Properties

Label 1089.3.c.h.604.3
Level $1089$
Weight $3$
Character 1089.604
Analytic conductor $29.673$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,3,Mod(604,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.604");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1089.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.6731007888\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 11^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 604.3
Root \(0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 1089.604
Dual form 1089.3.c.h.604.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{4} +1.65445i q^{7} +O(q^{10})\) \(q+4.00000 q^{4} +1.65445i q^{7} +5.75839i q^{13} +16.0000 q^{16} +33.4978i q^{19} -25.0000 q^{25} +6.61780i q^{28} +19.0526 q^{31} +57.1577 q^{37} +74.3441i q^{43} +46.2628 q^{49} +23.0336i q^{52} +96.5826i q^{61} +64.0000 q^{64} -133.368 q^{67} -121.937i q^{73} +133.991i q^{76} -103.674i q^{79} -9.52697 q^{91} +169.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 16 q^{4} + 64 q^{16} - 100 q^{25} - 196 q^{49} + 256 q^{64} - 724 q^{91} + 676 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) 0 0
\(4\) 4.00000 1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.65445i 0.236350i 0.992993 + 0.118175i \(0.0377044\pi\)
−0.992993 + 0.118175i \(0.962296\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 5.75839i 0.442953i 0.975166 + 0.221477i \(0.0710876\pi\)
−0.975166 + 0.221477i \(0.928912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 33.4978i 1.76304i 0.472144 + 0.881521i \(0.343480\pi\)
−0.472144 + 0.881521i \(0.656520\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 6.61780i 0.236350i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 19.0526 0.614599 0.307299 0.951613i \(-0.400575\pi\)
0.307299 + 0.951613i \(0.400575\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 57.1577 1.54480 0.772401 0.635135i \(-0.219056\pi\)
0.772401 + 0.635135i \(0.219056\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 74.3441i 1.72893i 0.502691 + 0.864466i \(0.332343\pi\)
−0.502691 + 0.864466i \(0.667657\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 46.2628 0.944139
\(50\) 0 0
\(51\) 0 0
\(52\) 23.0336i 0.442953i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 96.5826i 1.58332i 0.610961 + 0.791661i \(0.290783\pi\)
−0.610961 + 0.791661i \(0.709217\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −133.368 −1.99057 −0.995283 0.0970149i \(-0.969071\pi\)
−0.995283 + 0.0970149i \(0.969071\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) − 121.937i − 1.67037i −0.549970 0.835184i \(-0.685361\pi\)
0.549970 0.835184i \(-0.314639\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 133.991i 1.76304i
\(77\) 0 0
\(78\) 0 0
\(79\) − 103.674i − 1.31232i −0.754620 0.656162i \(-0.772179\pi\)
0.754620 0.656162i \(-0.227821\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −9.52697 −0.104692
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 169.000 1.74227 0.871134 0.491045i \(-0.163385\pi\)
0.871134 + 0.491045i \(0.163385\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −100.000 −1.00000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 157.000 1.52427 0.762136 0.647417i \(-0.224151\pi\)
0.762136 + 0.647417i \(0.224151\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 217.467i 1.99511i 0.0698830 + 0.997555i \(0.477737\pi\)
−0.0698830 + 0.997555i \(0.522263\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 26.4712i 0.236350i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 76.2102 0.614599
\(125\) 0 0
\(126\) 0 0
\(127\) 162.976i 1.28328i 0.767007 + 0.641639i \(0.221745\pi\)
−0.767007 + 0.641639i \(0.778255\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −55.4205 −0.416695
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) − 180.403i − 1.29786i −0.760847 0.648931i \(-0.775216\pi\)
0.760847 0.648931i \(-0.224784\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 228.631 1.54480
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 270.818i 1.79350i 0.442539 + 0.896749i \(0.354078\pi\)
−0.442539 + 0.896749i \(0.645922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −247.683 −1.57760 −0.788800 0.614650i \(-0.789297\pi\)
−0.788800 + 0.614650i \(0.789297\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −37.0000 −0.226994 −0.113497 0.993538i \(-0.536205\pi\)
−0.113497 + 0.993538i \(0.536205\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 135.841 0.803793
\(170\) 0 0
\(171\) 0 0
