Properties

Label 1089.2.e.p.364.1
Level $1089$
Weight $2$
Character 1089.364
Analytic conductor $8.696$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 364.1
Character \(\chi\) \(=\) 1089.364
Dual form 1089.2.e.p.727.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16450 - 2.01697i) q^{2} +(-1.02841 - 1.39369i) q^{3} +(-1.71213 + 2.96549i) q^{4} +(0.158510 - 0.274547i) q^{5} +(-1.61346 + 3.69723i) q^{6} +(0.709246 + 1.22845i) q^{7} +3.31708 q^{8} +(-0.884754 + 2.86657i) q^{9} -0.738340 q^{10} +(5.89374 - 0.663556i) q^{12} +(-2.09852 + 3.63474i) q^{13} +(1.65184 - 2.86106i) q^{14} +(-0.545647 + 0.0614326i) q^{15} +(-0.438496 - 0.759497i) q^{16} -6.24422 q^{17} +(6.81209 - 1.55359i) q^{18} +3.09786 q^{19} +(0.542778 + 0.940119i) q^{20} +(0.982687 - 2.25182i) q^{21} +(2.26025 - 3.91487i) q^{23} +(-3.41131 - 4.62299i) q^{24} +(2.44975 + 4.24309i) q^{25} +9.77491 q^{26} +(4.90500 - 1.71493i) q^{27} -4.85727 q^{28} +(-1.46422 - 2.53611i) q^{29} +(0.759315 + 1.02902i) q^{30} +(4.77088 - 8.26341i) q^{31} +(2.29583 - 3.97649i) q^{32} +(7.27140 + 12.5944i) q^{34} +0.449690 q^{35} +(-6.98596 - 7.53165i) q^{36} +0.847494 q^{37} +(-3.60746 - 6.24830i) q^{38} +(7.22384 - 0.813308i) q^{39} +(0.525791 - 0.910696i) q^{40} +(1.93480 - 3.35118i) q^{41} +(-5.68620 + 0.640191i) q^{42} +(-1.77651 - 3.07700i) q^{43} +(0.646766 + 0.697286i) q^{45} -10.5282 q^{46} +(3.72550 + 6.45275i) q^{47} +(-0.607552 + 1.39220i) q^{48} +(2.49394 - 4.31963i) q^{49} +(5.70547 - 9.88217i) q^{50} +(6.42160 + 8.70251i) q^{51} +(-7.18585 - 12.4463i) q^{52} +6.68304 q^{53} +(-9.17084 - 7.89623i) q^{54} +(2.35263 + 4.07487i) q^{56} +(-3.18586 - 4.31746i) q^{57} +(-3.41018 + 5.90660i) q^{58} +(6.03739 - 10.4571i) q^{59} +(0.752039 - 1.72329i) q^{60} +(-2.31016 - 4.00131i) q^{61} -22.2228 q^{62} +(-4.14895 + 0.946226i) q^{63} -12.4479 q^{64} +(0.665272 + 1.15229i) q^{65} +(-4.98385 + 8.63229i) q^{67} +(10.6909 - 18.5172i) q^{68} +(-7.78058 + 0.875989i) q^{69} +(-0.523665 - 0.907014i) q^{70} +2.93068 q^{71} +(-2.93480 + 9.50864i) q^{72} +4.24167 q^{73} +(-0.986908 - 1.70938i) q^{74} +(3.39422 - 7.77782i) q^{75} +(-5.30392 + 9.18665i) q^{76} +(-10.0526 - 13.6232i) q^{78} +(1.69099 + 2.92889i) q^{79} -0.278024 q^{80} +(-7.43442 - 5.07241i) q^{81} -9.01233 q^{82} +(6.74374 + 11.6805i) q^{83} +(4.99526 + 6.76954i) q^{84} +(-0.989771 + 1.71433i) q^{85} +(-4.13749 + 7.16635i) q^{86} +(-2.02873 + 4.64883i) q^{87} +2.69745 q^{89} +(0.653249 - 2.11650i) q^{90} -5.95347 q^{91} +(7.73966 + 13.4055i) q^{92} +(-16.4231 + 1.84902i) q^{93} +(8.67670 - 15.0285i) q^{94} +(0.491041 - 0.850508i) q^{95} +(-7.90304 + 0.889777i) q^{96} +(2.62872 + 4.55308i) q^{97} -11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} + 9 q^{3} - 12 q^{4} + q^{5} - q^{6} - q^{7} - 12 q^{8} - q^{9} - 4 q^{10} - 8 q^{12} - 3 q^{13} - 5 q^{15} + 8 q^{16} - 40 q^{17} + 17 q^{18} - 6 q^{19} + 5 q^{20} - 8 q^{21} + 10 q^{23}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16450 2.01697i −0.823427 1.42622i −0.903116 0.429397i \(-0.858726\pi\)
