590 0.945511i \(-0.394437\pi\)
0.325590 + 0.945511i \(0.394437\pi\)
\(14\) 63.2387 1.20723
\(15\) 0 0
\(16\) 123.385 1.92789
\(17\) −132.065 −1.88415 −0.942073 0.335409i \(-0.891126\pi\)
−0.942073 + 0.335409i \(0.891126\pi\)
\(18\) 0 0
\(19\) −22.3068 −0.269344 −0.134672 0.990890i \(-0.542998\pi\)
−0.134672 + 0.990890i \(0.542998\pi\)
\(20\) −272.763 −3.04959
\(21\) 0 0
\(22\) 0 0
\(23\) 158.801 1.43967 0.719834 0.694147i \(-0.244218\pi\)
0.719834 + 0.694147i \(0.244218\pi\)
\(24\) 0 0
\(25\) 98.1044 0.784835
\(26\) −156.413 −1.17982
\(27\) 0 0
\(28\) −225.349 −1.52097
\(29\) 47.7165 0.305543 0.152771 0.988262i \(-0.451180\pi\)
0.152771 + 0.988262i \(0.451180\pi\)
\(30\) 0 0
\(31\) 68.0343 0.394172 0.197086 0.980386i \(-0.436852\pi\)
0.197086 + 0.980386i \(0.436852\pi\)
\(32\) −211.617 −1.16903
\(33\) 0 0
\(34\) 676.778 3.41372
\(35\) 184.323 0.890177
\(36\) 0 0
\(37\) 158.409 0.703846 0.351923 0.936029i \(-0.385528\pi\)
0.351923 + 0.936029i \(0.385528\pi\)
\(38\) 114.313 0.488001
\(39\) 0 0
\(40\) 785.444 3.10474
\(41\) −286.159 −1.09001 −0.545007 0.838432i \(-0.683473\pi\)
−0.545007 + 0.838432i \(0.683473\pi\)
\(42\) 0 0
\(43\) 103.549 0.367235 0.183617 0.982998i \(-0.441219\pi\)
0.183617 + 0.982998i \(0.441219\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −813.790 −2.60841
\(47\) 464.238 1.44077 0.720383 0.693576i \(-0.243966\pi\)
0.720383 + 0.693576i \(0.243966\pi\)
\(48\) 0 0
\(49\) −190.718 −0.556029
\(50\) −502.744 −1.42197
\(51\) 0 0
\(52\) 557.375 1.48642
\(53\) 6.04835 0.0156756 0.00783778 0.999969i \(-0.497505\pi\)
0.00783778 + 0.999969i \(0.497505\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 648.912 1.54847
\(57\) 0 0
\(58\) −244.527 −0.553586
\(59\) 221.619 0.489023 0.244511 0.969646i \(-0.421372\pi\)
0.244511 + 0.969646i \(0.421372\pi\)
\(60\) 0 0
\(61\) −274.338 −0.575825 −0.287913 0.957657i \(-0.592961\pi\)
−0.287913 + 0.957657i \(0.592961\pi\)
\(62\) −348.647 −0.714165
\(63\) 0 0
\(64\) 97.3683 0.190172
\(65\) −455.900 −0.869961
\(66\) 0 0
\(67\) 187.178 0.341304 0.170652 0.985331i \(-0.445413\pi\)
0.170652 + 0.985331i \(0.445413\pi\)
\(68\) −2411.68 −4.30087
\(69\) 0 0
\(70\) −944.576 −1.61283
\(71\) 457.714 0.765080 0.382540 0.923939i \(-0.375049\pi\)
0.382540 + 0.923939i \(0.375049\pi\)
\(72\) 0 0
\(73\) −270.332 −0.433424 −0.216712 0.976236i \(-0.569533\pi\)
−0.216712 + 0.976236i \(0.569533\pi\)
\(74\) −811.780 −1.27524
\(75\) 0 0
\(76\) −407.352 −0.614822
\(77\) 0 0
\(78\) 0 0
\(79\) 493.647 0.703033 0.351517 0.936182i \(-0.385666\pi\)
0.351517 + 0.936182i \(0.385666\pi\)
\(80\) −1842.96 −2.57562
\(81\) 0 0
\(82\) 1466.45 1.97490
\(83\) 271.033 0.358431 0.179216 0.983810i \(-0.442644\pi\)
0.179216 + 0.983810i \(0.442644\pi\)
\(84\) 0 0
\(85\) 1972.61 2.51718
\(86\) −530.646 −0.665361
\(87\) 0 0
\(88\) 0 0
\(89\) 77.4891 0.0922902 0.0461451 0.998935i \(-0.485306\pi\)
0.0461451 + 0.998935i \(0.485306\pi\)
\(90\) 0 0
\(91\) −376.652 −0.433889
\(92\) 2899.92 3.28628
\(93\) 0 0
\(94\) −2379.02 −2.61040
\(95\) 333.190 0.359837
\(96\) 0 0
\(97\) −1269.39 −1.32873 −0.664364 0.747409i \(-0.731298\pi\)
−0.664364 + 0.747409i \(0.731298\pi\)
\(98\) 977.348 1.00742
\(99\) 0 0
\(100\) 1791.51 1.79151
\(101\) 1238.06 1.21972 0.609859 0.792510i \(-0.291226\pi\)
0.609859 + 0.792510i \(0.291226\pi\)
\(102\) 0 0
\(103\) 911.965 0.872413 0.436206 0.899847i \(-0.356322\pi\)
0.436206 + 0.899847i \(0.356322\pi\)
\(104\) −1605.01 −1.51331
\(105\) 0 0
\(106\) −30.9953 −0.0284012
\(107\) 1583.34 1.43054 0.715269 0.698849i \(-0.246304\pi\)
0.715269 + 0.698849i \(0.246304\pi\)
\(108\) 0 0
\(109\) 296.898 0.260896 0.130448 0.991455i \(-0.458358\pi\)
0.130448 + 0.991455i \(0.458358\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1522.60 −1.28458
\(113\) 109.404 0.0910787 0.0455393 0.998963i \(-0.485499\pi\)
0.0455393 + 0.998963i \(0.485499\pi\)
\(114\) 0 0
\(115\) −2371.96 −1.92336
\(116\) 871.367 0.697451
\(117\) 0 0
\(118\) −1135.70 −0.886017
\(119\) 1629.72 1.25543
\(120\) 0 0
\(121\) 0 0
\(122\) 1405.86 1.04329
\(123\) 0 0
\(124\) 1242.40 0.899761
\(125\) 401.731 0.287455
\(126\) 0 0
