Properties

Label 1089.2.e.p.364.4
Level $1089$
Weight $2$
Character 1089.364
Analytic conductor $8.696$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 364.4
Character \(\chi\) \(=\) 1089.364
Dual form 1089.2.e.p.727.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.773068 - 1.33899i) q^{2} +(1.56806 + 0.735660i) q^{3} +(-0.195269 + 0.338216i) q^{4} +(-0.296016 + 0.512715i) q^{5} +(-0.227172 - 2.66833i) q^{6} +(-0.360975 - 0.625227i) q^{7} -2.48845 q^{8} +(1.91761 + 2.30711i) q^{9} +0.915362 q^{10} +(-0.555005 + 0.386690i) q^{12} +(0.787482 - 1.36396i) q^{13} +(-0.558117 + 0.966687i) q^{14} +(-0.841354 + 0.586199i) q^{15} +(2.31428 + 4.00845i) q^{16} +4.59200 q^{17} +(1.60677 - 4.35122i) q^{18} +2.50860 q^{19} +(-0.115606 - 0.200235i) q^{20} +(-0.106075 - 1.24595i) q^{21} +(2.22600 - 3.85554i) q^{23} +(-3.90203 - 1.83065i) q^{24} +(2.32475 + 4.02658i) q^{25} -2.43511 q^{26} +(1.30967 + 5.02840i) q^{27} +0.281949 q^{28} +(-3.48931 - 6.04366i) q^{29} +(1.43534 + 0.673395i) q^{30} +(4.56412 - 7.90529i) q^{31} +(1.08974 - 1.88749i) q^{32} +(-3.54993 - 6.14866i) q^{34} +0.427418 q^{35} +(-1.15475 + 0.198058i) q^{36} +2.89170 q^{37} +(-1.93932 - 3.35900i) q^{38} +(2.23823 - 1.55945i) q^{39} +(0.736620 - 1.27586i) q^{40} +(0.577060 - 0.999497i) q^{41} +(-1.58631 + 1.10524i) q^{42} +(2.10724 + 3.64985i) q^{43} +(-1.75053 + 0.300244i) q^{45} -6.88340 q^{46} +(0.113778 + 0.197069i) q^{47} +(0.680067 + 7.98800i) q^{48} +(3.23939 - 5.61079i) q^{49} +(3.59438 - 6.22565i) q^{50} +(7.20052 + 3.37815i) q^{51} +(0.307542 + 0.532678i) q^{52} -5.70359 q^{53} +(5.72053 - 5.64093i) q^{54} +(0.898268 + 1.55585i) q^{56} +(3.93363 + 1.84548i) q^{57} +(-5.39495 + 9.34433i) q^{58} +(-3.56678 + 6.17784i) q^{59} +(-0.0339715 - 0.399026i) q^{60} +(-2.27948 - 3.94817i) q^{61} -14.1135 q^{62} +(0.750262 - 2.03175i) q^{63} +5.88733 q^{64} +(0.466215 + 0.807507i) q^{65} +(4.04571 - 7.00738i) q^{67} +(-0.896676 + 1.55309i) q^{68} +(6.32686 - 4.40814i) q^{69} +(-0.330423 - 0.572310i) q^{70} -12.3094 q^{71} +(-4.77187 - 5.74113i) q^{72} +15.4833 q^{73} +(-2.23548 - 3.87196i) q^{74} +(0.683144 + 8.02414i) q^{75} +(-0.489852 + 0.848448i) q^{76} +(-3.81839 - 1.79141i) q^{78} +(7.30978 + 12.6609i) q^{79} -2.74025 q^{80} +(-1.64555 + 8.84829i) q^{81} -1.78443 q^{82} +(3.47650 + 6.02148i) q^{83} +(0.442113 + 0.207419i) q^{84} +(-1.35931 + 2.35439i) q^{85} +(3.25808 - 5.64316i) q^{86} +(-1.02536 - 12.0438i) q^{87} +12.4803 q^{89} +(1.75531 + 2.11185i) q^{90} -1.13705 q^{91} +(0.869338 + 1.50574i) q^{92} +(12.9724 - 9.03831i) q^{93} +(0.175916 - 0.304695i) q^{94} +(-0.742586 + 1.28620i) q^{95} +(3.09733 - 2.15801i) q^{96} +(-7.09023 - 12.2806i) q^{97} -10.0171 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} + 9 q^{3} - 12 q^{4} + q^{5} - q^{6} - q^{7} - 12 q^{8} - q^{9} - 4 q^{10} - 8 q^{12} - 3 q^{13} - 5 q^{15} + 8 q^{16} - 40 q^{17} + 17 q^{18} - 6 q^{19} + 5 q^{20} - 8 q^{21} + 10 q^{23}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.773068 1.33899i −0.546642 0.946811i −0.998502 0.0547224i \(-0.982573\pi\)
0.451860 0.892089i \(-0.350761\pi\)
\(3\) 1.56806 + 0.735660i 0.905318 + 0.424733i
\(4\) −0.195269 + 0.338216i −0.0976345 + 0.169108i
\(5\) −0.296016 + 0.512715i −0.132382 + 0.229293i −0.924594 0.380953i \(-0.875596\pi\)
0.792212 + 0.610246i \(0.208929\pi\)
\(6\) −0.227172 2.66833i −0.0927424 1.08934i
\(7\) −0.360975 0.625227i −0.136436 0.236314i 0.789709 0.613481i \(-0.210231\pi\)
−0.926145 + 0.377168i \(0.876898\pi\)
\(8\) −2.48845 −0.879799
\(9\) 1.91761 + 2.30711i 0.639203 + 0.769038i
\(10\) 0.915362 0.289463
\(11\) 0 0
\(12\) −0.555005 + 0.386690i −0.160216 + 0.111628i
\(13\) 0.787482 1.36396i 0.218408 0.378294i −0.735913 0.677076i \(-0.763247\pi\)
0.954322 + 0.298782i \(0.0965802\pi\)
\(14\) −0.558117 + 0.966687i −0.149163 + 0.258358i
\(15\) −0.841354 + 0.586199i −0.217237 + 0.151356i
\(16\) 2.31428 + 4.00845i 0.578570 + 1.00211i
\(17\) 4.59200 1.11372 0.556862 0.830605i \(-0.312005\pi\)
0.556862 + 0.830605i \(0.312005\pi\)
\(18\) 1.60677 4.35122i 0.378719 1.02559i
\(19\) 2.50860 0.575512 0.287756 0.957704i \(-0.407091\pi\)
0.287756 + 0.957704i \(0.407091\pi\)
\(20\) −0.115606 0.200235i −0.0258502 0.0447738i
\(21\) −0.106075 1.24595i −0.0231475 0.271888i
\(22\) 0 0
\(23\) 2.22600 3.85554i 0.464153 0.803937i −0.535010 0.844846i \(-0.679692\pi\)
0.999163 + 0.0409092i \(0.0130255\pi\)
\(24\) −3.90203 1.83065i −0.796498 0.373680i
\(25\) 2.32475 + 4.02658i 0.464950 + 0.805317i
\(26\) −2.43511 −0.477564
\(27\) 1.30967 + 5.02840i 0.252046 + 0.967715i
\(28\) 0.281949 0.0532834
\(29\) −3.48931 6.04366i −0.647949 1.12228i −0.983612 0.180298i \(-0.942294\pi\)
0.335663 0.941982i \(-0.391040\pi\)
\(30\) 1.43534 + 0.673395i 0.262056 + 0.122945i
\(31\) 4.56412 7.90529i 0.819740 1.41983i −0.0861334 0.996284i \(-0.527451\pi\)
0.905874 0.423548i \(-0.139216\pi\)
\(32\) 1.08974 1.88749i 0.192641 0.333664i
\(33\) 0 0
\(34\) −3.54993 6.14866i −0.608808 1.05449i
\(35\) 0.427418 0.0722468
\(36\) −1.15475 + 0.198058i −0.192459 + 0.0330096i
\(37\) 2.89170 0.475392 0.237696 0.971340i \(-0.423608\pi\)
0.237696 + 0.971340i \(0.423608\pi\)
\(38\) −1.93932 3.35900i −0.314599 0.544902i
\(39\) 2.23823 1.55945i 0.358403 0.249711i
\(40\) 0.736620 1.27586i 0.116470 0.201732i
\(41\) 0.577060 0.999497i 0.0901216 0.156095i −0.817441 0.576013i \(-0.804608\pi\)
0.907562 + 0.419918i \(0.137941\pi\)
\(42\) −1.58631 + 1.10524i −0.244773 + 0.170542i
\(43\) 2.10724 + 3.64985i 0.321351 + 0.556596i 0.980767 0.195182i \(-0.0625297\pi\)
−0.659416 + 0.751778i \(0.729196\pi\)
\(44\) 0 0
\(45\) −1.75053 + 0.300244i −0.260954 + 0.0447577i
\(46\) −6.88340 −1.01490
\(47\) 0.113778 + 0.197069i 0.0165962 + 0.0287454i 0.874204 0.485558i \(-0.161384\pi\)
−0.857608 + 0.514304i \(0.828050\pi\)
\(48\) 0.680067 + 7.98800i 0.0981592 + 1.15297i
\(49\) 3.23939 5.61079i 0.462771 0.801542i
\(50\) 3.59438 6.22565i 0.508322 0.880440i
\(51\) 7.20052 + 3.37815i 1.00828 + 0.473036i
\(52\) 0.307542 + 0.532678i 0.0426484 + 0.0738691i
\(53\) −5.70359 −0.783449 −0.391724 0.920083i \(-0.628121\pi\)
−0.391724 + 0.920083i \(0.628121\pi\)
\(54\) 5.72053 5.64093i 0.778465 0.767634i
\(55\) 0 0
\(56\) 0.898268 + 1.55585i 0.120036 + 0.207909i
\(57\) 3.93363 + 1.84548i 0.521022 + 0.244439i
\(58\) −5.39495 + 9.34433i −0.708392 + 1.22697i
\(59\) −3.56678 + 6.17784i −0.464355 + 0.804286i −0.999172 0.0406816i \(-0.987047\pi\)
0.534817 + 0.844968i \(0.320380\pi\)
\(60\) −0.0339715 0.399026i −0.00438570 0.0515140i
\(61\) −2.27948 3.94817i −0.291857 0.505512i 0.682392 0.730987i \(-0.260940\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(62\) −14.1135 −1.79242
\(63\) 0.750262 2.03175i 0.0945241 0.255977i
\(64\) 5.88733 0.735917
\(65\) 0.466215 + 0.807507i 0.0578268 + 0.100159i
\(66\) 0 0
\(67\) 4.04571 7.00738i 0.494262 0.856087i −0.505716 0.862700i \(-0.668772\pi\)
0.999978 + 0.00661279i \(0.00210493\pi\)
\(68\) −0.896676 + 1.55309i −0.108738 + 0.188340i
\(69\) 6.32686 4.40814i 0.761665 0.530677i
\(70\) −0.330423 0.572310i −0.0394931 0.0684041i
\(71\) −12.3094 −1.46086 −0.730429 0.682989i \(-0.760680\pi\)