0.0796893 0.996820i \(-0.474607\pi\)
\(3\) −1.02841 1.39369i −0.593752 0.804648i
\(4\) −1.71213 + 2.96549i −0.856063 + 1.48274i
\(5\) 0.158510 0.274547i 0.0708878 0.122781i −0.828403 0.560133i \(-0.810750\pi\)
0.899291 + 0.437352i \(0.144083\pi\)
\(6\) −1.61346 + 3.69723i −0.658692 + 1.50939i
\(7\) 0.709246 + 1.22845i 0.268070 + 0.464311i 0.968363 0.249544i \(-0.0802809\pi\)
−0.700293 + 0.713855i \(0.746948\pi\)
\(8\) 3.31708 1.17277
\(9\) −0.884754 + 2.86657i −0.294918 + 0.955523i
\(10\) −0.738340 −0.233484
\(11\) 0 0
\(12\) 5.89374 0.663556i 1.70138 0.191552i
\(13\) −2.09852 + 3.63474i −0.582024 + 1.00810i 0.413215 + 0.910634i \(0.364406\pi\)
−0.995239 + 0.0974621i \(0.968928\pi\)
\(14\) 1.65184 2.86106i 0.441472 0.764652i
\(15\) −0.545647 + 0.0614326i −0.140886 + 0.0158618i
\(16\) −0.438496 0.759497i −0.109624 0.189874i
\(17\) −6.24422 −1.51445 −0.757223 0.653157i \(-0.773444\pi\)
−0.757223 + 0.653157i \(0.773444\pi\)
\(18\) 6.81209 1.55359i 1.60563 0.366186i
\(19\) 3.09786 0.710697 0.355348 0.934734i \(-0.384362\pi\)
0.355348 + 0.934734i \(0.384362\pi\)
\(20\) 0.542778 + 0.940119i 0.121369 + 0.210217i
\(21\) 0.982687 2.25182i 0.214440 0.491387i
\(22\) 0 0
\(23\) 2.26025 3.91487i 0.471295 0.816306i −0.528166 0.849141i \(-0.677120\pi\)
0.999461 + 0.0328349i \(0.0104536\pi\)
\(24\) −3.41131 4.62299i −0.696332 0.943664i
\(25\) 2.44975 + 4.24309i 0.489950 + 0.848618i
\(26\) 9.77491 1.91702
\(27\) 4.90500 1.71493i 0.943968 0.330038i
\(28\) −4.85727 −0.917939
\(29\) −1.46422 2.53611i −0.271899 0.470943i 0.697449 0.716635i \(-0.254318\pi\)
−0.969348 + 0.245691i \(0.920985\pi\)
\(30\) 0.759315 + 1.02902i 0.138631 + 0.187872i
\(31\) 4.77088 8.26341i 0.856876 1.48415i −0.0180185 0.999838i \(-0.505736\pi\)
0.874894 0.484314i \(-0.160931\pi\)
\(32\) 2.29583 3.97649i 0.405848 0.702950i
\(33\) 0 0
\(34\) 7.27140 + 12.5944i 1.24703 + 2.15993i
\(35\) 0.449690 0.0760116
\(36\) −6.98596 7.53165i −1.16433 1.25528i
\(37\) 0.847494 0.139327 0.0696636 0.997571i \(-0.477807\pi\)
0.0696636 + 0.997571i \(0.477807\pi\)
\(38\) −3.60746 6.24830i −0.585207 1.01361i
\(39\) 7.22384 0.813308i 1.15674 0.130234i
\(40\) 0.525791 0.910696i 0.0831348 0.143994i
\(41\) 1.93480 3.35118i 0.302166 0.523366i −0.674461 0.738311i \(-0.735624\pi\)
0.976626 + 0.214945i \(0.0689571\pi\)
\(42\) −5.68620 + 0.640191i −0.877400 + 0.0987835i
\(43\) −1.77651 3.07700i −0.270915 0.469239i 0.698181 0.715921i \(-0.253993\pi\)
−0.969096 + 0.246682i \(0.920660\pi\)
\(44\) 0 0
\(45\) 0.646766 + 0.697286i 0.0964142 + 0.103945i
\(46\) −10.5282 −1.55231
\(47\) 3.72550 + 6.45275i 0.543420 + 0.941231i 0.998705 + 0.0508850i \(0.0162042\pi\)