\(127\) 1387.37 0.969366 0.484683 0.874690i \(-0.338935\pi\)
0.484683 + 0.874690i \(0.338935\pi\)
\(128\) 1193.97 0.824474
\(129\) 0 0
\(130\) 2336.30 1.57621
\(131\) −1515.23 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(132\) 0 0
\(133\) 275.272 0.179467
\(134\) −959.207 −0.618379
\(135\) 0 0
\(136\) 6944.63 4.37865
\(137\) 2970.09 1.85220 0.926101 0.377275i \(-0.123139\pi\)
0.926101 + 0.377275i \(0.123139\pi\)
\(138\) 0 0
\(139\) −2152.08 −1.31322 −0.656608 0.754232i \(-0.728010\pi\)
−0.656608 + 0.754232i \(0.728010\pi\)
\(140\) 3365.97 2.03198
\(141\) 0 0
\(142\) −2345.59 −1.38618
\(143\) 0 0
\(144\) 0 0
\(145\) −712.727 −0.408198
\(146\) 1385.34 0.785283
\(147\) 0 0
\(148\) 2892.76 1.60664
\(149\) 132.876 0.0730579 0.0365290 0.999333i \(-0.488370\pi\)
0.0365290 + 0.999333i \(0.488370\pi\)
\(150\) 0 0
\(151\) 212.982 0.114783 0.0573915 0.998352i \(-0.481722\pi\)
0.0573915 + 0.998352i \(0.481722\pi\)
\(152\) 1173.00 0.625941
\(153\) 0 0
\(154\) 0 0
\(155\) −1016.21 −0.526604
\(156\) 0 0
\(157\) −2925.09 −1.48693 −0.743464 0.668776i \(-0.766818\pi\)
−0.743464 + 0.668776i \(0.766818\pi\)
\(158\) −2529.73 −1.27376
\(159\) 0 0
\(160\) 3160.86 1.56180
\(161\) −1959.65 −0.959267
\(162\) 0 0
\(163\) −633.267 −0.304302 −0.152151 0.988357i \(-0.548620\pi\)
−0.152151 + 0.988357i \(0.548620\pi\)
\(164\) −5225.64 −2.48813
\(165\) 0 0
\(166\) −1388.93 −0.649410
\(167\) 1533.33 0.710496 0.355248 0.934772i \(-0.384396\pi\)
0.355248 + 0.934772i \(0.384396\pi\)
\(168\) 0 0
\(169\) −1265.40 −0.575965
\(170\) −10108.8 −4.56065
\(171\) 0 0
\(172\) 1890.94 0.838274
\(173\) −3326.68 −1.46198 −0.730991 0.682388i \(-0.760942\pi\)
−0.730991 + 0.682388i \(0.760942\pi\)
\(174\) 0 0
\(175\) −1210.63 −0.522945
\(176\) 0 0
\(177\) 0 0
\(178\) −397.099 −0.167212
\(179\) −4261.40 −1.77940 −0.889698 0.456549i \(-0.849085\pi\)
−0.889698 + 0.456549i \(0.849085\pi\)
\(180\) 0 0
\(181\) 741.930 0.304681 0.152340 0.988328i \(-0.451319\pi\)
0.152340 + 0.988328i \(0.451319\pi\)
\(182\) 1930.18 0.786125
\(183\) 0 0
\(184\) −8350.55 −3.34571
\(185\) −2366.11 −0.940323
\(186\) 0 0
\(187\) 0 0
\(188\) 8477.59 3.28879
\(189\) 0 0
\(190\) −1707.46 −0.651958
\(191\) −4132.16 −1.56541 −0.782704 0.622394i \(-0.786160\pi\)
−0.782704 + 0.622394i \(0.786160\pi\)
\(192\) 0 0
\(193\) 3081.78 1.14938 0.574692 0.818370i \(-0.305122\pi\)
0.574692 + 0.818370i \(0.305122\pi\)
\(194\) 6505.07 2.40741
\(195\) 0 0
\(196\) −3482.76 −1.26923
\(197\) −3059.84 −1.10662 −0.553310 0.832975i \(-0.686636\pi\)
−0.553310 + 0.832975i \(0.686636\pi\)
\(198\) 0 0
\(199\) −971.928 −0.346222 −0.173111 0.984902i \(-0.555382\pi\)
−0.173111 + 0.984902i \(0.555382\pi\)
\(200\) −5158.81 −1.82391
\(201\) 0 0
\(202\) −6344.54 −2.20990
\(203\) −588.835 −0.203587
\(204\) 0 0
\(205\) 4274.27 1.45623
\(206\) −4673.43 −1.58065
\(207\) 0 0
\(208\) 3765.98 1.25540
\(209\) 0 0
\(210\) 0 0
\(211\) 3327.16 1.08555 0.542775 0.839878i \(-0.317374\pi\)
0.542775 + 0.839878i \(0.317374\pi\)
\(212\) 110.451 0.0357821
\(213\) 0 0
\(214\) −8113.97 −2.59187
\(215\) −1546.68 −0.490617
\(216\) 0 0
\(217\) −839.562 −0.262641
\(218\) −1521.48 −0.472694
\(219\) 0 0
\(220\) 0 0
\(221\) −4030.91 −1.22692
\(222\) 0 0
\(223\) 4915.02 1.47594 0.737969 0.674834i \(-0.235785\pi\)
0.737969 + 0.674834i \(0.235785\pi\)
\(224\) 2611.41 0.778939
\(225\) 0 0
\(226\) −560.651 −0.165017
\(227\) 1062.64 0.310706 0.155353 0.987859i \(-0.450349\pi\)
0.155353 + 0.987859i \(0.450349\pi\)
\(228\) 0 0
\(229\) −4312.88 −1.24456 −0.622278 0.782796i \(-0.713793\pi\)
−0.622278 + 0.782796i \(0.713793\pi\)
\(230\) 12155.3 3.48477
\(231\) 0 0
\(232\) −2509.17 −0.710065
\(233\) −5154.61 −1.44931 −0.724655 0.689111i \(-0.758001\pi\)
−0.724655 + 0.689111i \(0.758001\pi\)
\(234\) 0 0
\(235\) −6934.17 −1.92483
\(236\) 4047.05 1.11627
\(237\) 0 0
\(238\) −8351.62 −2.27460
\(239\) 124.293 0.0336395 0.0168197 0.999859i \(-0.494646\pi\)
0.0168197 + 0.999859i \(0.494646\pi\)
\(240\) 0 0
\(241\) −445.539 −0.119086 −0.0595429 0.998226i \(-0.518964\pi\)
−0.0595429 + 0.998226i \(0.518964\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −5009.76 −1.31442