−0.730429 + 0.682989i \(0.760680\pi\)
\(72\) −4.77187 5.74113i −0.562370 0.676599i
\(73\) 15.4833 1.81219 0.906093 0.423078i \(-0.139050\pi\)
0.906093 + 0.423078i \(0.139050\pi\)
\(74\) −2.23548 3.87196i −0.259869 0.450107i
\(75\) 0.683144 + 8.02414i 0.0788827 + 0.926548i
\(76\) −0.489852 + 0.848448i −0.0561899 + 0.0973237i
\(77\) 0 0
\(78\) −3.81839 1.79141i −0.432348 0.202838i
\(79\) 7.30978 + 12.6609i 0.822414 + 1.42446i 0.903880 + 0.427787i \(0.140707\pi\)
−0.0814654 + 0.996676i \(0.525960\pi\)
\(80\) −2.74025 −0.306370
\(81\) −1.64555 + 8.84829i −0.182839 + 0.983143i
\(82\) −1.78443 −0.197057
\(83\) 3.47650 + 6.02148i 0.381596 + 0.660943i 0.991291 0.131693i \(-0.0420414\pi\)
−0.609695 + 0.792636i \(0.708708\pi\)
\(84\) 0.442113 + 0.207419i 0.0482384 + 0.0226312i
\(85\) −1.35931 + 2.35439i −0.147437 + 0.255369i
\(86\) 3.25808 5.64316i 0.351328 0.608518i
\(87\) −1.02536 12.0438i −0.109930 1.29123i
\(88\) 0 0
\(89\) 12.4803 1.32291 0.661453 0.749986i \(-0.269940\pi\)
0.661453 + 0.749986i \(0.269940\pi\)
\(90\) 1.75531 + 2.11185i 0.185026 + 0.222608i
\(91\) −1.13705 −0.119195
\(92\) 0.869338 + 1.50574i 0.0906347 + 0.156984i
\(93\) 12.9724 9.03831i 1.34518 0.937229i
\(94\) 0.175916 0.304695i 0.0181443 0.0314269i
\(95\) −0.742586 + 1.28620i −0.0761877 + 0.131961i
\(96\) 3.09733 2.15801i 0.316120 0.220251i
\(97\) −7.09023 12.2806i −0.719904 1.24691i −0.961037 0.276419i \(-0.910852\pi\)
0.241133 0.970492i \(-0.422481\pi\)
\(98\) −10.0171 −1.01188
\(99\) 0 0
\(100\) −1.81581 −0.181581
\(101\) 7.18427 + 12.4435i 0.714861 + 1.23818i 0.963013 + 0.269455i \(0.0868436\pi\)
−0.248151 + 0.968721i \(0.579823\pi\)
\(102\) −1.04317 12.2530i −0.103289 1.21323i
\(103\) 2.21443 3.83550i 0.218194 0.377923i −0.736062 0.676914i \(-0.763317\pi\)
0.954256 + 0.298991i \(0.0966501\pi\)
\(104\) −1.95961 + 3.39414i −0.192155 + 0.332823i
\(105\) 0.670216 + 0.314434i 0.0654064 + 0.0306856i
\(106\) 4.40927 + 7.63708i 0.428266 + 0.741778i
\(107\) −15.7444 −1.52207 −0.761035 0.648711i \(-0.775308\pi\)
−0.761035 + 0.648711i \(0.775308\pi\)
\(108\) −1.95642 0.538939i −0.188257 0.0518594i
\(109\) −13.6970 −1.31194 −0.655969 0.754788i \(-0.727740\pi\)
−0.655969 + 0.754788i \(0.727740\pi\)
\(110\) 0 0
\(111\) 4.53435 + 2.12731i 0.430381 + 0.201915i
\(112\) 1.67079 2.89390i 0.157875 0.273448i
\(113\) −4.01507 + 6.95430i −0.377706 + 0.654205i −0.990728 0.135860i \(-0.956620\pi\)
0.613022 + 0.790066i \(0.289954\pi\)
\(114\) −0.569883 6.69378i −0.0533744 0.626930i
\(115\) 1.31786 + 2.28261i 0.122891 + 0.212854i
\(116\) 2.72542 0.253049
\(117\) 4.65689 0.798729i 0.430530 0.0738425i
\(118\) 11.0294 1.01534
\(119\) −1.65760 2.87105i −0.151952 0.263188i
\(120\) 2.09367 1.45873i 0.191125 0.133163i
\(121\) 0 0
\(122\) −3.52438 + 6.10441i −0.319083 + 0.552668i
\(123\) 1.64015 1.14275i 0.147888 0.103038i
\(124\) 1.78246 + 3.08732i 0.160070 + 0.277249i
\(125\) −5.71281 −0.510969
\(126\) −3.30051 + 0.566088i −0.294033 + 0.0504311i
\(127\) −11.9963 −1.06450 −0.532250 0.846587i \(-0.678653\pi\)
−0.532250 + 0.846587i \(0.678653\pi\)
\(128\) −6.73079 11.6581i −0.594924 1.03044i
\(129\) 0.619227 + 7.27338i 0.0545199 + 0.640386i
\(130\) 0.720832 1.24852i 0.0632211 0.109502i
\(131\) 3.44555 5.96786i 0.301039 0.521414i −0.675333 0.737513i \(-0.736000\pi\)
0.976372 + 0.216099i \(0.0693333\pi\)
\(132\) 0 0
\(133\) −0.905543 1.56845i −0.0785205 0.136002i
\(134\) −12.5104 −1.08074
\(135\) −2.96582 0.816999i −0.255257 0.0703161i
\(136\) −11.4270 −0.979854
\(137\) −4.62327 8.00775i −0.394993 0.684148i 0.598107 0.801416i \(-0.295920\pi\)
−0.993100 + 0.117268i \(0.962586\pi\)
\(138\) −10.7936 5.06384i −0.918809 0.431063i
\(139\) −10.8056 + 18.7159i −0.916523 + 1.58746i −0.111867 + 0.993723i \(0.535683\pi\)
−0.804656 + 0.593741i \(0.797650\pi\)
\(140\) −0.0834615 + 0.144559i −0.00705378 + 0.0122175i
\(141\) 0.0334344 + 0.392717i 0.00281568 + 0.0330727i
\(142\) 9.51601 + 16.4822i 0.798566 + 1.38316i
\(143\) 0 0
\(144\) −4.81007 + 13.0259i −0.400839 + 1.08549i
\(145\) 4.13157 0.343108
\(146\) −11.9697 20.7321i −0.990617 1.71580i
\(147\) 9.20719 6.41496i 0.759396 0.529097i
\(148\) −0.564659 + 0.978018i −0.0464147 + 0.0803926i
\(149\) 0.573216 0.992840i 0.0469597 0.0813366i −0.841590 0.540117i \(-0.818380\pi\)
0.888550 + 0.458780i \(0.151713\pi\)
\(150\) 10.2162 7.11793i 0.834145 0.581177i
\(151\) −0.440320 0.762657i −0.0358327 0.0620641i 0.847553 0.530711i \(-0.178075\pi\)
−0.883386 + 0.468647i \(0.844742\pi\)
\(152\) −6.24252 −0.506335
\(153\) 8.80566 + 10.5943i 0.711896 + 0.856496i
\(154\) 0 0
\(155\) 2.70211 + 4.68018i 0.217038 + 0.375921i
\(156\) 0.0903733 + 1.06152i 0.00723566 + 0.0849893i
\(157\) 4.89311 8.47511i 0.390512 0.676387i −0.602005 0.798493i \(-0.705631\pi\)
0.992517 + 0.122105i \(0.0389645\pi\)
\(158\) 11.3019 19.5755i 0.899132 1.55734i
\(159\) −8.94356 4.19591i −0.709271 0.332757i
\(160\) 0.645162 + 1.11745i 0.0510045 + 0.0883425i
\(161\) −3.21412 −0.253308
\(162\) 13.1199 4.63694i 1.03080 0.364313i
\(163\) 4.62976 0.362631 0.181315 0.983425i \(-0.441965\pi\)
0.181315 + 0.983425i \(0.441965\pi\)
\(164\) 0.225364 + 0.390342i 0.0175980 + 0.0304806i
\(165\) 0 0
\(166\) 5.37515 9.31002i 0.417192 0.722598i
\(167\) 8.49369 14.7115i 0.657262 1.13841i −0.324060 0.946036i \(-0.605048\pi\)
0.981322 0.192374i \(-0.0616186\pi\)
\(168\) 0.263962 + 3.10048i 0.0203651 + 0.239207i
\(169\) 5.25974 + 9.11014i 0.404596 + 0.700780i
\(170\) 4.20335 0.322382
\(171\) 4.81051 + 5.78763i 0.367869 + 0.442591i
\(172\) −1.64592 −0.125500
\(173\) 0.295528 + 0.511869i 0.0224686 + 0.0389167i 0.877041 0.480415i \(-0.159514\pi\)
−0.854572 + 0.519332i \(0.826181\pi\)
\(174\) −15.3338 + 10.6836i −1.16246 + 0.809921i
\(175\) 1.67835 2.90699i 0.126872 0.219748i
\(176\) 0 0
\(177\) −10.1377 + 7.06327i −0.761996 + 0.530908i
\(178\) −9.64811 16.7110i −0.723156 1.25254i
\(179\) −9.64093 −0.720597 −0.360298 0.932837i \(-0.617325\pi\)
−0.360298 + 0.932837i \(0.617325\pi\)
\(180\) 0.240278 0.650687i 0.0179093 0.0484993i
\(181\) −4.76187 −0.353947 −0.176973 0.984216i \(-0.556631\pi\)
−0.176973 + 0.984216i \(0.556631\pi\)
\(182\) 0.879014 + 1.52250i 0.0651569 + 0.112855i
\(183\) −0.669841 7.86788i −0.0495161 0.581611i
\(184\) −5.53928 + 9.59432i −0.408361 + 0.707303i
\(185\) −0.855988 + 1.48262i −0.0629335 + 0.109004i
\(186\) −22.1308 10.3827i −1.62271 0.761300i
\(187\) 0 0
\(188\) −0.0888691 −0.00648144
\(189\) 2.67113 2.63397i 0.194296 0.191593i
\(190\) 2.29628 0.166590
\(191\) 2.59901 + 4.50162i 0.188058 + 0.325726i 0.944603 0.328216i \(-0.106447\pi\)
−0.756545 + 0.653942i \(0.773114\pi\)
\(192\) 9.23168 + 4.33108i 0.666239 + 0.312568i
\(193\) −1.63402 + 2.83021i −0.117620 + 0.203723i −0.918824 0.394668i \(-0.870860\pi\)
0.801204 + 0.598391i \(0.204193\pi\)
\(194\) −10.9625 + 18.9876i −0.787060 + 1.36323i
\(195\) 0.137000 + 1.60919i 0.00981081 + 0.115237i
\(196\) 1.26511 + 2.19123i 0.0903648 + 0.156516i
\(197\) −22.4626 −1.60039 −0.800197 0.599737i \(-0.795272\pi\)
−0.800197 + 0.599737i \(0.795272\pi\)
\(198\) 0 0
\(199\) −20.8291 −1.47654 −0.738269 0.674507i \(-0.764356\pi\)
−0.738269 + 0.674507i \(0.764356\pi\)