−0.455285 + 0.890346i \(0.650462\pi\)
\(48\) −0.607552 + 1.39220i −0.0876926 + 0.200947i
\(49\) 2.49394 4.31963i 0.356277 0.617090i
\(50\) 5.70547 9.88217i 0.806875 1.39755i
\(51\) 6.42160 + 8.70251i 0.899204 + 1.21860i
\(52\) −7.18585 12.4463i −0.996498 1.72599i
\(53\) 6.68304 0.917986 0.458993 0.888440i \(-0.348210\pi\)
0.458993 + 0.888440i \(0.348210\pi\)
\(54\) −9.17084 7.89623i −1.24799 1.07454i
\(55\) 0 0
\(56\) 2.35263 + 4.07487i 0.314383 + 0.544528i
\(57\) −3.18586 4.31746i −0.421977 0.571861i
\(58\) −3.41018 + 5.90660i −0.447778 + 0.775575i
\(59\) 6.03739 10.4571i 0.786001 1.36139i −0.142399 0.989809i \(-0.545482\pi\)
0.928399 0.371584i \(-0.121185\pi\)
\(60\) 0.752039 1.72329i 0.0970878 0.222476i
\(61\) −2.31016 4.00131i −0.295786 0.512316i 0.679382 0.733785i \(-0.262248\pi\)
−0.975167 + 0.221469i \(0.928915\pi\)
\(62\) −22.2228 −2.82230
\(63\) −4.14895 + 0.946226i −0.522718 + 0.119213i
\(64\) −12.4479 −1.55599
\(65\) 0.665272 + 1.15229i 0.0825169 + 0.142923i
\(66\) 0 0
\(67\) −4.98385 + 8.63229i −0.608875 + 1.05460i 0.382552 + 0.923934i \(0.375045\pi\)
−0.991426 + 0.130668i \(0.958288\pi\)
\(68\) 10.6909 18.5172i 1.29646 2.24553i
\(69\) −7.78058 + 0.875989i −0.936671 + 0.105457i
\(70\) −0.523665 0.907014i −0.0625899 0.108409i
\(71\) 2.93068 0.347808 0.173904 0.984763i \(-0.444362\pi\)
0.173904 + 0.984763i \(0.444362\pi\)
\(72\) −2.93480 + 9.50864i −0.345870 + 1.12060i
\(73\) 4.24167 0.496450 0.248225 0.968702i \(-0.420153\pi\)
0.248225 + 0.968702i \(0.420153\pi\)
\(74\) −0.986908 1.70938i −0.114726 0.198711i
\(75\) 3.39422 7.77782i 0.391931 0.898106i
\(76\) −5.30392 + 9.18665i −0.608401 + 1.05378i
\(77\) 0 0
\(78\) −10.0526 13.6232i −1.13823 1.54252i
\(79\) 1.69099 + 2.92889i 0.190252 + 0.329526i 0.945334 0.326105i \(-0.105736\pi\)
−0.755082 + 0.655630i \(0.772403\pi\)
\(80\) −0.278024 −0.0310840
\(81\) −7.43442 5.07241i −0.826047 0.563602i
\(82\) −9.01233 −0.995245
\(83\) 6.74374 + 11.6805i 0.740221 + 1.28210i 0.952394 + 0.304869i \(0.0986126\pi\)
−0.212173 + 0.977232i \(0.568054\pi\)
\(84\) 4.99526 + 6.76954i 0.545027 + 0.738618i
\(85\) −0.989771 + 1.71433i −0.107356 + 0.185946i
\(86\) −4.13749 + 7.16635i −0.446157 + 0.772767i
\(87\) −2.02873 + 4.64883i −0.217503 + 0.498407i
\(88\) 0 0
\(89\) 2.69745 0.285929 0.142965 0.989728i \(-0.454336\pi\)
0.142965 + 0.989728i \(0.454336\pi\)
\(90\) 0.653249 2.11650i 0.0688585 0.223099i
\(91\) −5.95347 −0.624093
\(92\) 7.73966 + 13.4055i 0.806915 + 1.39762i
\(93\) −16.4231 + 1.84902i −1.70299 + 0.191734i
\(94\) 8.67670 15.0285i 0.894933 1.55007i
\(95\) 0.491041 0.850508i 0.0503797 0.0872603i
\(96\) −7.90304 + 0.889777i −0.806601 + 0.0908125i
\(97\) 2.62872 + 4.55308i 0.266906 + 0.462295i 0.968061 0.250714i \(-0.0806653\pi\)
−0.701155 + 0.713009i \(0.747332\pi\)