\(172\) 297.376i 1.72893i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 41.3613i − 0.236350i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1.00000 0.00552486 0.00276243 0.999996i \(-0.499121\pi\)
0.00276243 + 0.999996i \(0.499121\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) − 152.406i − 0.789668i −0.918752 0.394834i \(-0.870802\pi\)
0.918752 0.394834i \(-0.129198\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 185.051 0.944139
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 285.788 1.43612 0.718061 0.695980i \(-0.245030\pi\)
0.718061 + 0.695980i \(0.245030\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 92.1342i 0.442953i
\(209\) 0 0
\(210\) 0 0
\(211\) 59.9272i 0.284015i 0.989866 + 0.142008i \(0.0453558\pi\)
−0.989866 + 0.142008i \(0.954644\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 31.5215i 0.145260i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −83.0000 −0.372197 −0.186099 0.982531i \(-0.559584\pi\)
−0.186099 + 0.982531i \(0.559584\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −457.261 −1.99677 −0.998387 0.0567686i \(-0.981920\pi\)
−0.998387 + 0.0567686i \(0.981920\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) − 476.575i − 1.97749i −0.149606 0.988746i \(-0.547801\pi\)
0.149606 0.988746i \(-0.452199\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 386.330i 1.58332i
\(245\) 0 0
\(246\) 0 0
\(247\) −192.894 −0.780945
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 94.5645i 0.365114i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −533.472 −1.99057
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) − 171.809i − 0.633981i −0.948429 0.316990i \(-0.897328\pi\)
0.948429 0.316990i \(-0.102672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 553.562i − 1.99842i −0.0397524 0.999210i \(-0.512657\pi\)
0.0397524 0.999210i \(-0.487343\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 528.465i − 1.86737i −0.358097 0.933684i \(-0.616574\pi\)
0.358097 0.933684i \(-0.383426\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) − 487.748i − 1.67037i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −122.999 −0.408633
\(302\) 0 0
\(303\) 0 0
\(304\) 535.965i 1.76304i
\(305\) 0 0
\(306\) 0 0
\(307\) − 574.491i − 1.87130i −0.352923 0.935652i \(-0.614812\pi\)
0.352923 0.935652i \(-0.385188\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −609.682 −1.94787 −0.973933 0.226837i \(-0.927162\pi\)
−0.973933 + 0.226837i \(0.927162\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) − 414.694i − 1.31232i
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 143.960i − 0.442953i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 299.000 0.903323 0.451662 0.892189i \(-0.350831\pi\)
0.451662 + 0.892189i \(0.350831\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 330.314i − 0.980161i −0.871677 0.490080i \(-0.836967\pi\)
0.871677 0.490080i \(-0.163033\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 157.608i 0.459497i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 338.522i − 0.969977i −0.874521 0.484988i \(-0.838824\pi\)
0.874521 0.484988i \(-0.161176\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −761.104 −2.10832
\(362\) 0 0
\(363\) 0 0
\(364\) −38.1079 −0.104692
\(365\) 0 0
\(366\) 0 0
\(367\) −718.000 −1.95640 −0.978202 0.207657i \(-0.933416\pi\)
−0.978202 + 0.207657i \(0.933416\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 434.957i − 1.16610i −0.812435 0.583052i \(-0.801858\pi\)
0.812435 0.583052i \(-0.198142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −694.000 −1.83113 −0.915567 0.402165i \(-0.868258\pi\)
−0.915567 + 0.402165i \(0.868258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 676.000 1.74227
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 431.000 1.08564 0.542821 0.839848i \(-0.317356\pi\)
0.542821 + 0.839848i \(0.317356\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −400.000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 109.712i 0.272238i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 468.390i 1.14521i 0.819832 + 0.572604i \(0.194067\pi\)
−0.819832 + 0.572604i \(0.805933\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 628.000 1.52427
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −762.102 −1.81022 −0.905110 0.425178i \(-0.860211\pi\)
−0.905110 + 0.425178i \(0.860211\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −159.791 −0.374218
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 503.000 1.16166 0.580831 0.814024i \(-0.302728\pi\)