\(245\) 2848.69 0.742841
\(246\) 0 0
\(247\) −680.853 −0.175391
\(248\) −3577.58 −0.916034
\(249\) 0 0
\(250\) −2058.70 −0.520815
\(251\) −1471.10 −0.369940 −0.184970 0.982744i \(-0.559219\pi\)
−0.184970 + 0.982744i \(0.559219\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −7109.70 −1.75631
\(255\) 0 0
\(256\) −6897.52 −1.68396
\(257\) −1463.01 −0.355097 −0.177549 0.984112i \(-0.556817\pi\)
−0.177549 + 0.984112i \(0.556817\pi\)
\(258\) 0 0
\(259\) −1954.81 −0.468981
\(260\) −8325.34 −1.98583
\(261\) 0 0
\(262\) 7764.91 1.83098
\(263\) 734.717 0.172261 0.0861304 0.996284i \(-0.472550\pi\)
0.0861304 + 0.996284i \(0.472550\pi\)
\(264\) 0 0
\(265\) −90.3423 −0.0209422
\(266\) −1410.65 −0.325161
\(267\) 0 0
\(268\) 3418.11 0.779083
\(269\) −3427.29 −0.776823 −0.388411 0.921486i \(-0.626976\pi\)
−0.388411 + 0.921486i \(0.626976\pi\)
\(270\) 0 0
\(271\) 1719.34 0.385398 0.192699 0.981258i \(-0.438276\pi\)
0.192699 + 0.981258i \(0.438276\pi\)
\(272\) −16294.8 −3.63243
\(273\) 0 0
\(274\) −15220.5 −3.35584
\(275\) 0 0
\(276\) 0 0
\(277\) 5156.07 1.11841 0.559203 0.829031i \(-0.311107\pi\)
0.559203 + 0.829031i \(0.311107\pi\)
\(278\) 11028.5 2.37930
\(279\) 0 0
\(280\) −9692.59 −2.06872
\(281\) −5020.69 −1.06587 −0.532934 0.846157i \(-0.678911\pi\)
−0.532934 + 0.846157i \(0.678911\pi\)
\(282\) 0 0
\(283\) −1878.02 −0.394477 −0.197238 0.980356i \(-0.563197\pi\)
−0.197238 + 0.980356i \(0.563197\pi\)
\(284\) 8358.46 1.74642
\(285\) 0 0
\(286\) 0 0
\(287\) 3531.28 0.726289
\(288\) 0 0
\(289\) 12528.2 2.55000
\(290\) 3652.42 0.739578
\(291\) 0 0
\(292\) −4936.61 −0.989361
\(293\) −4811.63 −0.959379 −0.479690 0.877438i \(-0.659251\pi\)
−0.479690 + 0.877438i \(0.659251\pi\)
\(294\) 0 0
\(295\) −3310.25 −0.653323
\(296\) −8329.93 −1.63570
\(297\) 0 0
\(298\) −680.934 −0.132367
\(299\) 4846.96 0.937482
\(300\) 0 0
\(301\) −1277.82 −0.244693
\(302\) −1091.44 −0.207965
\(303\) 0 0
\(304\) −2752.33 −0.519266
\(305\) 4097.69 0.769289
\(306\) 0 0
\(307\) −598.905 −0.111340 −0.0556699 0.998449i \(-0.517729\pi\)
−0.0556699 + 0.998449i \(0.517729\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5207.63 0.954108
\(311\) −5131.15 −0.935566 −0.467783 0.883843i \(-0.654947\pi\)
−0.467783 + 0.883843i \(0.654947\pi\)
\(312\) 0 0
\(313\) −9541.45 −1.72305 −0.861525 0.507716i \(-0.830490\pi\)
−0.861525 + 0.507716i \(0.830490\pi\)
\(314\) 14989.9 2.69403
\(315\) 0 0
\(316\) 9014.64 1.60479
\(317\) −6603.42 −1.16998 −0.584992 0.811039i \(-0.698902\pi\)
−0.584992 + 0.811039i \(0.698902\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1454.36 −0.254066
\(321\) 0 0
\(322\) 10042.4 1.73801
\(323\) 2945.95 0.507483
\(324\) 0 0
\(325\) 2994.36 0.511068
\(326\) 3245.23 0.551339
\(327\) 0 0
\(328\) 15047.7 2.53313
\(329\) −5728.82 −0.960000
\(330\) 0 0
\(331\) −6549.79 −1.08764 −0.543820 0.839202i \(-0.683023\pi\)
−0.543820 + 0.839202i \(0.683023\pi\)
\(332\) 4949.43 0.818178
\(333\) 0 0
\(334\) −7857.69 −1.28729
\(335\) −2795.81 −0.455975
\(336\) 0 0
\(337\) −2690.38 −0.434879 −0.217439 0.976074i \(-0.569770\pi\)
−0.217439 + 0.976074i \(0.569770\pi\)
\(338\) 6484.62 1.04354
\(339\) 0 0
\(340\) 36022.5 5.74587
\(341\) 0 0
\(342\) 0 0
\(343\) 6586.22 1.03680
\(344\) −5445.12 −0.853434
\(345\) 0 0
\(346\) 17047.8 2.64884
\(347\) 778.334 0.120413 0.0602063 0.998186i \(-0.480824\pi\)
0.0602063 + 0.998186i \(0.480824\pi\)
\(348\) 0 0
\(349\) −5416.06 −0.830702 −0.415351 0.909661i \(-0.636341\pi\)
−0.415351 + 0.909661i \(0.636341\pi\)
\(350\) 6203.99 0.947478
\(351\) 0 0
\(352\) 0 0
\(353\) 4504.51 0.679181 0.339591 0.940573i \(-0.389711\pi\)
0.339591 + 0.940573i \(0.389711\pi\)
\(354\) 0 0
\(355\) −6836.73 −1.02213
\(356\) 1415.05 0.210667
\(357\) 0 0
\(358\) 21837.9 3.22393
\(359\) −8588.42 −1.26262 −0.631308 0.775532i \(-0.717482\pi\)
−0.631308 + 0.775532i \(0.717482\pi\)
\(360\) 0 0
\(361\) −6361.41 −0.927454
\(362\) −3802.08 −0.552025
\(363\) 0 0
\(364\) −6878.16 −0.990422
\(365\) 4037.86 0.579045
\(366\) 0 0
\(367\) 2178.08 0.309795 0.154897 0.987931i \(-0.450495\pi\)
0.154897 + 0.987931i \(0.450495\pi\)
\(368\) 19593.7 2.77552