\(200\) −5.78502 10.0199i −0.409062 0.708517i
\(201\) 11.4990 8.01170i 0.811074 0.565102i
\(202\) 11.1079 19.2394i 0.781546 1.35368i
\(203\) −2.51911 + 4.36323i −0.176807 + 0.306238i
\(204\) −2.54858 + 1.77568i −0.178437 + 0.124323i
\(205\) 0.341638 + 0.591734i 0.0238610 + 0.0413285i
\(206\) −6.84761 −0.477096
\(207\) 13.1638 2.25779i 0.914946 0.156927i
\(208\) 7.28981 0.505457
\(209\) 0 0
\(210\) −0.0970972 1.14049i −0.00670034 0.0787015i
\(211\) −1.69601 + 2.93758i −0.116758 + 0.202231i −0.918481 0.395465i \(-0.870584\pi\)
0.801723 + 0.597696i \(0.203917\pi\)
\(212\) 1.11374 1.92905i 0.0764917 0.132487i
\(213\) −19.3019 9.05553i −1.32254 0.620475i
\(214\) 12.1715 + 21.0817i 0.832027 + 1.44111i
\(215\) −2.49511 −0.170165
\(216\) −3.25904 12.5129i −0.221750 0.851395i
\(217\) −6.59014 −0.447368
\(218\) 10.5887 + 18.3402i 0.717160 + 1.24216i
\(219\) 24.2787 + 11.3905i 1.64061 + 0.769696i
\(220\) 0 0
\(221\) 3.61612 6.26330i 0.243247 0.421315i
\(222\) −0.656911 7.71601i −0.0440890 0.517865i
\(223\) 5.51320 + 9.54913i 0.369191 + 0.639457i 0.989439 0.144948i \(-0.0463015\pi\)
−0.620248 + 0.784405i \(0.712968\pi\)
\(224\) −1.57348 −0.105133
\(225\) −4.83183 + 13.0849i −0.322122 + 0.872325i
\(226\) 12.4157 0.825879
\(227\) 2.98344 + 5.16748i 0.198018 + 0.342978i 0.947886 0.318610i \(-0.103216\pi\)
−0.749868 + 0.661588i \(0.769883\pi\)
\(228\) −1.39229 + 0.970052i −0.0922064 + 0.0642432i
\(229\) −12.3753 + 21.4347i −0.817785 + 1.41645i 0.0895253 + 0.995985i \(0.471465\pi\)
−0.907311 + 0.420461i \(0.861868\pi\)
\(230\) 2.03760 3.52922i 0.134355 0.232710i
\(231\) 0 0
\(232\) 8.68297 + 15.0393i 0.570065 + 0.987381i
\(233\) 4.18842 0.274392 0.137196 0.990544i \(-0.456191\pi\)
0.137196 + 0.990544i \(0.456191\pi\)
\(234\) −4.66959 5.61808i −0.305261 0.367265i
\(235\) −0.134720 −0.00878817
\(236\) −1.39296 2.41268i −0.0906741 0.157052i
\(237\) 2.14803 + 25.2305i 0.139530 + 1.63890i
\(238\) −2.56287 + 4.43903i −0.166126 + 0.287740i
\(239\) 3.68642 6.38507i 0.238455 0.413016i −0.721816 0.692085i \(-0.756692\pi\)
0.960271 + 0.279069i \(0.0900258\pi\)
\(240\) −4.29687 2.01589i −0.277362 0.130125i
\(241\) 4.41462 + 7.64634i 0.284371 + 0.492544i 0.972456 0.233085i \(-0.0748821\pi\)
−0.688086 + 0.725629i \(0.741549\pi\)
\(242\) 0 0
\(243\) −9.08965 + 12.6641i −0.583101 + 0.812399i
\(244\) 1.78045 0.113981
\(245\) 1.91782 + 3.32177i 0.122525 + 0.212220i
\(246\) −2.79808 1.31273i −0.178399 0.0836967i
\(247\) 1.97548 3.42163i 0.125697 0.217713i
\(248\) −11.3576 + 19.6719i −0.721207 + 1.24917i
\(249\) 1.02159 + 11.9995i 0.0647409 + 0.760440i
\(250\) 4.41639 + 7.64942i 0.279317 + 0.483792i
\(251\) 20.5731 1.29856 0.649280 0.760550i \(-0.275070\pi\)
0.649280 + 0.760550i \(0.275070\pi\)
\(252\) 0.540668 + 0.650489i 0.0340589 + 0.0409770i
\(253\) 0 0
\(254\) 9.27397 + 16.0630i 0.581901 + 1.00788i
\(255\) −3.86350 + 2.69183i −0.241942 + 0.168569i
\(256\) −4.51939 + 7.82782i −0.282462 + 0.489239i
\(257\) 1.69119 2.92923i 0.105494 0.182721i −0.808446 0.588570i \(-0.799691\pi\)
0.913940 + 0.405850i \(0.133024\pi\)
\(258\) 9.26031 6.45196i 0.576522 0.401682i
\(259\) −1.04383 1.80797i −0.0648605 0.112342i
\(260\) −0.364149 −0.0225836
\(261\) 7.25229 19.6396i 0.448905 1.21566i
\(262\) −10.6546 −0.658241
\(263\) 7.14112 + 12.3688i 0.440341 + 0.762692i 0.997715 0.0675692i \(-0.0215244\pi\)
−0.557374 + 0.830262i \(0.688191\pi\)
\(264\) 0 0
\(265\) 1.68836 2.92432i 0.103715 0.179639i
\(266\) −1.40009 + 2.42503i −0.0858452 + 0.148688i
\(267\) 19.5698 + 9.18124i 1.19765 + 0.561883i
\(268\) 1.58000 + 2.73665i 0.0965141 + 0.167167i
\(269\) 6.72041 0.409751 0.204875 0.978788i \(-0.434321\pi\)
0.204875 + 0.978788i \(0.434321\pi\)
\(270\) 1.19882 + 4.60280i 0.0729580 + 0.280118i
\(271\) −3.98035 −0.241789 −0.120895 0.992665i \(-0.538576\pi\)
−0.120895 + 0.992665i \(0.538576\pi\)
\(272\) 10.6272 + 18.4068i 0.644367 + 1.11608i
\(273\) −1.78295 0.836480i −0.107909 0.0506260i
\(274\) −7.14821 + 12.3811i −0.431839 + 0.747968i
\(275\) 0 0
\(276\) 0.255461 + 3.00062i 0.0153769 + 0.180616i
\(277\) 6.56600 + 11.3726i 0.394513 + 0.683316i 0.993039 0.117787i \(-0.0375800\pi\)
−0.598526 + 0.801103i \(0.704247\pi\)
\(278\) 33.4140 2.00404
\(279\) 26.9906 4.62930i 1.61589 0.277149i
\(280\) −1.06361 −0.0635627
\(281\) 1.48393 + 2.57025i 0.0885241 + 0.153328i 0.906887 0.421373i \(-0.138452\pi\)
−0.818363 + 0.574701i \(0.805118\pi\)
\(282\) 0.499998 0.348365i 0.0297745 0.0207449i
\(283\) −4.04639 + 7.00855i −0.240533 + 0.416615i −0.960866 0.277013i \(-0.910655\pi\)
0.720333 + 0.693628i \(0.243989\pi\)
\(284\) 2.40365 4.16324i 0.142630 0.247043i
\(285\) −2.11062 + 1.47054i −0.125022 + 0.0871072i
\(286\) 0 0
\(287\) −0.833217 −0.0491833
\(288\) 6.44435 1.10531i 0.379737 0.0651307i
\(289\) 4.08649 0.240382
\(290\) −3.19398 5.53214i −0.187557 0.324859i
\(291\) −2.08352 24.4728i −0.122138 1.43462i
\(292\) −3.02341 + 5.23671i −0.176932 + 0.306455i
\(293\) 7.85779 13.6101i 0.459057 0.795110i −0.539854 0.841758i \(-0.681521\pi\)
0.998911 + 0.0466485i \(0.0148541\pi\)
\(294\) −15.7074 7.36917i −0.916073 0.429779i
\(295\) −2.11165 3.65748i −0.122945 0.212947i
\(296\) −7.19584 −0.418249
\(297\) 0 0
\(298\) −1.77254 −0.102681
\(299\) −3.50587 6.07235i −0.202750 0.351173i
\(300\) −2.84729 1.33582i −0.164388 0.0771234i
\(301\) 1.52132 2.63501i 0.0876876 0.151879i
\(302\) −0.680795 + 1.17917i −0.0391754 + 0.0678537i
\(303\) 2.11115 + 24.7973i 0.121282 + 1.42457i
\(304\) 5.80560 + 10.0556i 0.332974 + 0.576728i
\(305\) 2.69905 0.154547
\(306\) 7.37829 19.9808i 0.421788 1.14223i
\(307\) −3.51315 −0.200506 −0.100253 0.994962i \(-0.531965\pi\)
−0.100253 + 0.994962i \(0.531965\pi\)
\(308\) 0 0
\(309\) 6.29397 4.38522i 0.358051 0.249466i
\(310\) 4.17782 7.23620i 0.237284 0.410989i
\(311\) −13.1672 + 22.8063i −0.746644 + 1.29323i 0.202779 + 0.979225i \(0.435003\pi\)
−0.949423 + 0.314001i \(0.898331\pi\)
\(312\) −5.56971 + 3.88060i −0.315323 + 0.219696i
\(313\) 1.23057 + 2.13141i 0.0695560 + 0.120474i 0.898706 0.438552i \(-0.144508\pi\)
−0.829150 + 0.559026i \(0.811175\pi\)
\(314\) −15.1308 −0.853882
\(315\) 0.819620 + 0.986102i 0.0461804 + 0.0555605i
\(316\) −5.70949 −0.321184
\(317\) 13.2536 + 22.9559i 0.744395 + 1.28933i 0.950477 + 0.310795i \(0.100595\pi\)
−0.206082 + 0.978535i \(0.566071\pi\)
\(318\) 1.29569 + 15.2191i 0.0726589 + 0.853444i
\(319\) 0 0
\(320\) −1.74274 + 3.01852i −0.0974224 + 0.168741i
\(321\) −24.6881 11.5825i −1.37796 0.646474i
\(322\) 2.48474 + 4.30369i 0.138469 + 0.239835i
\(323\) 11.5195 0.640962
\(324\) −2.67131 2.28435i −0.148406 0.126908i
\(325\) 7.32279 0.406196
\(326\) −3.57912 6.19922i −0.198229 0.343343i
\(327\) −21.4777 10.0764i −1.18772 0.557224i
\(328\) −1.43598 + 2.48720i −0.0792889 + 0.137332i
\(329\) 0.0821419 0.142274i 0.00452863 0.00784382i
\(330\) 0 0
\(331\) −4.05198 7.01824i −0.222717 0.385757i 0.732915 0.680320i \(-0.238159\pi\)
−0.955632 + 0.294563i \(0.904826\pi\)
\(332\) −2.71541 −0.149028
\(333\) 5.54514 + 6.67147i 0.303872 + 0.365595i
\(334\) −26.2648 −1.43715
\(335\) 2.39519 + 4.14859i 0.130863 + 0.226662i
\(336\) 4.74883 3.30867i 0.259070 0.180503i