0.580831 + 0.814024i \(0.302728\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 869.868i 1.99511i
\(437\) 0 0
\(438\) 0 0
\(439\) − 818.879i − 1.86533i −0.360745 0.932665i \(-0.617478\pi\)
0.360745 0.932665i \(-0.382522\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 105.885i 0.236350i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 869.524i − 1.90268i −0.308147 0.951339i \(-0.599709\pi\)
0.308147 0.951339i \(-0.400291\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 526.000 1.13607 0.568035 0.823005i \(-0.307704\pi\)
0.568035 + 0.823005i \(0.307704\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) − 220.651i − 0.470470i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 837.445i − 1.76304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 329.136i 0.684275i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −152.420 −0.312978 −0.156489 0.987680i \(-0.550018\pi\)
−0.156489 + 0.987680i \(0.550018\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 304.841 0.614599
\(497\) 0 0
\(498\) 0 0
\(499\) 476.314 0.954537 0.477269 0.878758i \(-0.341627\pi\)
0.477269 + 0.878758i \(0.341627\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 651.905i 1.28328i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 201.739 0.394792
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 1041.78i 1.99194i 0.0897041 + 0.995968i \(0.471408\pi\)
−0.0897041 + 0.995968i \(0.528592\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −221.682 −0.416695
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 956.501i 1.76802i 0.467463 + 0.884012i \(0.345168\pi\)
−0.467463 + 0.884012i \(0.654832\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1043.65i 1.90796i 0.299873 + 0.953979i \(0.403056\pi\)
−0.299873 + 0.953979i \(0.596944\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 171.523 0.310168
\(554\) 0 0
\(555\) 0 0
\(556\) − 721.611i − 1.29786i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) −428.102 −0.765836
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 466.668i 0.817282i 0.912695 + 0.408641i \(0.133997\pi\)
−0.912695 + 0.408641i \(0.866003\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 514.419 0.891541 0.445770 0.895147i \(-0.352930\pi\)
0.445770 + 0.895147i \(0.352930\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 638.219i 1.08356i
\(590\) 0 0
\(591\) 0 0
\(592\) 914.523 1.54480
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) − 787.809i − 1.31083i −0.755269 0.655415i \(-0.772494\pi\)
0.755269 0.655415i \(-0.227506\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1083.27i 1.79350i
\(605\) 0 0
\(606\) 0 0
\(607\) − 1212.45i − 1.99745i −0.0504797 0.998725i \(-0.516075\pi\)
0.0504797 0.998725i \(-0.483925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 962.112i − 1.56951i −0.619804 0.784757i \(-0.712788\pi\)
0.619804 0.784757i \(-0.287212\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −214.000 −0.345719 −0.172859 0.984947i \(-0.555301\pi\)
−0.172859 + 0.984947i \(0.555301\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) −990.733 −1.57760
\(629\) 0 0
\(630\) 0 0
\(631\) 1066.94 1.69088 0.845438 0.534073i \(-0.179339\pi\)
0.845438 + 0.534073i \(0.179339\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 266.399i 0.418209i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −923.000 −1.43546 −0.717729 0.696322i \(-0.754819\pi\)
−0.717729 + 0.696322i \(0.754819\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −148.000 −0.226994
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −552.524 −0.835891 −0.417946 0.908472i \(-0.637250\pi\)
−0.417946 + 0.908472i \(0.637250\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 1293.99i − 1.92272i −0.275287 0.961362i \(-0.588773\pi\)
0.275287 0.961362i \(-0.411227\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 543.364 0.803793
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 279.602i 0.411785i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1189.51i 1.72893i
\(689\) 0 0
\(690\) 0 0
\(691\) 1019.00 1.47467 0.737337 0.675525i \(-0.236083\pi\)
0.737337 + 0.675525i \(0.236083\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) − 165.445i − 0.236350i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 1914.66i 2.72355i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1066.94 1.50486 0.752428 0.658674i \(-0.228882\pi\)
0.752428 + 0.658674i \(0.228882\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 259.749i 0.360262i
\(722\) 0 0
\(723\) 0 0
\(724\) 4.00000 0.00552486
\(725\) 0 0
\(726\) 0 0
\(727\) −1371.78 −1.88691 −0.943455 0.331499i \(-0.892446\pi\)