\(369\) 0 0
\(370\) 12125.3 1.70369
\(371\) −74.6383 −0.0104448
\(372\) 0 0
\(373\) −12814.7 −1.77888 −0.889440 0.457052i \(-0.848905\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −24411.9 −3.34826
\(377\) 1456.41 0.198963
\(378\) 0 0
\(379\) 7302.82 0.989764 0.494882 0.868960i \(-0.335211\pi\)
0.494882 + 0.868960i \(0.335211\pi\)
\(380\) 6084.48 0.821388
\(381\) 0 0
\(382\) 21175.6 2.83622
\(383\) −11314.0 −1.50945 −0.754726 0.656040i \(-0.772230\pi\)
−0.754726 + 0.656040i \(0.772230\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15792.8 −2.08247
\(387\) 0 0
\(388\) −23180.7 −3.03304
\(389\) 2955.81 0.385259 0.192629 0.981272i \(-0.438299\pi\)
0.192629 + 0.981272i \(0.438299\pi\)
\(390\) 0 0
\(391\) −20972.1 −2.71254
\(392\) 10028.9 1.29218
\(393\) 0 0
\(394\) 15680.4 2.00499
\(395\) −7373.45 −0.939236
\(396\) 0 0
\(397\) 12391.9 1.56658 0.783288 0.621659i \(-0.213541\pi\)
0.783288 + 0.621659i \(0.213541\pi\)
\(398\) 4980.72 0.627289
\(399\) 0 0
\(400\) 12104.6 1.51308
\(401\) −7592.65 −0.945533 −0.472766 0.881188i \(-0.656745\pi\)
−0.472766 + 0.881188i \(0.656745\pi\)
\(402\) 0 0
\(403\) 2076.56 0.256677
\(404\) 22608.6 2.78421
\(405\) 0 0
\(406\) 3017.53 0.368861
\(407\) 0 0
\(408\) 0 0
\(409\) −7275.77 −0.879618 −0.439809 0.898091i \(-0.644954\pi\)
−0.439809 + 0.898091i \(0.644954\pi\)
\(410\) −21903.8 −2.63842
\(411\) 0 0
\(412\) 16653.7 1.99143
\(413\) −2734.84 −0.325842
\(414\) 0 0
\(415\) −4048.34 −0.478856
\(416\) −6459.02 −0.761248
\(417\) 0 0
\(418\) 0 0
\(419\) −11095.7 −1.29370 −0.646851 0.762616i \(-0.723915\pi\)
−0.646851 + 0.762616i \(0.723915\pi\)
\(420\) 0 0
\(421\) −5103.54 −0.590811 −0.295406 0.955372i \(-0.595455\pi\)
−0.295406 + 0.955372i \(0.595455\pi\)
\(422\) −17050.3 −1.96681
\(423\) 0 0
\(424\) −318.052 −0.0364292
\(425\) −12956.2 −1.47874
\(426\) 0 0
\(427\) 3385.40 0.383679
\(428\) 28913.9 3.26544
\(429\) 0 0
\(430\) 7926.09 0.888906
\(431\) 14437.7 1.61355 0.806774 0.590861i \(-0.201212\pi\)
0.806774 + 0.590861i \(0.201212\pi\)
\(432\) 0 0
\(433\) 4236.83 0.470229 0.235114 0.971968i \(-0.424454\pi\)
0.235114 + 0.971968i \(0.424454\pi\)
\(434\) 4302.40 0.475857
\(435\) 0 0
\(436\) 5421.74 0.595538
\(437\) −3542.35 −0.387766
\(438\) 0 0
\(439\) 1809.83 0.196761 0.0983807 0.995149i \(-0.468634\pi\)
0.0983807 + 0.995149i \(0.468634\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 20656.7 2.22294
\(443\) −4797.37 −0.514514 −0.257257 0.966343i \(-0.582819\pi\)
−0.257257 + 0.966343i \(0.582819\pi\)
\(444\) 0 0
\(445\) −1157.43 −0.123298
\(446\) −25187.4 −2.67412
\(447\) 0 0
\(448\) −1201.55 −0.126714
\(449\) 9177.20 0.964585 0.482293 0.876010i \(-0.339804\pi\)
0.482293 + 0.876010i \(0.339804\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1997.87 0.207902
\(453\) 0 0
\(454\) −5445.61 −0.562940
\(455\) 5625.93 0.579665
\(456\) 0 0
\(457\) 6179.47 0.632524 0.316262 0.948672i \(-0.397572\pi\)
0.316262 + 0.948672i \(0.397572\pi\)
\(458\) 22101.7 2.25490
\(459\) 0 0
\(460\) −43315.2 −4.39039
\(461\) 16827.2 1.70004 0.850022 0.526747i \(-0.176589\pi\)
0.850022 + 0.526747i \(0.176589\pi\)
\(462\) 0 0
\(463\) −818.694 −0.0821770 −0.0410885 0.999156i \(-0.513083\pi\)
−0.0410885 + 0.999156i \(0.513083\pi\)
\(464\) 5887.51 0.589053
\(465\) 0 0
\(466\) 26415.2 2.62588
\(467\) 16789.7 1.66367 0.831836 0.555021i \(-0.187290\pi\)
0.831836 + 0.555021i \(0.187290\pi\)
\(468\) 0 0
\(469\) −2309.82 −0.227415
\(470\) 35534.7 3.48743
\(471\) 0 0
\(472\) −11653.8 −1.13646
\(473\) 0 0
\(474\) 0 0
\(475\) −2188.40 −0.211391
\(476\) 29760.8 2.86572
\(477\) 0 0
\(478\) −636.949 −0.0609485
\(479\) 4656.56 0.444183 0.222092 0.975026i \(-0.428712\pi\)
0.222092 + 0.975026i \(0.428712\pi\)
\(480\) 0 0
\(481\) 4835.00 0.458330
\(482\) 2283.20 0.215761
\(483\) 0 0
\(484\) 0 0
\(485\) 18960.4 1.77515
\(486\) 0 0
\(487\) 17627.2 1.64018 0.820089 0.572236i \(-0.193924\pi\)
0.820089 + 0.572236i \(0.193924\pi\)
\(488\) 14426.0 1.33819
\(489\) 0 0
\(490\) −14598.3 −1.34589
\(491\) 14954.8 1.37454 0.687269 0.726403i \(-0.258809\pi\)
0.687269 + 0.726403i \(0.258809\pi\)
\(492\) 0 0
\(493\) −6301.69 −0.575687