\(337\) −12.3603 + 21.4087i −0.673309 + 1.16621i 0.303651 + 0.952783i \(0.401794\pi\)
−0.976960 + 0.213423i \(0.931539\pi\)
\(338\) 8.13228 14.0855i 0.442338 0.766152i
\(339\) −11.4119 + 7.95102i −0.619807 + 0.431840i
\(340\) −0.530861 0.919478i −0.0287900 0.0498657i
\(341\) 0 0
\(342\) 4.03074 10.9155i 0.217957 0.590241i
\(343\) −9.73102 −0.525426
\(344\) −5.24376 9.08245i −0.282724 0.489693i
\(345\) 0.387263 + 4.54876i 0.0208496 + 0.244897i
\(346\) 0.456926 0.791420i 0.0245645 0.0425470i
\(347\) 1.03482 1.79236i 0.0555522 0.0962192i −0.836912 0.547337i \(-0.815641\pi\)
0.892464 + 0.451118i \(0.148975\pi\)
\(348\) 4.27361 + 2.00498i 0.229090 + 0.107478i
\(349\) 2.60713 + 4.51569i 0.139557 + 0.241719i 0.927329 0.374247i \(-0.122099\pi\)
−0.787772 + 0.615967i \(0.788766\pi\)
\(350\) −5.18993 −0.277413
\(351\) 7.88987 + 2.17344i 0.421130 + 0.116009i
\(352\) 0 0
\(353\) −10.8363 18.7689i −0.576756 0.998970i −0.995848 0.0910266i \(-0.970985\pi\)
0.419093 0.907943i \(-0.362348\pi\)
\(354\) 17.2948 + 8.11392i 0.919209 + 0.431250i
\(355\) 3.64378 6.31121i 0.193392 0.334964i
\(356\) −2.43701 + 4.22103i −0.129161 + 0.223714i
\(357\) −0.487097 5.72139i −0.0257799 0.302808i
\(358\) 7.45310 + 12.9091i 0.393908 + 0.682269i
\(359\) 8.75285 0.461958 0.230979 0.972959i \(-0.425807\pi\)
0.230979 + 0.972959i \(0.425807\pi\)
\(360\) 4.35611 0.747140i 0.229587 0.0393778i
\(361\) −12.7069 −0.668786
\(362\) 3.68125 + 6.37611i 0.193482 + 0.335121i
\(363\) 0 0
\(364\) 0.222030 0.384567i 0.0116375 0.0201568i
\(365\) −4.58331 + 7.93853i −0.239902 + 0.415522i
\(366\) −10.0172 + 6.97932i −0.523608 + 0.364815i
\(367\) 3.38311 + 5.85972i 0.176597 + 0.305875i 0.940713 0.339204i \(-0.110158\pi\)
−0.764116 + 0.645079i \(0.776824\pi\)
\(368\) 20.6063 1.07418
\(369\) 3.41253 0.585301i 0.177649 0.0304696i
\(370\) 2.64695 0.137608
\(371\) 2.05886 + 3.56604i 0.106890 + 0.185140i
\(372\) 0.523789 + 6.15238i 0.0271572 + 0.318986i
\(373\) 10.9467 18.9602i 0.566797 0.981722i −0.430083 0.902790i \(-0.641516\pi\)
0.996880 0.0789323i \(-0.0251511\pi\)
\(374\) 0 0
\(375\) −8.95802 4.20269i −0.462590 0.217026i
\(376\) −0.283130 0.490395i −0.0146013 0.0252902i
\(377\) −10.9911 −0.566069
\(378\) −5.59183 1.54039i −0.287613 0.0792293i
\(379\) −33.8236 −1.73740 −0.868701 0.495337i \(-0.835045\pi\)
−0.868701 + 0.495337i \(0.835045\pi\)
\(380\) −0.290008 0.502309i −0.0148771 0.0257679i
\(381\) −18.8109 8.82521i −0.963712 0.452129i
\(382\) 4.01843 6.96012i 0.205601 0.356111i
\(383\) 9.18694 15.9123i 0.469431 0.813078i −0.529958 0.848024i \(-0.677792\pi\)
0.999389 + 0.0349456i \(0.0111258\pi\)
\(384\) −1.97789 23.2321i −0.100934 1.18556i
\(385\) 0 0
\(386\) 5.05284 0.257183
\(387\) −4.37975 + 11.8606i −0.222635 + 0.602909i
\(388\) 5.53801 0.281150
\(389\) 15.4033 + 26.6792i 0.780977 + 1.35269i 0.931373 + 0.364066i \(0.118612\pi\)
−0.150396 + 0.988626i \(0.548055\pi\)
\(390\) 2.04879 1.42746i 0.103744 0.0722822i
\(391\) 10.2218 17.7047i 0.516938 0.895364i
\(392\) −8.06106 + 13.9622i −0.407145 + 0.705196i
\(393\) 9.79313 6.82320i 0.493998 0.344185i
\(394\) 17.3651 + 30.0773i 0.874842 + 1.51527i
\(395\) −8.65524 −0.435493
\(396\) 0 0
\(397\) −8.29578 −0.416353 −0.208177 0.978091i \(-0.566753\pi\)
−0.208177 + 0.978091i \(0.566753\pi\)
\(398\) 16.1023 + 27.8901i 0.807137 + 1.39800i
\(399\) −0.266100 3.12558i −0.0133217 0.156475i
\(400\) −10.7602 + 18.6373i −0.538012 + 0.931863i
\(401\) 1.96681 3.40662i 0.0982179 0.170118i −0.812729 0.582642i \(-0.802019\pi\)
0.910947 + 0.412523i \(0.135352\pi\)
\(402\) −19.6171 9.20343i −0.978412 0.459025i
\(403\) −7.18833 12.4505i −0.358076 0.620206i
\(404\) −5.61146 −0.279181
\(405\) −4.04954 3.46293i −0.201223 0.172075i
\(406\) 7.78977 0.386600
\(407\) 0 0
\(408\) −17.9181 8.40636i −0.887080 0.416177i
\(409\) 1.25213 2.16875i 0.0619137 0.107238i −0.833407 0.552660i \(-0.813613\pi\)
0.895321 + 0.445422i \(0.146946\pi\)
\(410\) 0.528219 0.914902i 0.0260869 0.0451838i
\(411\) −1.35858 15.9578i −0.0670139 0.787138i
\(412\) 0.864818 + 1.49791i 0.0426065 + 0.0737966i
\(413\) 5.15007 0.253418
\(414\) −13.1997 15.8808i −0.648728 0.780498i
\(415\) −4.11640 −0.202066
\(416\) −1.71630 2.97273i −0.0841488 0.145750i
\(417\) −30.7124 + 21.3984i −1.50399 + 1.04788i
\(418\) 0 0
\(419\) −5.36970 + 9.30060i −0.262327 + 0.454364i −0.966860 0.255307i \(-0.917823\pi\)
0.704533 + 0.709672i \(0.251157\pi\)
\(420\) −0.237219 + 0.165278i −0.0115751 + 0.00806476i
\(421\) −11.0937 19.2149i −0.540675 0.936477i −0.998865 0.0476226i \(-0.984836\pi\)
0.458190 0.888854i \(-0.348498\pi\)
\(422\) 5.24453 0.255300
\(423\) −0.236479 + 0.640399i −0.0114980 + 0.0311373i
\(424\) 14.1931 0.689278
\(425\) 10.6753 + 18.4901i 0.517826 + 0.896901i
\(426\) 2.79635 + 32.8456i 0.135483 + 1.59137i
\(427\) −1.64567 + 2.85039i −0.0796396 + 0.137940i
\(428\) 3.07440 5.32501i 0.148606 0.257394i
\(429\) 0 0
\(430\) 1.92889 + 3.34093i 0.0930192 + 0.161114i
\(431\) −18.4582 −0.889100 −0.444550 0.895754i \(-0.646636\pi\)
−0.444550 + 0.895754i \(0.646636\pi\)
\(432\) −17.1251 + 16.8868i −0.823933 + 0.812469i
\(433\) 15.1166 0.726459 0.363230 0.931700i \(-0.381674\pi\)
0.363230 + 0.931700i \(0.381674\pi\)
\(434\) 5.09463 + 8.82415i 0.244550 + 0.423573i
\(435\) 6.47853 + 3.03943i 0.310622 + 0.145729i
\(436\) 2.67461 4.63255i 0.128090 0.221859i
\(437\) 5.58414 9.67202i 0.267126 0.462675i
\(438\) −3.51737 41.3147i −0.168066 1.97409i
\(439\) −11.9777 20.7459i −0.571663 0.990150i −0.996395 0.0848306i \(-0.972965\pi\)
0.424732 0.905319i \(-0.360368\pi\)
\(440\) 0 0
\(441\) 19.1566 3.28566i 0.912221 0.156460i
\(442\) −11.1820 −0.531875
\(443\) −12.7489 22.0817i −0.605716 1.04913i −0.991938 0.126725i \(-0.959553\pi\)
0.386222 0.922406i \(-0.373780\pi\)
\(444\) −1.60491 + 1.11819i −0.0761655 + 0.0530670i
\(445\) −3.69436 + 6.39882i −0.175130 + 0.303333i
\(446\) 8.52415 14.7643i 0.403630 0.699108i
\(447\) 1.62923 1.13514i 0.0770599 0.0536902i
\(448\) −2.12518 3.68092i −0.100405 0.173907i
\(449\) −22.4824 −1.06101 −0.530505 0.847682i \(-0.677998\pi\)
−0.530505 + 0.847682i \(0.677998\pi\)
\(450\) 21.2559 3.64571i 1.00201 0.171861i
\(451\) 0 0
\(452\) −1.56804 2.71592i −0.0737542 0.127746i
\(453\) −0.129391 1.51982i −0.00607933 0.0714072i
\(454\) 4.61281 7.98963i 0.216490 0.374972i
\(455\) 0.336584 0.582980i 0.0157793 0.0273305i
\(456\) −9.78863 4.59237i −0.458395 0.215058i
\(457\) −10.8448 18.7837i −0.507298 0.878666i −0.999964 0.00844735i \(-0.997311\pi\)
0.492667 0.870218i \(-0.336022\pi\)
\(458\) 38.2679 1.78814
\(459\) 6.01400 + 23.0904i 0.280710 + 1.07777i
\(460\) −1.02935 −0.0479938
\(461\) 6.05182 + 10.4821i 0.281861 + 0.488198i 0.971843 0.235629i \(-0.0757149\pi\)
−0.689982 + 0.723827i \(0.742382\pi\)
\(462\) 0 0
\(463\) −10.0154 + 17.3472i −0.465455 + 0.806192i −0.999222 0.0394398i \(-0.987443\pi\)
0.533767 + 0.845632i \(0.320776\pi\)
\(464\) 16.1505 27.9734i 0.749767 1.29863i
\(465\) 0.794033 + 9.32663i 0.0368224 + 0.432512i
\(466\) −3.23793 5.60826i −0.149994 0.259798i
\(467\) 6.06750 0.280770 0.140385 0.990097i \(-0.455166\pi\)
0.140385 + 0.990097i \(0.455166\pi\)
\(468\) −0.639204 + 1.73100i −0.0295472 + 0.0800156i
\(469\) −5.84161 −0.269740