−0.943455 + 0.331499i \(0.892446\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 1466.00i − 1.99999i −0.00252286 0.999997i \(-0.500803\pi\)
0.00252286 0.999997i \(-0.499197\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1395.54i 1.88842i 0.329350 + 0.944208i \(0.393171\pi\)
−0.329350 + 0.944208i \(0.606829\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 590.629 0.786457 0.393229 0.919441i \(-0.371358\pi\)
0.393229 + 0.919441i \(0.371358\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −95.2628 −0.125843 −0.0629213 0.998018i \(-0.520042\pi\)
−0.0629213 + 0.998018i \(0.520042\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −359.788 −0.471544
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1453.04i 1.88952i 0.327765 + 0.944759i \(0.393705\pi\)
−0.327765 + 0.944759i \(0.606295\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 609.624i − 0.789668i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −476.314 −0.614599
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 740.205 0.944139
\(785\) 0 0
\(786\) 0 0
\(787\) 1241.67i 1.57773i 0.614568 + 0.788864i \(0.289331\pi\)
−0.614568 + 0.788864i \(0.710669\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −556.160 −0.701337
\(794\) 0 0
\(795\) 0 0
\(796\) 1143.15 1.43612
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 1311.79i 1.61749i 0.588157 + 0.808747i \(0.299854\pi\)
−0.588157 + 0.808747i \(0.700146\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2490.37 −3.04818
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 1621.00 1.96962 0.984812 0.173626i \(-0.0555484\pi\)
0.984812 + 0.173626i \(0.0555484\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1609.00 1.94089 0.970446 0.241317i \(-0.0775794\pi\)
0.970446 + 0.241317i \(0.0775794\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 368.537i 0.442953i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 239.709i 0.284015i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 1705.51i − 1.99942i −0.0240202 0.999711i \(-0.507647\pi\)
0.0240202 0.999711i \(-0.492353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1549.00 1.80326 0.901630 0.432509i \(-0.142371\pi\)
0.901630 + 0.432509i \(0.142371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 126.086i 0.145260i
\(869\) 0 0
\(870\) 0 0
\(871\) − 767.984i − 0.881727i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1004.39i 1.14526i 0.819814 + 0.572630i \(0.194077\pi\)
−0.819814 + 0.572630i \(0.805923\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 1238.42 1.40251 0.701255 0.712911i \(-0.252623\pi\)
0.701255 + 0.712911i \(0.252623\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −269.636 −0.303303
\(890\) 0 0
\(891\) 0 0
\(892\) −332.000 −0.372197
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1453.00 1.60198 0.800992 0.598675i \(-0.204306\pi\)
0.800992 + 0.598675i \(0.204306\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1829.05 −1.99677
\(917\) 0 0
\(918\) 0 0
\(919\) 1256.09i 1.36680i 0.730044 + 0.683400i \(0.239499\pi\)
−0.730044 + 0.683400i \(0.760501\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1428.94 −1.54480
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 1549.70i 1.66456i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1702.03i 1.81647i 0.418465 + 0.908233i \(0.362568\pi\)
−0.418465 + 0.908233i \(0.637432\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 702.160 0.739895
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −598.000 −0.622268
\(962\) 0 0
\(963\) 0 0
\(964\) − 1906.30i − 1.97749i
\(965\) 0 0
\(966\) 0 0
\(967\) − 1176.89i − 1.21706i −0.793532 0.608529i \(-0.791760\pi\)
0.793532 0.608529i \(-0.208240\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 298.468 0.306750
\(974\) 0 0
\(975\) 0 0
\(976\) 1545.32i 1.58332i
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −771.574 −0.780945
\(989\) 0 0
\(990\) 0 0
\(991\) 1981.47 1.99946 0.999731 0.0232089i \(-0.00738828\pi\)
0.999731 + 0.0232089i \(0.00738828\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1092.50i 1.09578i 0.836550 + 0.547891i \(0.184569\pi\)
−0.836550 + 0.547891i \(0.815431\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.3.c.h.604.3 yes 4
3.2 odd 2 CM 1089.3.c.h.604.3 yes 4
11.10 odd 2 inner 1089.3.c.h.604.2 4
33.32 even 2 inner 1089.3.c.h.604.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1089.3.c.h.604.2 4 11.10 odd 2 inner
1089.3.c.h.604.2 4 33.32 even 2 inner
1089.3.c.h.604.3 yes 4 1.1 even 1 trivial
1089.3.c.h.604.3 yes 4 3.2 odd 2 CM