\(494\) 3489.09 0.317776
\(495\) 0 0
\(496\) 8394.41 0.759920
\(497\) −5648.32 −0.509782
\(498\) 0 0
\(499\) −21474.7 −1.92653 −0.963265 0.268554i \(-0.913454\pi\)
−0.963265 + 0.268554i \(0.913454\pi\)
\(500\) 7336.14 0.656164
\(501\) 0 0
\(502\) 7538.77 0.670263
\(503\) −11832.4 −1.04887 −0.524435 0.851450i \(-0.675723\pi\)
−0.524435 + 0.851450i \(0.675723\pi\)
\(504\) 0 0
\(505\) −18492.5 −1.62952
\(506\) 0 0
\(507\) 0 0
\(508\) 25335.2 2.21274
\(509\) 13571.6 1.18183 0.590914 0.806735i \(-0.298767\pi\)
0.590914 + 0.806735i \(0.298767\pi\)
\(510\) 0 0
\(511\) 3335.97 0.288796
\(512\) 25795.1 2.22655
\(513\) 0 0
\(514\) 7497.31 0.643370
\(515\) −13621.7 −1.16552
\(516\) 0 0
\(517\) 0 0
\(518\) 10017.6 0.849706
\(519\) 0 0
\(520\) 23973.5 2.02174
\(521\) 2124.44 0.178644 0.0893221 0.996003i \(-0.471530\pi\)
0.0893221 + 0.996003i \(0.471530\pi\)
\(522\) 0 0
\(523\) −5558.58 −0.464741 −0.232371 0.972627i \(-0.574648\pi\)
−0.232371 + 0.972627i \(0.574648\pi\)
\(524\) −27670.1 −2.30682
\(525\) 0 0
\(526\) −3765.11 −0.312104
\(527\) −8984.95 −0.742677
\(528\) 0 0
\(529\) 13050.8 1.07264
\(530\) 462.966 0.0379433
\(531\) 0 0
\(532\) 5026.83 0.409663
\(533\) −8734.21 −0.709794
\(534\) 0 0
\(535\) −23649.9 −1.91117
\(536\) −9842.72 −0.793173
\(537\) 0 0
\(538\) 17563.4 1.40746
\(539\) 0 0
\(540\) 0 0
\(541\) 13186.0 1.04789 0.523946 0.851751i \(-0.324459\pi\)
0.523946 + 0.851751i \(0.324459\pi\)
\(542\) −8810.92 −0.698268
\(543\) 0 0
\(544\) 27947.2 2.20262
\(545\) −4434.67 −0.348551
\(546\) 0 0
\(547\) 20380.7 1.59308 0.796539 0.604587i \(-0.206662\pi\)
0.796539 + 0.604587i \(0.206662\pi\)
\(548\) 54237.7 4.22796
\(549\) 0 0
\(550\) 0 0
\(551\) −1064.40 −0.0822961
\(552\) 0 0
\(553\) −6091.74 −0.468439
\(554\) −26422.7 −2.02634
\(555\) 0 0
\(556\) −39299.8 −2.99763
\(557\) 8523.55 0.648392 0.324196 0.945990i \(-0.394906\pi\)
0.324196 + 0.945990i \(0.394906\pi\)
\(558\) 0 0
\(559\) 3160.55 0.239136
\(560\) 22742.7 1.71616
\(561\) 0 0
\(562\) 25728.9 1.93115
\(563\) −24660.1 −1.84600 −0.923000 0.384801i \(-0.874270\pi\)
−0.923000 + 0.384801i \(0.874270\pi\)
\(564\) 0 0
\(565\) −1634.14 −0.121679
\(566\) 9624.08 0.714718
\(567\) 0 0
\(568\) −24068.9 −1.77801
\(569\) −6276.91 −0.462464 −0.231232 0.972899i \(-0.574276\pi\)
−0.231232 + 0.972899i \(0.574276\pi\)
\(570\) 0 0
\(571\) 13032.1 0.955127 0.477563 0.878597i \(-0.341520\pi\)
0.477563 + 0.878597i \(0.341520\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −18096.3 −1.31590
\(575\) 15579.1 1.12990
\(576\) 0 0
\(577\) 7724.04 0.557289 0.278645 0.960394i \(-0.410115\pi\)
0.278645 + 0.960394i \(0.410115\pi\)
\(578\) −64201.6 −4.62013
\(579\) 0 0
\(580\) −13015.3 −0.931779
\(581\) −3344.63 −0.238827
\(582\) 0 0
\(583\) 0 0
\(584\) 14215.4 1.00725
\(585\) 0 0
\(586\) 24657.6 1.73822
\(587\) −3858.98 −0.271341 −0.135670 0.990754i \(-0.543319\pi\)
−0.135670 + 0.990754i \(0.543319\pi\)
\(588\) 0 0
\(589\) −1517.63 −0.106168
\(590\) 16963.7 1.18370
\(591\) 0 0
\(592\) 19545.3 1.35694
\(593\) −26982.6 −1.86854 −0.934270 0.356567i \(-0.883947\pi\)
−0.934270 + 0.356567i \(0.883947\pi\)
\(594\) 0 0
\(595\) −24342.6 −1.67722
\(596\) 2426.49 0.166767
\(597\) 0 0
\(598\) −24838.6 −1.69854
\(599\) 22912.4 1.56289 0.781447 0.623971i \(-0.214482\pi\)
0.781447 + 0.623971i \(0.214482\pi\)
\(600\) 0 0
\(601\) 3091.89 0.209851 0.104926 0.994480i \(-0.466540\pi\)
0.104926 + 0.994480i \(0.466540\pi\)
\(602\) 6548.31 0.443338
\(603\) 0 0
\(604\) 3889.33 0.262011
\(605\) 0 0
\(606\) 0 0
\(607\) −13059.0 −0.873225 −0.436612 0.899650i \(-0.643822\pi\)
−0.436612 + 0.899650i \(0.643822\pi\)
\(608\) 4720.50 0.314871
\(609\) 0 0
\(610\) −20999.0 −1.39381
\(611\) 14169.5 0.938197
\(612\) 0 0
\(613\) −27025.2 −1.78065 −0.890325 0.455326i \(-0.849523\pi\)
−0.890325 + 0.455326i \(0.849523\pi\)
\(614\) 3069.13 0.201727
\(615\) 0 0
\(616\) 0 0
\(617\) −23885.0 −1.55847 −0.779235 0.626732i \(-0.784392\pi\)
−0.779235 + 0.626732i \(0.784392\pi\)
\(618\) 0 0
\(619\) −14347.6 −0.931631 −0.465815 0.884882i \(-0.654239\pi\)
−0.465815 + 0.884882i \(0.654239\pi\)
\(620\) −18557.3 −1.20206