\(470\) 0.104148 + 0.180389i 0.00480398 + 0.00832074i
\(471\) 13.9075 9.68980i 0.640822 0.446482i
\(472\) 8.87574 15.3732i 0.408539 0.707610i
\(473\) 0 0
\(474\) 32.1230 22.3811i 1.47546 1.02800i
\(475\) 5.83187 + 10.1011i 0.267584 + 0.463470i
\(476\) 1.29471 0.0593430
\(477\) −10.9373 13.1588i −0.500783 0.602502i
\(478\) −11.3994 −0.521397
\(479\) −18.1364 31.4132i −0.828673 1.43530i −0.899079 0.437786i \(-0.855763\pi\)
0.0704058 0.997518i \(-0.477571\pi\)
\(480\) 0.189585 + 2.22685i 0.00865335 + 0.101641i
\(481\) 2.27716 3.94416i 0.103830 0.179838i
\(482\) 6.82560 11.8223i 0.310898 0.538491i
\(483\) −5.03993 2.36450i −0.229325 0.107589i
\(484\) 0 0
\(485\) 8.39529 0.381211
\(486\) 23.9840 + 2.38081i 1.08794 + 0.107996i
\(487\) −8.68493 −0.393552 −0.196776 0.980449i \(-0.563047\pi\)
−0.196776 + 0.980449i \(0.563047\pi\)
\(488\) 5.67236 + 9.82482i 0.256776 + 0.444749i
\(489\) 7.25973 + 3.40593i 0.328296 + 0.154021i
\(490\) 2.96522 5.13591i 0.133955 0.232017i
\(491\) 16.5987 28.7497i 0.749087 1.29746i −0.199174 0.979964i \(-0.563826\pi\)
0.948261 0.317493i \(-0.102841\pi\)
\(492\) 0.0662247 + 0.777869i 0.00298564 + 0.0350691i
\(493\) −16.0229 27.7525i −0.721636 1.24991i
\(494\) −6.10872 −0.274844
\(495\) 0 0
\(496\) 42.2506 1.89711
\(497\) 4.44339 + 7.69618i 0.199313 + 0.345221i
\(498\) 15.2775 10.6444i 0.684603 0.476986i
\(499\) −10.4384 + 18.0799i −0.467289 + 0.809368i −0.999302 0.0373682i \(-0.988103\pi\)
0.532013 + 0.846736i \(0.321436\pi\)
\(500\) 1.11554 1.93216i 0.0498883 0.0864090i
\(501\) 24.1413 16.8200i 1.07855 0.751463i
\(502\) −15.9044 27.5472i −0.709847 1.22949i
\(503\) 23.3189 1.03974 0.519869 0.854246i \(-0.325981\pi\)
0.519869 + 0.854246i \(0.325981\pi\)
\(504\) −1.86699 + 5.05591i −0.0831622 + 0.225208i
\(505\) −8.50663 −0.378540
\(506\) 0 0
\(507\) 1.54561 + 18.1546i 0.0686431 + 0.806275i
\(508\) 2.34251 4.05734i 0.103932 0.180016i
\(509\) −3.24061 + 5.61289i −0.143637 + 0.248787i −0.928864 0.370422i \(-0.879213\pi\)
0.785226 + 0.619209i \(0.212547\pi\)
\(510\) 6.59109 + 3.09223i 0.291858 + 0.136926i
\(511\) −5.58910 9.68060i −0.247247 0.428245i
\(512\) −12.9480 −0.572225
\(513\) 3.28544 + 12.6142i 0.145056 + 0.556932i
\(514\) −5.22963 −0.230669
\(515\) 1.31101 + 2.27074i 0.0577701 + 0.100061i
\(516\) −2.58089 1.21083i −0.113617 0.0533040i
\(517\) 0 0
\(518\) −1.61390 + 2.79537i −0.0709109 + 0.122821i
\(519\) 0.0868429 + 1.02005i 0.00381198 + 0.0447752i
\(520\) −1.16015 2.00944i −0.0508760 0.0881198i
\(521\) −33.2103 −1.45497 −0.727484 0.686124i \(-0.759311\pi\)
−0.727484 + 0.686124i \(0.759311\pi\)
\(522\) −31.9038 + 5.47200i −1.39639 + 0.239503i
\(523\) −40.1386 −1.75514 −0.877569 0.479451i \(-0.840836\pi\)
−0.877569 + 0.479451i \(0.840836\pi\)
\(524\) 1.34562 + 2.33068i 0.0587835 + 0.101816i
\(525\) 4.77031 3.32364i 0.208194 0.145055i
\(526\) 11.0412 19.1238i 0.481417 0.833839i
\(527\) 20.9585 36.3011i 0.912965 1.58130i
\(528\) 0 0
\(529\) 1.58985 + 2.75370i 0.0691240 + 0.119726i
\(530\) −5.22085 −0.226779
\(531\) −21.0927 + 3.61772i −0.915344 + 0.156995i
\(532\) 0.707298 0.0306652
\(533\) −0.908849 1.57417i −0.0393666 0.0681850i
\(534\) −2.83516 33.3015i −0.122690 1.44110i
\(535\) 4.66060 8.07239i 0.201495 0.349000i
\(536\) −10.0675 + 17.4375i −0.434851 + 0.753185i
\(537\) −15.1175 7.09245i −0.652370 0.306062i
\(538\) −5.19534 8.99859i −0.223987 0.387957i
\(539\) 0 0
\(540\) 0.855454 0.843551i 0.0368129 0.0363007i
\(541\) 24.6485 1.05972 0.529860 0.848085i \(-0.322244\pi\)
0.529860 + 0.848085i \(0.322244\pi\)
\(542\) 3.07708 + 5.32967i 0.132172 + 0.228929i
\(543\) −7.46688 3.50312i −0.320435 0.150333i
\(544\) 5.00410 8.66735i 0.214549 0.371610i
\(545\) 4.05454 7.02267i 0.173677 0.300818i
\(546\) 0.258305 + 3.03402i 0.0110544 + 0.129844i
\(547\) −12.8602 22.2745i −0.549861 0.952388i −0.998284 0.0585660i \(-0.981347\pi\)
0.448422 0.893822i \(-0.351986\pi\)
\(548\) 3.61113 0.154260
\(549\) 4.73774 12.8301i 0.202202 0.547574i
\(550\) 0 0
\(551\) −8.75329 15.1611i −0.372902 0.645886i
\(552\) −15.7441 + 10.9694i −0.670112 + 0.466889i
\(553\) 5.27730 9.14055i 0.224414 0.388696i
\(554\) 10.1519 17.5837i 0.431314 0.747058i
\(555\) −2.43294 + 1.69511i −0.103273 + 0.0719534i
\(556\) −4.22002 7.30928i −0.178969 0.309983i
\(557\) 11.6815 0.494962 0.247481 0.968893i \(-0.420397\pi\)
0.247481 + 0.968893i \(0.420397\pi\)
\(558\) −27.0642 32.5615i −1.14572 1.37844i
\(559\) 6.63766 0.280743
\(560\) 0.989164 + 1.71328i 0.0417998 + 0.0723994i
\(561\) 0 0
\(562\) 2.29436 3.97396i 0.0967819 0.167631i
\(563\) −4.06105 + 7.03395i −0.171153 + 0.296445i −0.938823 0.344400i \(-0.888083\pi\)
0.767670 + 0.640845i \(0.221416\pi\)
\(564\) −0.139352 0.0653774i −0.00586777 0.00275289i
\(565\) −2.37705 4.11717i −0.100003 0.173211i
\(566\) 12.5125 0.525941
\(567\) 6.12620 2.16517i 0.257276 0.0909285i
\(568\) 30.6313 1.28526
\(569\) 9.00331 + 15.5942i 0.377438 + 0.653742i 0.990689 0.136146i \(-0.0434717\pi\)
−0.613250 + 0.789888i \(0.710138\pi\)
\(570\) 3.60070 + 1.68928i 0.150817 + 0.0707561i
\(571\) 1.30322 2.25725i 0.0545382 0.0944629i −0.837467 0.546487i \(-0.815965\pi\)
0.892006 + 0.452024i \(0.149298\pi\)
\(572\) 0 0
\(573\) 0.763738 + 8.97079i 0.0319056 + 0.374760i
\(574\) 0.644134 + 1.11567i 0.0268856 + 0.0465673i
\(575\) 20.6996 0.863231
\(576\) 11.2896 + 13.5827i 0.470400 + 0.565948i
\(577\) 35.1888 1.46493 0.732465 0.680805i \(-0.238370\pi\)
0.732465 + 0.680805i \(0.238370\pi\)
\(578\) −3.15913 5.47178i −0.131403 0.227596i
\(579\) −4.64431 + 3.23585i −0.193011 + 0.134477i
\(580\) −0.806767 + 1.39736i −0.0334992 + 0.0580223i
\(581\) 2.50986 4.34721i 0.104127 0.180353i
\(582\) −31.1582 + 21.7089i −1.29155 + 0.899864i
\(583\) 0 0
\(584\) −38.5294 −1.59436
\(585\) −0.968995 + 2.62409i −0.0400630 + 0.108493i
\(586\) −24.2984 −1.00376
\(587\) −11.7762 20.3970i −0.486056 0.841874i 0.513816 0.857901i \(-0.328232\pi\)
−0.999872 + 0.0160270i \(0.994898\pi\)
\(588\) 0.371760 + 4.36666i 0.0153311 + 0.180078i
\(589\) 11.4496 19.8312i 0.471771 0.817131i
\(590\) −3.26489 + 5.65496i −0.134414 + 0.232811i
\(591\) −35.2227 16.5248i −1.44887 0.679741i
\(592\) 6.69219 + 11.5912i 0.275047 + 0.476396i
\(593\) 13.1828 0.541354 0.270677 0.962670i \(-0.412752\pi\)
0.270677 + 0.962670i \(0.412752\pi\)
\(594\) 0 0
\(595\) 1.96270 0.0804630
\(596\) 0.223863 + 0.387742i 0.00916978 + 0.0158825i
\(597\) −32.6613 15.3232i −1.33674 0.627135i
\(598\) −5.42055 + 9.38867i −0.221663 + 0.383931i
\(599\) −17.1082 + 29.6323i −0.699022 + 1.21074i 0.269783 + 0.962921i \(0.413048\pi\)
−0.968806 + 0.247821i \(0.920285\pi\)
\(600\) −1.69997 19.9677i −0.0694009 0.815176i
\(601\) −14.5143 25.1394i −0.592049 1.02546i −0.993956 0.109778i \(-0.964986\pi\)
0.401907 0.915680i \(-0.368347\pi\)
\(602\) −4.70435 −0.191735
\(603\) 23.9249 4.10349i 0.974298 0.167107i
\(604\) 0.343924 0.0139941
\(605\) 0 0
\(606\) 31.5714 21.9968i 1.28250 0.893561i
\(607\) 1.57818 2.73348i 0.0640562 0.110949i −0.832219 0.554447i \(-0.812930\pi\)
0.896275 + 0.443499i \(0.146263\pi\)
\(608\) 2.73373 4.73495i 0.110867 0.192028i
\(609\) −7.15996 + 4.98858i −0.290136 + 0.202148i
