Properties

Label 1089.2.v
Level 1089
Weight 2
Character orbit v
Rep. character \(\chi_{1089}(37,\cdot)\)
Character field \(\Q(\zeta_{55})\)
Dimension 2160
Sturm bound 264

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1089.v (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 121 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(264\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1089, [\chi])\).

Total New Old
Modular forms 5440 2240 3200
Cusp forms 5120 2160 2960
Eisenstein series 320 80 240

Trace form

\( 2160q + 40q^{2} + 10q^{4} + 39q^{5} - 36q^{7} + 52q^{8} + O(q^{10}) \) \( 2160q + 40q^{2} + 10q^{4} + 39q^{5} - 36q^{7} + 52q^{8} - 42q^{10} + 53q^{11} - 47q^{13} + 72q^{14} - 2q^{16} + 58q^{17} - 36q^{19} + 50q^{20} - 112q^{22} + 50q^{23} + q^{25} + 60q^{26} - 68q^{28} + 40q^{29} - 69q^{31} - 4q^{32} - 36q^{34} + 44q^{35} - 40q^{38} + 45q^{40} + 64q^{41} - 28q^{43} + 89q^{44} - 12q^{46} + 58q^{47} + 194q^{50} - 214q^{52} + 68q^{53} - 140q^{55} + 125q^{56} - 95q^{58} + 27q^{59} - 68q^{61} + 71q^{62} - 28q^{64} + 49q^{65} + 23q^{67} + 16q^{68} - 124q^{70} + 81q^{71} - 110q^{73} + 14q^{74} + 168q^{76} - 90q^{77} - 68q^{79} - 113q^{80} - 86q^{82} + 78q^{83} + 22q^{85} + 60q^{86} + 153q^{88} + 17q^{89} + 39q^{91} + 34q^{92} + 151q^{94} - 14q^{95} + 70q^{97} + 84q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1089, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1089, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1089, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database