\(621\) 0 0
\(622\) 26295.0 1.69507
\(623\) −956.236 −0.0614940
\(624\) 0 0
\(625\) −18263.6 −1.16887
\(626\) 48895.9 3.12184
\(627\) 0 0
\(628\) −53416.0 −3.39415
\(629\) −20920.3 −1.32615
\(630\) 0 0
\(631\) 4672.42 0.294780 0.147390 0.989078i \(-0.452913\pi\)
0.147390 + 0.989078i \(0.452913\pi\)
\(632\) −25958.4 −1.63381
\(633\) 0 0
\(634\) 33839.7 2.11979
\(635\) −20722.7 −1.29505
\(636\) 0 0
\(637\) −5821.13 −0.362074
\(638\) 0 0
\(639\) 0 0
\(640\) −17833.9 −1.10148
\(641\) −1007.49 −0.0620802 −0.0310401 0.999518i \(-0.509882\pi\)
−0.0310401 + 0.999518i \(0.509882\pi\)
\(642\) 0 0
\(643\) −238.620 −0.0146349 −0.00731747 0.999973i \(-0.502329\pi\)
−0.00731747 + 0.999973i \(0.502329\pi\)
\(644\) −35785.8 −2.18969
\(645\) 0 0
\(646\) −15096.8 −0.919464
\(647\) −8030.33 −0.487952 −0.243976 0.969781i \(-0.578452\pi\)
−0.243976 + 0.969781i \(0.578452\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −15344.8 −0.925960
\(651\) 0 0
\(652\) −11564.3 −0.694620
\(653\) −292.050 −0.0175020 −0.00875101 0.999962i \(-0.502786\pi\)
−0.00875101 + 0.999962i \(0.502786\pi\)
\(654\) 0 0
\(655\) 22632.5 1.35011
\(656\) −35307.8 −2.10143
\(657\) 0 0
\(658\) 29357.8 1.73934
\(659\) 9034.21 0.534025 0.267013 0.963693i \(-0.413963\pi\)
0.267013 + 0.963693i \(0.413963\pi\)
\(660\) 0 0
\(661\) 11884.6 0.699332 0.349666 0.936874i \(-0.386295\pi\)
0.349666 + 0.936874i \(0.386295\pi\)
\(662\) 33564.9 1.97060
\(663\) 0 0
\(664\) −14252.3 −0.832975
\(665\) −4111.65 −0.239764
\(666\) 0 0
\(667\) 7577.45 0.439880
\(668\) 28000.7 1.62182
\(669\) 0 0
\(670\) 14327.4 0.826141
\(671\) 0 0
\(672\) 0 0
\(673\) −7483.49 −0.428629 −0.214314 0.976765i \(-0.568752\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(674\) 13787.0 0.787919
\(675\) 0 0
\(676\) −23107.8 −1.31474
\(677\) 31698.6 1.79952 0.899761 0.436384i \(-0.143741\pi\)
0.899761 + 0.436384i \(0.143741\pi\)
\(678\) 0 0
\(679\) 15664.6 0.885347
\(680\) −103730. −5.84978
\(681\) 0 0
\(682\) 0 0
\(683\) 7905.89 0.442914 0.221457 0.975170i \(-0.428919\pi\)
0.221457 + 0.975170i \(0.428919\pi\)
\(684\) 0 0
\(685\) −44363.3 −2.47450
\(686\) −33751.6 −1.87849
\(687\) 0 0
\(688\) 12776.4 0.707989
\(689\) 184.609 0.0102076
\(690\) 0 0
\(691\) −6903.03 −0.380034 −0.190017 0.981781i \(-0.560854\pi\)
−0.190017 + 0.981781i \(0.560854\pi\)
\(692\) −60749.5 −3.33721
\(693\) 0 0
\(694\) −3988.64 −0.218165
\(695\) 32144.9 1.75443
\(696\) 0 0
\(697\) 37791.6 2.05374
\(698\) 27755.0 1.50508
\(699\) 0 0
\(700\) −22107.8 −1.19371
\(701\) −20702.1 −1.11542 −0.557709 0.830036i \(-0.688320\pi\)
−0.557709 + 0.830036i \(0.688320\pi\)
\(702\) 0 0
\(703\) −3533.61 −0.189577
\(704\) 0 0
\(705\) 0 0
\(706\) −23083.7 −1.23055
\(707\) −15278.0 −0.812713
\(708\) 0 0
\(709\) −6302.17 −0.333826 −0.166913 0.985972i \(-0.553380\pi\)
−0.166913 + 0.985972i \(0.553380\pi\)
\(710\) 35035.4 1.85191
\(711\) 0 0
\(712\) −4074.76 −0.214477
\(713\) 10803.9 0.567476
\(714\) 0 0
\(715\) 0 0
\(716\) −77818.7 −4.06176
\(717\) 0 0
\(718\) 44012.0 2.28762
\(719\) −1385.72 −0.0718756 −0.0359378 0.999354i \(-0.511442\pi\)
−0.0359378 + 0.999354i \(0.511442\pi\)
\(720\) 0 0
\(721\) −11253.9 −0.581299
\(722\) 32599.5 1.68037
\(723\) 0 0
\(724\) 13548.6 0.695484
\(725\) 4681.20 0.239801
\(726\) 0 0
\(727\) −11818.1 −0.602900 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(728\) 19806.2 1.00833
\(729\) 0 0
\(730\) −20692.3 −1.04912
\(731\) −13675.2 −0.691924
\(732\) 0 0
\(733\) −9537.65 −0.480602 −0.240301 0.970698i \(-0.577246\pi\)
−0.240301 + 0.970698i \(0.577246\pi\)
\(734\) −11161.7 −0.561290
\(735\) 0 0
\(736\) −33605.1 −1.68301
\(737\) 0 0
\(738\) 0 0
\(739\) −3411.51 −0.169817 −0.0849084 0.996389i \(-0.527060\pi\)
−0.0849084 + 0.996389i \(0.527060\pi\)
\(740\) −43208.2 −2.14644
\(741\) 0 0
\(742\) 382.490 0.0189240
\(743\) 2452.91 0.121115 0.0605576 0.998165i \(-0.480712\pi\)
0.0605576 + 0.998165i \(0.480712\pi\)
\(744\) 0 0
\(745\) −1984.73 −0.0976037
\(746\) 65670.2 3.22300
\(747\) 0 0
\(748\) 0 0
\(749\) −19538.9 −0.953185
\(750\) 0 0
\(751\) −11556.1 −0.561500 −0.280750 0.959781i \(-0.590583\pi\)
−0.280750 + 0.959781i \(0.590583\pi\)