\(610\) −2.08655 3.61401i −0.0844819 0.146327i
\(611\) 0.358392 0.0144990
\(612\) −5.30263 + 0.909482i −0.214346 + 0.0367636i
\(613\) 33.9410 1.37086 0.685432 0.728136i \(-0.259613\pi\)
0.685432 + 0.728136i \(0.259613\pi\)
\(614\) 2.71591 + 4.70409i 0.109605 + 0.189842i
\(615\) 0.100393 + 1.17920i 0.00404822 + 0.0475500i
\(616\) 0 0
\(617\) 10.8039 18.7129i 0.434948 0.753351i −0.562344 0.826904i \(-0.690100\pi\)
0.997291 + 0.0735523i \(0.0234336\pi\)
\(618\) −10.7374 5.03751i −0.431923 0.202638i
\(619\) −10.2563 17.7644i −0.412235 0.714013i 0.582898 0.812545i \(-0.301919\pi\)
−0.995134 + 0.0985323i \(0.968585\pi\)
\(620\) −2.11055 −0.0847617
\(621\) 22.3025 + 6.14372i 0.894970 + 0.246539i
\(622\) 40.7166 1.63259
\(623\) −4.50507 7.80301i −0.180492 0.312621i
\(624\) 11.4308 + 5.36282i 0.457600 + 0.214685i
\(625\) −9.93266 + 17.2039i −0.397306 + 0.688155i
\(626\) 1.90263 3.29545i 0.0760444 0.131713i
\(627\) 0 0
\(628\) 1.91094 + 3.30985i 0.0762550 + 0.132078i
\(629\) 13.2787 0.529456
\(630\) 0.686761 1.85979i 0.0273612 0.0740958i
\(631\) 29.8645 1.18889 0.594443 0.804138i \(-0.297372\pi\)
0.594443 + 0.804138i \(0.297372\pi\)
\(632\) −18.1900 31.5060i −0.723559 1.25324i
\(633\) −4.82050 + 3.35860i −0.191598 + 0.133493i
\(634\) 20.4918 35.4929i 0.813835 1.40960i
\(635\) 3.55110 6.15069i 0.140921 0.244083i
\(636\) 3.16552 2.20552i 0.125521 0.0874547i
\(637\) −5.10193 8.83680i −0.202146 0.350127i
\(638\) 0 0
\(639\) −23.6046 28.3992i −0.933784 1.12345i
\(640\) 7.96969 0.315030
\(641\) 19.0600 + 33.0129i 0.752826 + 1.30393i 0.946448 + 0.322856i \(0.104643\pi\)
−0.193622 + 0.981076i \(0.562024\pi\)
\(642\) 3.57668 + 42.0113i 0.141160 + 1.65806i
\(643\) 8.41257 14.5710i 0.331759 0.574624i −0.651098 0.758994i \(-0.725691\pi\)
0.982857 + 0.184370i \(0.0590245\pi\)
\(644\) 0.627619 1.08707i 0.0247316 0.0428365i
\(645\) −3.91247 1.83555i −0.154053 0.0722747i
\(646\) −8.90536 15.4245i −0.350377 0.606870i
\(647\) −20.9745 −0.824592 −0.412296 0.911050i \(-0.635273\pi\)
−0.412296 + 0.911050i \(0.635273\pi\)
\(648\) 4.09487 22.0185i 0.160862 0.864968i
\(649\) 0 0
\(650\) −5.66102 9.80517i −0.222043 0.384591i
\(651\) −10.3337 4.84810i −0.405010 0.190012i
\(652\) −0.904049 + 1.56586i −0.0354053 + 0.0613238i
\(653\) −9.88324 + 17.1183i −0.386761 + 0.669890i −0.992012 0.126145i \(-0.959739\pi\)
0.605251 + 0.796035i \(0.293073\pi\)
\(654\) 3.11158 + 36.5483i 0.121672 + 1.42915i
\(655\) 2.03987 + 3.53316i 0.0797044 + 0.138052i
\(656\) 5.34191 0.208566
\(657\) 29.6910 + 35.7218i 1.15835 + 1.39364i
\(658\) −0.254005 −0.00990215
\(659\) 5.90277 + 10.2239i 0.229939 + 0.398267i 0.957790 0.287469i \(-0.0928139\pi\)
−0.727851 + 0.685736i \(0.759481\pi\)
\(660\) 0 0
\(661\) −8.90382 + 15.4219i −0.346318 + 0.599841i −0.985592 0.169138i \(-0.945902\pi\)
0.639274 + 0.768979i \(0.279235\pi\)
\(662\) −6.26492 + 10.8512i −0.243493 + 0.421742i
\(663\) 10.2779 7.16099i 0.399162 0.278110i
\(664\) −8.65109 14.9841i −0.335727 0.581497i
\(665\) 1.07222 0.0415789
\(666\) 4.64629 12.5824i 0.180040 0.487559i
\(667\) −31.0688 −1.20299
\(668\) 3.31711 + 5.74540i 0.128343 + 0.222296i
\(669\) 1.62009 + 19.0294i 0.0626363 + 0.735720i
\(670\) 3.70329 6.41429i 0.143071 0.247806i
\(671\) 0 0
\(672\) −2.46731 1.15755i −0.0951784 0.0446533i
\(673\) −9.85264 17.0653i −0.379791 0.657818i 0.611240 0.791445i \(-0.290671\pi\)
−0.991032 + 0.133627i \(0.957338\pi\)
\(674\) 38.2215 1.47224
\(675\) −17.2026 + 16.9633i −0.662129 + 0.652916i
\(676\) −4.10826 −0.158010
\(677\) 6.20696 + 10.7508i 0.238553 + 0.413185i 0.960299 0.278972i \(-0.0899937\pi\)
−0.721747 + 0.692157i \(0.756660\pi\)
\(678\) 19.4685 + 9.13372i 0.747683 + 0.350778i
\(679\) −5.11880 + 8.86602i −0.196441 + 0.340247i
\(680\) 3.38256 5.85877i 0.129715 0.224674i
\(681\) 0.876706 + 10.2977i 0.0335955 + 0.394609i
\(682\) 0 0
\(683\) 2.02837 0.0776135 0.0388068 0.999247i \(-0.487644\pi\)
0.0388068 + 0.999247i \(0.487644\pi\)
\(684\) −2.89681 + 0.496848i −0.110762 + 0.0189974i
\(685\) 5.47425 0.209160
\(686\) 7.52274 + 13.0298i 0.287220 + 0.497479i
\(687\) −35.1739 + 24.5068i −1.34197 + 0.934994i
\(688\) −9.75348 + 16.8935i −0.371848 + 0.644060i
\(689\) −4.49148 + 7.77947i −0.171112 + 0.296374i
\(690\) 5.79137 4.03504i 0.220474 0.153611i
\(691\) −1.17144 2.02899i −0.0445635 0.0771862i 0.842883 0.538096i \(-0.180856\pi\)
−0.887447 + 0.460910i \(0.847523\pi\)
\(692\) −0.230830 −0.00877483
\(693\) 0 0
\(694\) −3.19995 −0.121469
\(695\) −6.39729 11.0804i −0.242663 0.420305i
\(696\) 2.55155 + 29.9703i 0.0967163 + 1.13602i
\(697\) 2.64986 4.58969i 0.100371 0.173847i
\(698\) 4.03098 6.98187i 0.152575 0.264268i
\(699\) 6.56768 + 3.08125i 0.248412 + 0.116544i
\(700\) 0.655461 + 1.13529i 0.0247741 + 0.0429100i
\(701\) −4.43368 −0.167458 −0.0837289 0.996489i \(-0.526683\pi\)
−0.0837289 + 0.996489i \(0.526683\pi\)
\(702\) −3.18919 12.2447i −0.120368 0.462146i
\(703\) 7.25411 0.273594
\(704\) 0 0
\(705\) −0.211249 0.0991082i −0.00795609 0.00373263i
\(706\) −16.7543 + 29.0193i −0.630557 + 1.09216i
\(707\) 5.18669 8.98361i 0.195065 0.337863i
\(708\) −0.409332 4.80797i −0.0153836 0.180695i
\(709\) −14.9413 25.8790i −0.561131 0.971907i −0.997398 0.0720902i \(-0.977033\pi\)
0.436267 0.899817i \(-0.356300\pi\)
\(710\) −11.2676 −0.422864
\(711\) −15.1929 + 41.1432i −0.569777 + 1.54299i
\(712\) −31.0565 −1.16389
\(713\) −20.3195 35.1943i −0.760970 1.31804i
\(714\) −7.28435 + 5.07525i −0.272610 + 0.189936i
\(715\) 0 0
\(716\) 1.88258 3.26072i 0.0703551 0.121859i
\(717\) 10.4778 7.30020i 0.391299 0.272631i
\(718\) −6.76655 11.7200i −0.252525 0.437387i
\(719\) −21.6321 −0.806742 −0.403371 0.915037i \(-0.632162\pi\)
−0.403371 + 0.915037i \(0.632162\pi\)
\(720\) −5.25473 6.32208i −0.195832 0.235610i
\(721\) −3.19741 −0.119078
\(722\) 9.82332 + 17.0145i 0.365586 + 0.633214i
\(723\) 1.29727 + 15.2376i 0.0482459 + 0.566691i
\(724\) 0.929846 1.61054i 0.0345574 0.0598552i
\(725\) 16.2235 28.1000i 0.602527 1.04361i
\(726\) 0 0
\(727\) 6.22109 + 10.7752i 0.230727 + 0.399631i 0.958022 0.286694i \(-0.0925561\pi\)
−0.727295 + 0.686325i \(0.759223\pi\)
\(728\) 2.82948 0.104868
\(729\) −23.5695 + 13.1711i −0.872946 + 0.487817i
\(730\) 14.1729 0.524561
\(731\) 9.67645 + 16.7601i 0.357897 + 0.619895i
\(732\) 2.79184 + 1.30980i 0.103189 + 0.0484117i
\(733\) 26.1761 45.3383i 0.966836 1.67461i 0.262238 0.965003i \(-0.415539\pi\)
0.704598 0.709607i \(-0.251127\pi\)
\(734\) 5.23075 9.05993i 0.193071 0.334408i
\(735\) 0.563566 + 6.61959i 0.0207875 + 0.244167i
\(736\) −4.85153 8.40310i −0.178830 0.309742i
\(737\) 0 0
\(738\) −3.42183 4.11688i −0.125959 0.151544i
\(739\) −46.6760 −1.71701 −0.858503 0.512809i \(-0.828605\pi\)
−0.858503 + 0.512809i \(0.828605\pi\)
\(740\) −0.334296 0.579018i −0.0122890 0.0212851i
\(741\) 5.61482 3.91203i 0.206266 0.143712i
\(742\) 3.18327 5.51359i 0.116862 0.202410i
\(743\) 10.9359 18.9416i 0.401201 0.694900i −0.592671 0.805445i \(-0.701926\pi\)
0.993871 + 0.110545i \(0.0352597\pi\)
\(744\) −32.2812 + 22.4914i −1.18348 + 0.824573i
\(745\) 0.339362 + 0.587793i 0.0124333 + 0.0215351i
\(746\) −33.8501 −1.23934
\(747\) −7.22567 + 19.5675i −0.264373 + 0.715938i