\(752\) 57280.0 2.77764
\(753\) 0 0
\(754\) −7463.51 −0.360484
\(755\) −3181.24 −0.153347
\(756\) 0 0
\(757\) 25642.8 1.23118 0.615589 0.788067i \(-0.288918\pi\)
0.615589 + 0.788067i \(0.288918\pi\)
\(758\) −37423.9 −1.79327
\(759\) 0 0
\(760\) −17520.8 −0.836243
\(761\) 6054.02 0.288381 0.144191 0.989550i \(-0.453942\pi\)
0.144191 + 0.989550i \(0.453942\pi\)
\(762\) 0 0
\(763\) −3663.80 −0.173838
\(764\) −75458.7 −3.57330
\(765\) 0 0
\(766\) 57979.7 2.73484
\(767\) 6764.30 0.318442
\(768\) 0 0
\(769\) 23509.7 1.10245 0.551224 0.834357i \(-0.314161\pi\)
0.551224 + 0.834357i \(0.314161\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 56277.3 2.62366
\(773\) −4985.36 −0.231967 −0.115984 0.993251i \(-0.537002\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(774\) 0 0
\(775\) 6674.46 0.309360
\(776\) 66750.6 3.08789
\(777\) 0 0
\(778\) −15147.3 −0.698016
\(779\) 6383.30 0.293589
\(780\) 0 0
\(781\) 0 0
\(782\) 107473. 4.91462
\(783\) 0 0
\(784\) −23531.7 −1.07196
\(785\) 43691.1 1.98650
\(786\) 0 0
\(787\) 23093.6 1.04599 0.522996 0.852335i \(-0.324814\pi\)
0.522996 + 0.852335i \(0.324814\pi\)
\(788\) −55876.6 −2.52604
\(789\) 0 0
\(790\) 37785.8 1.70172
\(791\) −1350.08 −0.0606868
\(792\) 0 0
\(793\) −8373.39 −0.374965
\(794\) −63503.2 −2.83834
\(795\) 0 0
\(796\) −17748.7 −0.790308
\(797\) −17376.5 −0.772281 −0.386141 0.922440i \(-0.626192\pi\)
−0.386141 + 0.922440i \(0.626192\pi\)
\(798\) 0 0
\(799\) −61309.6 −2.71461
\(800\) −20760.6 −0.917496
\(801\) 0 0
\(802\) 38909.1 1.71313
\(803\) 0 0
\(804\) 0 0
\(805\) 29270.7 1.28156
\(806\) −10641.5 −0.465050
\(807\) 0 0
\(808\) −65103.3 −2.83456
\(809\) −3335.36 −0.144951 −0.0724753 0.997370i \(-0.523090\pi\)
−0.0724753 + 0.997370i \(0.523090\pi\)
\(810\) 0 0
\(811\) 4873.73 0.211023 0.105512 0.994418i \(-0.466352\pi\)
0.105512 + 0.994418i \(0.466352\pi\)
\(812\) −10752.9 −0.464720
\(813\) 0 0
\(814\) 0 0
\(815\) 9458.91 0.406541
\(816\) 0 0
\(817\) −2309.85 −0.0989125
\(818\) 37285.3 1.59370
\(819\) 0 0
\(820\) 78053.7 3.32409
\(821\) −18640.4 −0.792392 −0.396196 0.918166i \(-0.629670\pi\)
−0.396196 + 0.918166i \(0.629670\pi\)
\(822\) 0 0
\(823\) 18819.8 0.797106 0.398553 0.917145i \(-0.369512\pi\)
0.398553 + 0.917145i \(0.369512\pi\)
\(824\) −47955.6 −2.02744
\(825\) 0 0
\(826\) 14014.9 0.590364
\(827\) 34989.3 1.47122 0.735610 0.677406i \(-0.236896\pi\)
0.735610 + 0.677406i \(0.236896\pi\)
\(828\) 0 0
\(829\) 14231.8 0.596250 0.298125 0.954527i \(-0.403639\pi\)
0.298125 + 0.954527i \(0.403639\pi\)
\(830\) 20746.0 0.867597
\(831\) 0 0
\(832\) 2971.89 0.123836
\(833\) 25187.2 1.04764
\(834\) 0 0
\(835\) −22902.9 −0.949207
\(836\) 0 0
\(837\) 0 0
\(838\) 56860.9 2.34395
\(839\) 25354.5 1.04331 0.521654 0.853157i \(-0.325315\pi\)
0.521654 + 0.853157i \(0.325315\pi\)
\(840\) 0 0
\(841\) −22112.1 −0.906644
\(842\) 26153.5 1.07044
\(843\) 0 0
\(844\) 60758.3 2.47795
\(845\) 18900.8 0.769476
\(846\) 0 0
\(847\) 0 0
\(848\) 746.276 0.0302208
\(849\) 0 0
\(850\) 66394.9 2.67921
\(851\) 25155.6 1.01330
\(852\) 0 0
\(853\) −9664.40 −0.387928 −0.193964 0.981009i \(-0.562135\pi\)
−0.193964 + 0.981009i \(0.562135\pi\)
\(854\) −17348.7 −0.695154
\(855\) 0 0
\(856\) −83260.0 −3.32449
\(857\) 38619.7 1.53935 0.769676 0.638435i \(-0.220418\pi\)
0.769676 + 0.638435i \(0.220418\pi\)
\(858\) 0 0
\(859\) −30501.9 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(860\) −28244.4 −1.11991
\(861\) 0 0
\(862\) −73987.1 −2.92344
\(863\) 29563.6 1.16611 0.583056 0.812432i \(-0.301857\pi\)
0.583056 + 0.812432i \(0.301857\pi\)
\(864\) 0 0
\(865\) 49689.5 1.95317
\(866\) −21712.0 −0.851966
\(867\) 0 0
\(868\) −15331.5 −0.599522
\(869\) 0 0
\(870\) 0 0
\(871\) 5713.07 0.222250
\(872\) −15612.3 −0.606308
\(873\) 0 0
\(874\) 18153.1 0.702559
\(875\) −4957.47 −0.191535
\(876\) 0 0
\(877\) −23007.5 −0.885872 −0.442936 0.896553i \(-0.646063\pi\)
−0.442936 + 0.896553i \(0.646063\pi\)
\(878\) −9274.60 −0.356495
\(879\) 0 0
\(880\) 0 0
\(881\) −34057.4 −1.30241 −0.651205 0.758902i \(-0.725736\pi\)
−0.651205 + 0.758902i \(0.725736\pi\)
\(882\) 0 0