\(748\) 0 0
\(749\) 5.68334 + 9.84384i 0.207665 + 0.359686i
\(750\) 1.29779 + 15.2437i 0.0473885 + 0.556621i
\(751\) −19.7961 + 34.2878i −0.722369 + 1.25118i 0.237679 + 0.971344i \(0.423613\pi\)
−0.960048 + 0.279835i \(0.909720\pi\)
\(752\) −0.526627 + 0.912144i −0.0192041 + 0.0332625i
\(753\) 32.2597 + 15.1348i 1.17561 + 0.551542i
\(754\) 8.49686 + 14.7170i 0.309437 + 0.535961i
\(755\) 0.521367 0.0189745
\(756\) 0.369260 + 1.41775i 0.0134299 + 0.0515631i
\(757\) 23.1457 0.841246 0.420623 0.907235i \(-0.361811\pi\)
0.420623 + 0.907235i \(0.361811\pi\)
\(758\) 26.1480 + 45.2896i 0.949736 + 1.64499i
\(759\) 0 0
\(760\) 1.84789 3.20063i 0.0670299 0.116099i
\(761\) 7.44643 12.8976i 0.269933 0.467538i −0.698911 0.715208i \(-0.746332\pi\)
0.968844 + 0.247671i \(0.0796651\pi\)
\(762\) 2.72522 + 32.0102i 0.0987243 + 1.15961i
\(763\) 4.94429 + 8.56376i 0.178995 + 0.310029i
\(764\) −2.03003 −0.0734438
\(765\) −8.03846 + 1.37872i −0.290631 + 0.0498477i
\(766\) −28.4085 −1.02644
\(767\) 5.61755 + 9.72988i 0.202838 + 0.351325i
\(768\) −12.8453 + 8.94973i −0.463514 + 0.322946i
\(769\) −10.8117 + 18.7264i −0.389879 + 0.675290i −0.992433 0.122788i \(-0.960816\pi\)
0.602554 + 0.798078i \(0.294150\pi\)
\(770\) 0 0
\(771\) 4.80681 3.34906i 0.173113 0.120614i
\(772\) −0.638148 1.10531i −0.0229675 0.0397808i
\(773\) −6.07292 −0.218428 −0.109214 0.994018i \(-0.534833\pi\)
−0.109214 + 0.994018i \(0.534833\pi\)
\(774\) 19.2671 3.30461i 0.692543 0.118782i
\(775\) 42.4417 1.52455
\(776\) 17.6437 + 30.5597i 0.633371 + 1.09703i
\(777\) −0.306737 3.60290i −0.0110041 0.129253i
\(778\) 23.8156 41.2498i 0.853829 1.47888i
\(779\) 1.44761 2.50734i 0.0518661 0.0898347i
\(780\) −0.571007 0.267890i −0.0204453 0.00959200i
\(781\) 0 0
\(782\) −31.6086 −1.13032
\(783\) 25.8201 25.4608i 0.922735 0.909896i
\(784\) 29.9874 1.07098
\(785\) 2.89688 + 5.01754i 0.103394 + 0.179084i
\(786\) −16.7070 7.83814i −0.595918 0.279577i
\(787\) −25.5777 + 44.3019i −0.911746 + 1.57919i −0.100149 + 0.994972i \(0.531932\pi\)
−0.811597 + 0.584218i \(0.801401\pi\)
\(788\) 4.38625 7.59721i 0.156254 0.270639i
\(789\) 2.09847 + 24.6484i 0.0747075 + 0.877507i
\(790\) 6.69109 + 11.5893i 0.238058 + 0.412329i
\(791\) 5.79736 0.206130
\(792\) 0 0
\(793\) −7.18019 −0.254976
\(794\) 6.41320 + 11.1080i 0.227596 + 0.394208i
\(795\) 4.79874 3.34344i 0.170194 0.118580i
\(796\) 4.06728 7.04474i 0.144161 0.249694i
\(797\) 12.6306 21.8769i 0.447399 0.774918i −0.550817 0.834626i \(-0.685684\pi\)
0.998216 + 0.0597082i \(0.0190170\pi\)
\(798\) −3.97942 + 2.77260i −0.140870 + 0.0981489i
\(799\) 0.522468 + 0.904940i 0.0184836 + 0.0320145i
\(800\) 10.1335 0.358274
\(801\) 23.9323 + 28.7934i 0.845606 + 1.01737i
\(802\) −6.08192 −0.214760
\(803\) 0 0
\(804\) 0.464295 + 5.45357i 0.0163744 + 0.192332i
\(805\) 0.951432 1.64793i 0.0335336 0.0580818i
\(806\) −11.1141 + 19.2502i −0.391479 + 0.678061i
\(807\) 10.5380 + 4.94394i 0.370955 + 0.174035i
\(808\) −17.8777 30.9650i −0.628935 1.08935i
\(809\) 51.3275 1.80458 0.902290 0.431130i \(-0.141885\pi\)
0.902290 + 0.431130i \(0.141885\pi\)
\(810\) −1.50628 + 8.09939i −0.0529252 + 0.284583i
\(811\) 4.54589 0.159628 0.0798138 0.996810i \(-0.474567\pi\)
0.0798138 + 0.996810i \(0.474567\pi\)
\(812\) −0.983808 1.70401i −0.0345249 0.0597989i
\(813\) −6.24142 2.92819i −0.218896 0.102696i
\(814\) 0 0
\(815\) −1.37048 + 2.37375i −0.0480059 + 0.0831487i
\(816\) 3.12287 + 36.6809i 0.109322 + 1.28409i
\(817\) 5.28622 + 9.15601i 0.184942 + 0.320328i
\(818\) −3.87192 −0.135378
\(819\) −2.18041 2.62330i −0.0761897 0.0916654i
\(820\) −0.266845 −0.00931864
\(821\) −5.43690 9.41698i −0.189749 0.328655i 0.755418 0.655244i \(-0.227434\pi\)
−0.945167 + 0.326589i \(0.894101\pi\)
\(822\) −20.3171 + 14.1556i −0.708639 + 0.493732i
\(823\) 11.8081 20.4522i 0.411604 0.712918i −0.583462 0.812141i \(-0.698302\pi\)
0.995065 + 0.0992224i \(0.0316355\pi\)
\(824\) −5.51048 + 9.54444i −0.191967 + 0.332496i
\(825\) 0 0
\(826\) −3.98136 6.89591i −0.138529 0.239940i
\(827\) −27.6040 −0.959886 −0.479943 0.877300i \(-0.659343\pi\)
−0.479943 + 0.877300i \(0.659343\pi\)
\(828\) −1.80686 + 4.89308i −0.0627926 + 0.170046i
\(829\) −16.1009 −0.559208 −0.279604 0.960115i \(-0.590203\pi\)
−0.279604 + 0.960115i \(0.590203\pi\)
\(830\) 3.18226 + 5.51183i 0.110458 + 0.191318i
\(831\) 1.92947 + 22.6633i 0.0669324 + 0.786182i
\(832\) 4.63617 8.03008i 0.160730 0.278393i
\(833\) 14.8753 25.7648i 0.515399 0.892697i
\(834\) 52.3951 + 24.5814i 1.81429 + 0.851183i
\(835\) 5.02854 + 8.70968i 0.174020 + 0.301411i
\(836\) 0 0
\(837\) 45.7284 + 12.5969i 1.58061 + 0.435412i
\(838\) 16.6046 0.573596
\(839\) 9.71596 + 16.8285i 0.335432 + 0.580986i 0.983568 0.180539i \(-0.0577843\pi\)
−0.648136 + 0.761525i \(0.724451\pi\)
\(840\) −1.66780 0.782453i −0.0575445 0.0269972i
\(841\) −9.85058 + 17.0617i −0.339675 + 0.588334i
\(842\) −17.1524 + 29.7089i −0.591111 + 1.02383i
\(843\) 0.436064 + 5.12197i 0.0150189 + 0.176410i
\(844\) −0.662357 1.14724i −0.0227993 0.0394895i
\(845\) −6.22787 −0.214245
\(846\) 1.04030 0.178428i 0.0357664 0.00613449i
\(847\) 0 0
\(848\) −13.1997 22.8626i −0.453280 0.785103i
\(849\) −11.5009 + 8.01304i −0.394709 + 0.275007i
\(850\) 16.5054 28.5882i 0.566131 0.980567i
\(851\) 6.43691 11.1491i 0.220655 0.382185i
\(852\) 6.83178 4.75993i 0.234053 0.163072i
\(853\) 9.89276 + 17.1348i 0.338722 + 0.586683i 0.984193 0.177102i \(-0.0566722\pi\)
−0.645471 + 0.763785i \(0.723339\pi\)
\(854\) 5.08886 0.174137
\(855\) −4.39139 + 0.753191i −0.150182 + 0.0257586i
\(856\) 39.1791 1.33912
\(857\) 2.17032 + 3.75911i 0.0741369 + 0.128409i 0.900711 0.434420i \(-0.143047\pi\)
−0.826574 + 0.562828i \(0.809713\pi\)
\(858\) 0 0
\(859\) 2.58967 4.48545i 0.0883586 0.153042i −0.818459 0.574565i \(-0.805171\pi\)
0.906817 + 0.421524i \(0.138505\pi\)
\(860\) 0.487217 0.843885i 0.0166140 0.0287762i
\(861\) −1.30653 0.612965i −0.0445265 0.0208898i
\(862\) 14.2695 + 24.7154i 0.486019 + 0.841810i
\(863\) −2.69392 −0.0917021 −0.0458510 0.998948i \(-0.514600\pi\)
−0.0458510 + 0.998948i \(0.514600\pi\)
\(864\) 10.9182 + 3.00767i 0.371446 + 0.102323i
\(865\) −0.349924 −0.0118978
\(866\) −11.6862 20.2411i −0.397113 0.687820i
\(867\) 6.40785 + 3.00626i 0.217622 + 0.102098i
\(868\) 1.28685 2.22889i 0.0436785 0.0756534i
\(869\) 0 0
\(870\) −0.938574 11.0244i −0.0318207 0.373762i
\(871\) −6.37185 11.0364i −0.215902 0.373953i
\(872\) 34.0843 1.15424
\(873\) 14.7366 39.9075i 0.498757 1.35066i
\(874\) −17.2677 −0.584088
\(875\) 2.06218 + 3.57181i 0.0697145 + 0.120749i
\(876\) −8.59332 + 5.98725i −0.290341 + 0.202291i
\(877\) 10.4224 18.0521i 0.351939 0.609576i −0.634650 0.772800i \(-0.718856\pi\)
0.986589 + 0.163223i \(0.0521891\pi\)
\(878\) −18.5191 + 32.0761i −0.624990 + 1.08251i
\(879\) 22.3339 15.5607i 0.753302 0.524851i
\(880\) 0 0
\(881\) 11.5843 0.390286 0.195143 0.980775i \(-0.437483\pi\)
0.195143 + 0.980775i \(0.437483\pi\)
\(882\) −19.2089 23.1106i −0.646796 0.778173i
\(883\) 15.3973 0.518159 0.259079 0.965856i \(-0.416581\pi\)
0.259079 + 0.965856i \(0.416581\pi\)
\(884\) 1.41223 + 2.44606i 0.0474985 + 0.0822699i
\(885\) −0.620522 7.28859i −0.0208586 0.245003i
\(886\) −19.7115 + 34.1413i −0.662220 + 1.14700i
\(887\) 2.95498 5.11817i 0.0992185 0.171851i −0.812143 0.583459i \(-0.801699\pi\)
0.911361 + 0.411607i \(0.135032\pi\)
\(888\) −11.2835 5.29369i −0.378649 0.177645i
\(889\) 4.33037 + 7.50043i 0.145236 + 0.251556i
\(890\) 11.4240 0.382932
\(891\) 0 0
\(892\) −4.30623 −0.144183
\(893\) 0.285423 + 0.494367i 0.00955131 + 0.0165434i
\(894\) −2.77945 1.30399i −0.0929586 0.0436119i
\(895\) 2.85387 4.94305i 0.0953943 0.165228i
\(896\) −4.85930 + 8.41655i −0.162338 + 0.281177i
\(897\) −1.03022 12.1009i −0.0343982 0.404038i
\(898\) 17.3804 + 30.1038i 0.579993 + 1.00458i
\(899\) −63.7025 −2.12460
\(900\) −3.48201 4.18927i −0.116067 0.139642i
\(901\) −26.1909 −0.872546
\(902\) 0 0
\(903\) 4.32399 3.01267i 0.143893 0.100255i
\(904\) 9.99128 17.3054i 0.332305 0.575569i
\(905\) 1.40959 2.44148i 0.0468563 0.0811576i
\(906\) −1.93500 + 1.34818i −0.0642859 + 0.0447901i
\(907\) 3.69666 + 6.40280i 0.122746 + 0.212602i 0.920849 0.389918i \(-0.127497\pi\)
−0.798104 + 0.602520i \(0.794163\pi\)
\(908\) −2.33030 −0.0773336
\(909\) −14.9320 + 40.4367i −0.495263 + 1.34120i
\(910\) −1.04081 −0.0345025
\(911\) 7.09940 + 12.2965i 0.235214 + 0.407402i 0.959335 0.282271i \(-0.0910877\pi\)
−0.724121 + 0.689673i \(0.757754\pi\)
\(912\) 1.70602 + 20.0387i 0.0564918 + 0.663547i
\(913\) 0 0
\(914\) −16.7675 + 29.0422i −0.554620 + 0.960631i
\(915\) 4.23226 + 1.98558i 0.139914 + 0.0656413i
\(916\) −4.83304 8.37107i −0.159688 0.276588i
\(917\) −4.97503 −0.164290
\(918\) 26.2687 25.9032i 0.866995 0.854932i
\(919\) −41.6426 −1.37366 −0.686831 0.726817i \(-0.740999\pi\)
−0.686831 + 0.726817i \(0.740999\pi\)
\(920\) −3.27943 5.68014i −0.108120 0.187269i
\(921\) −5.50882 2.58449i −0.181522 0.0851617i
\(922\) 9.35693 16.2067i 0.308154 0.533739i
\(923\) −9.69344 + 16.7895i −0.319063 + 0.552634i
\(924\) 0 0
\(925\) 6.72247 + 11.6437i 0.221033 + 0.382841i
\(926\) 30.9703 1.01775
\(927\) 13.0953 2.24605i 0.430107 0.0737700i
\(928\) −15.2098 −0.499286
\(929\) 17.0664 + 29.5598i 0.559930 + 0.969827i 0.997502 + 0.0706435i \(0.0225053\pi\)
−0.437572 + 0.899184i \(0.644161\pi\)
\(930\) 11.8745 8.27332i 0.389379 0.271293i
\(931\) 8.12634 14.0752i 0.266330 0.461297i
\(932\) −0.817868 + 1.41659i −0.0267901 + 0.0464019i
\(933\) −37.4246 + 26.0750i −1.22523 + 0.853656i
\(934\) −4.69059 8.12434i −0.153481 0.265837i
\(935\) 0 0
\(936\) −11.5884 + 1.98759i −0.378780 + 0.0649666i
\(937\) 51.6822 1.68838 0.844192 0.536041i \(-0.180081\pi\)
0.844192 + 0.536041i \(0.180081\pi\)
\(938\) 4.51596 + 7.82187i 0.147451 + 0.255393i
\(939\) 0.361612 + 4.24746i 0.0118008 + 0.138611i
\(940\) 0.0263067 0.0455645i 0.000858029 0.00148615i
\(941\) −9.00309 + 15.5938i −0.293492 + 0.508344i −0.974633 0.223809i \(-0.928151\pi\)
0.681141 + 0.732153i \(0.261484\pi\)
\(942\) −23.7260 11.1311i −0.773035 0.362672i
\(943\) −2.56907 4.44976i −0.0836604 0.144904i
\(944\) −33.0181 −1.07465
\(945\) 0.559776 + 2.14923i 0.0182095 + 0.0699143i
\(946\) 0 0
\(947\) −14.3151 24.7946i −0.465180 0.805715i 0.534030 0.845466i \(-0.320677\pi\)
−0.999210 + 0.0397506i \(0.987344\pi\)
\(948\) −8.95281 4.20025i −0.290774 0.136418i
\(949\) 12.1928 21.1186i 0.395796 0.685540i
\(950\) 9.01686 15.6177i 0.292546 0.506704i
\(951\) 3.89466 + 45.7462i 0.126293 + 1.48342i
\(952\) 4.12485 + 7.14445i 0.133687 + 0.231553i
\(953\) 16.6893 0.540620 0.270310 0.962773i \(-0.412874\pi\)
0.270310 + 0.962773i \(0.412874\pi\)
\(954\) −9.16436 + 24.8176i −0.296707 + 0.803500i
\(955\) −3.07740 −0.0995822
\(956\) 1.43969 + 2.49361i 0.0465628 + 0.0806492i
\(957\) 0 0
\(958\) −28.0414 + 48.5690i −0.905975 + 1.56919i
\(959\) −3.33778 + 5.78120i −0.107782 + 0.186685i
\(960\) −4.95333 + 3.45115i −0.159868 + 0.111385i
\(961\) −26.1624 45.3146i −0.843948 1.46176i
\(962\) −7.04160 −0.227030
\(963\) −30.1916 36.3241i −0.972911 1.17053i
\(964\) −3.44815 −0.111058
\(965\) −0.967394 1.67558i −0.0311415 0.0539387i
\(966\) 0.730157 + 8.57635i 0.0234924 + 0.275940i
\(967\) −12.1597 + 21.0612i −0.391029 + 0.677281i −0.992585 0.121549i \(-0.961214\pi\)
0.601557 + 0.798830i \(0.294547\pi\)
\(968\) 0 0
\(969\) 18.0632 + 8.47443i 0.580275 + 0.272238i
\(970\) −6.49013 11.2412i −0.208386 0.360934i
\(971\) 7.55191 0.242352 0.121176 0.992631i \(-0.461333\pi\)
0.121176 + 0.992631i \(0.461333\pi\)
\(972\) −2.50826 5.54716i −0.0804524 0.177925i
\(973\) 15.6023 0.500186
\(974\) 6.71404 + 11.6291i 0.215132 + 0.372619i
\(975\) 11.4826 + 5.38709i 0.367736 + 0.172525i
\(976\) 10.5507 18.2743i 0.337719 0.584947i
\(977\) −1.01614 + 1.76001i −0.0325093 + 0.0563078i −0.881822 0.471582i \(-0.843683\pi\)
0.849313 + 0.527890i \(0.177017\pi\)
\(978\) −1.05175 12.3537i −0.0336313 0.395029i
\(979\) 0 0
\(980\) −1.49797 −0.0478508
\(981\) −26.2655 31.6006i −0.838594 1.00893i
\(982\) −51.3276 −1.63793
\(983\) −16.7198 28.9595i −0.533279 0.923666i −0.999245 0.0388633i \(-0.987626\pi\)
0.465966 0.884803i \(-0.345707\pi\)
\(984\) −4.08143 + 2.84367i −0.130111 + 0.0906529i
\(985\) 6.64929 11.5169i 0.211864 0.366959i
\(986\) −24.7736 + 42.9092i −0.788953 + 1.36651i
\(987\) 0.233468 0.162665i 0.00743138 0.00517769i
\(988\) 0.771499 + 1.33628i 0.0245447 + 0.0425126i
\(989\) 18.7629 0.596624
\(990\) 0 0
\(991\) 40.1009 1.27385 0.636923 0.770927i \(-0.280207\pi\)
0.636923 + 0.770927i \(0.280207\pi\)
\(992\) −9.94743 17.2294i −0.315831 0.547036i
\(993\) −1.19070 13.9859i −0.0377858 0.443829i
\(994\) 6.87009 11.8993i 0.217906 0.377424i
\(995\) 6.16575 10.6794i 0.195468 0.338560i
\(996\) −4.25792 1.99762i −0.134917 0.0632970i
\(997\) −8.06505 13.9691i −0.255423 0.442405i 0.709588 0.704617i \(-0.248881\pi\)
−0.965010 + 0.262212i \(0.915548\pi\)
\(998\) 32.2785 1.02176
\(999\) 3.78717 + 14.5406i 0.119821 + 0.460044i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.p.364.4 36
9.4 even 3 9801.2.a.cm.1.15 18
9.5 odd 6 9801.2.a.cp.1.4 18
9.7 even 3 inner 1089.2.e.p.727.4 36
11.5 even 5 99.2.m.b.58.8 yes 72
11.9 even 5 99.2.m.b.4.2 72
11.10 odd 2 1089.2.e.o.364.15 36
33.5 odd 10 297.2.n.b.91.2 72
33.20 odd 10 297.2.n.b.37.8 72
99.5 odd 30 891.2.f.e.487.8 36
99.16 even 15 99.2.m.b.25.2 yes 72
99.20 odd 30 297.2.n.b.235.2 72
99.31 even 15 891.2.f.f.730.2 36
99.32 even 6 9801.2.a.cn.1.15 18
99.38 odd 30 297.2.n.b.289.8 72
99.43 odd 6 1089.2.e.o.727.15 36
99.49 even 15 891.2.f.f.487.2 36
99.76 odd 6 9801.2.a.co.1.4 18
99.86 odd 30 891.2.f.e.730.8 36
99.97 even 15 99.2.m.b.70.8 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.2 72 11.9 even 5
99.2.m.b.25.2 yes 72 99.16 even 15
99.2.m.b.58.8 yes 72 11.5 even 5
99.2.m.b.70.8 yes 72 99.97 even 15
297.2.n.b.37.8 72 33.20 odd 10
297.2.n.b.91.2 72 33.5 odd 10
297.2.n.b.235.2 72 99.20 odd 30
297.2.n.b.289.8 72 99.38 odd 30
891.2.f.e.487.8 36 99.5 odd 30
891.2.f.e.730.8 36 99.86 odd 30
891.2.f.f.487.2 36 99.49 even 15
891.2.f.f.730.2 36 99.31 even 15
1089.2.e.o.364.15 36 11.10 odd 2
1089.2.e.o.727.15 36 99.43 odd 6
1089.2.e.p.364.4 36 1.1 even 1 trivial
1089.2.e.p.727.4 36 9.7 even 3 inner
9801.2.a.cm.1.15 18 9.4 even 3
9801.2.a.cn.1.15 18 99.32 even 6
9801.2.a.co.1.4 18 99.76 odd 6
9801.2.a.cp.1.4 18 9.5 odd 6