\(883\) 34653.7 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(884\) −73609.8 −2.80064
\(885\) 0 0
\(886\) 24584.5 0.932203
\(887\) 5147.89 0.194870 0.0974348 0.995242i \(-0.468936\pi\)
0.0974348 + 0.995242i \(0.468936\pi\)
\(888\) 0 0
\(889\) −17120.6 −0.645900
\(890\) 5931.34 0.223392
\(891\) 0 0
\(892\) 89754.8 3.36907
\(893\) −10355.7 −0.388062
\(894\) 0 0
\(895\) 63651.2 2.37723
\(896\) −14733.8 −0.549356
\(897\) 0 0
\(898\) −47029.3 −1.74765
\(899\) 3246.36 0.120436
\(900\) 0 0
\(901\) −798.776 −0.0295351
\(902\) 0 0
\(903\) 0 0
\(904\) −5753.02 −0.211662
\(905\) −11082.0 −0.407047
\(906\) 0 0
\(907\) 40684.2 1.48941 0.744706 0.667392i \(-0.232589\pi\)
0.744706 + 0.667392i \(0.232589\pi\)
\(908\) 19405.3 0.709237
\(909\) 0 0
\(910\) −28830.5 −1.05024
\(911\) −25223.0 −0.917315 −0.458657 0.888613i \(-0.651669\pi\)
−0.458657 + 0.888613i \(0.651669\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −31667.2 −1.14601
\(915\) 0 0
\(916\) −78758.9 −2.84090
\(917\) 18698.3 0.673363
\(918\) 0 0
\(919\) −9198.23 −0.330165 −0.165083 0.986280i \(-0.552789\pi\)
−0.165083 + 0.986280i \(0.552789\pi\)
\(920\) 124729. 4.46979
\(921\) 0 0
\(922\) −86232.2 −3.08016
\(923\) 13970.4 0.498205
\(924\) 0 0
\(925\) 15540.6 0.552403
\(926\) 4195.46 0.148889
\(927\) 0 0
\(928\) −10097.6 −0.357189
\(929\) 33459.9 1.18168 0.590841 0.806788i \(-0.298796\pi\)
0.590841 + 0.806788i \(0.298796\pi\)
\(930\) 0 0
\(931\) 4254.31 0.149763
\(932\) −94129.9 −3.30829
\(933\) 0 0
\(934\) −86040.2 −3.01426
\(935\) 0 0
\(936\) 0 0
\(937\) −31048.7 −1.08252 −0.541258 0.840857i \(-0.682052\pi\)
−0.541258 + 0.840857i \(0.682052\pi\)
\(938\) 11836.9 0.412034
\(939\) 0 0
\(940\) −126627. −4.39374
\(941\) −21640.9 −0.749704 −0.374852 0.927085i \(-0.622307\pi\)
−0.374852 + 0.927085i \(0.622307\pi\)
\(942\) 0 0
\(943\) −45442.4 −1.56926
\(944\) 27344.5 0.942783
\(945\) 0 0
\(946\) 0 0
\(947\) 31725.1 1.08862 0.544311 0.838883i \(-0.316791\pi\)
0.544311 + 0.838883i \(0.316791\pi\)
\(948\) 0 0
\(949\) −8251.12 −0.282237
\(950\) 11214.6 0.383000
\(951\) 0 0
\(952\) −85698.6 −2.91755
\(953\) −52072.7 −1.76999 −0.884995 0.465601i \(-0.845838\pi\)
−0.884995 + 0.465601i \(0.845838\pi\)
\(954\) 0 0
\(955\) 61720.8 2.09135
\(956\) 2269.75 0.0767877
\(957\) 0 0
\(958\) −23862.9 −0.804777
\(959\) −36651.7 −1.23414
\(960\) 0 0
\(961\) −25162.3 −0.844629
\(962\) −24777.3 −0.830408
\(963\) 0 0
\(964\) −8136.13 −0.271833
\(965\) −46031.5 −1.53555
\(966\) 0 0
\(967\) −4519.31 −0.150291 −0.0751454 0.997173i \(-0.523942\pi\)
−0.0751454 + 0.997173i \(0.523942\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −97164.2 −3.21624
\(971\) −24955.7 −0.824785 −0.412392 0.911006i \(-0.635307\pi\)
−0.412392 + 0.911006i \(0.635307\pi\)
\(972\) 0 0
\(973\) 26557.3 0.875012
\(974\) −90332.2 −2.97169
\(975\) 0 0
\(976\) −33849.2 −1.11013
\(977\) −56789.9 −1.85964 −0.929820 0.368014i \(-0.880038\pi\)
−0.929820 + 0.368014i \(0.880038\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 52020.8 1.69566
\(981\) 0 0
\(982\) −76636.8 −2.49041
\(983\) 31484.6 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(984\) 0 0
\(985\) 45703.8 1.47842
\(986\) 32293.5 1.04304
\(987\) 0 0
\(988\) −12433.3 −0.400359
\(989\) 16443.7 0.528696
\(990\) 0 0
\(991\) 9490.27 0.304206 0.152103 0.988365i \(-0.451395\pi\)
0.152103 + 0.988365i \(0.451395\pi\)
\(992\) −14397.2 −0.460799
\(993\) 0 0
\(994\) 28945.2 0.923629
\(995\) 14517.4 0.462545
\(996\) 0 0
\(997\) 40887.6 1.29882 0.649409 0.760439i \(-0.275016\pi\)
0.649409 + 0.760439i \(0.275016\pi\)
\(998\) 110049. 3.49051
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.4.a.bi.1.1 6
3.2 odd 2 363.4.a.v.1.6 6
11.3 even 5 99.4.f.d.64.1 12
11.4 even 5 99.4.f.d.82.1 12
11.10 odd 2 1089.4.a.bk.1.6 6
33.14 odd 10 33.4.e.c.31.3 yes 12
33.26 odd 10 33.4.e.c.16.3 12
33.32 even 2 363.4.a.u.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.3 12 33.26 odd 10
33.4.e.c.31.3 yes 12 33.14 odd 10
99.4.f.d.64.1 12 11.3 even 5
99.4.f.d.82.1 12 11.4 even 5
363.4.a.u.1.1 6 33.32 even 2
363.4.a.v.1.6 6 3.2 odd 2
1089.4.a.bi.1.1 6 1.1 even 1 trivial
1089.4.a.bk.1.6 6 11.10 odd 2