\(98\) −11.6168 −1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) 4.76487 + 8.25300i 0.474123 + 0.821204i 0.999561 0.0296273i \(-0.00943204\pi\)
−0.525438 + 0.850832i \(0.676099\pi\)
\(102\) 10.0748 23.0863i 0.997553 2.28588i
\(103\) −4.76782 + 8.25810i −0.469787 + 0.813695i −0.999403 0.0345427i \(-0.989003\pi\)
0.529616 + 0.848237i \(0.322336\pi\)
\(104\) −6.96096 + 12.0567i −0.682578 + 1.18226i
\(105\) −0.462465 0.626730i −0.0451320 0.0611626i
\(106\) −7.78241 13.4795i −0.755894 1.30925i
\(107\) 5.17260 0.500054 0.250027 0.968239i \(-0.419560\pi\)
0.250027 + 0.968239i \(0.419560\pi\)
\(108\) −3.31238 + 17.4819i −0.318734 + 1.68220i
\(109\) 14.4767 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(110\) 0 0
\(111\) −0.871570 1.18115i −0.0827258 0.112109i
\(112\) 0.622003 1.07734i 0.0587737 0.101799i
\(113\) 3.71580 6.43596i 0.349553 0.605444i −0.636617 0.771180i \(-0.719667\pi\)
0.986170 + 0.165736i \(0.0530000\pi\)
\(114\) −4.99826 + 11.4535i −0.468130 + 1.07272i
\(115\) −0.716544 1.24109i −0.0668181 0.115732i
\(116\) 10.0277 0.931051
\(117\) −8.56256 9.23140i −0.791609 0.853443i
\(118\) −28.1222 −2.58886
\(119\) −4.42869 7.67071i −0.405977 0.703173i
\(120\) −1.80996 + 0.203777i −0.165226 + 0.0186022i
\(121\) 0 0
\(122\) −5.38037 + 9.31907i −0.487116 + 0.843709i
\(123\) −6.66028 + 0.749859i −0.600537 + 0.0676125i
\(124\) 16.3367 + 28.2960i 1.46708 + 2.54105i
\(125\) 3.13834 0.280702
\(126\) 6.73996 + 7.26644i 0.600444 + 0.647346i
\(127\) −13.2044 −1.17171 −0.585853 0.810418i \(-0.699240\pi\)
−0.585853 + 0.810418i \(0.699240\pi\)
\(128\) 9.90400 + 17.1542i 0.875398 + 1.51623i
\(129\) −2.46142 + 5.64032i −0.216716 + 0.496603i
\(130\) 1.54942 2.68367i 0.135893 0.235374i
\(131\) 3.65021 6.32236i 0.318921 0.552387i −0.661342 0.750084i \(-0.730013\pi\)
0.980263 + 0.197697i \(0.0633463\pi\)
\(132\) 0 0
\(133\) 2.19714 + 3.80556i 0.190516 + 0.329984i
\(134\) 23.2148 2.00545
\(135\) 0.306663 1.61849i 0.0263933 0.139297i
\(136\) −20.7126 −1.77609
\(137\) −4.90367 8.49340i −0.418948 0.725640i 0.576886 0.816825i \(-0.304268\pi\)
−0.995834 + 0.0911850i \(0.970935\pi\)
\(138\) 10.8273 + 14.6731i 0.921684 + 1.24906i
\(139\) 4.73845 8.20723i 0.401910 0.696128i −0.592047 0.805904i \(-0.701680\pi\)
0.993956 + 0.109775i \(0.0350132\pi\)
\(140\) −0.769926 + 1.33355i −0.0650707 + 0.112706i
\(141\) 5.16182 11.8283i 0.434703 0.996119i
\(142\) −3.41278 5.91111i −0.286394 0.496049i
\(143\) 0 0
\(144\) 2.56511 0.585009i 0.213759 0.0487508i
\(145\) −0.928375 −0.0770974
\(146\) −4.93943 8.55534i −0.408790 0.708045i
\(147\) −8.58502 + 0.966559i −0.708081 + 0.0797204i
\(148\) −1.45102 + 2.51323i −0.119273 + 0.206587i
\(149\) 2.06372 3.57448i 0.169067 0.292832i −0.769025 0.639218i \(-0.779258\pi\)
0.938092 + 0.346386i \(0.112591\pi\)
\(150\) −19.6402 + 2.21123i −1.60362 + 0.180546i
\(151\) 8.88763 + 15.3938i 0.723265 + 1.25273i 0.959684 + 0.281081i \(0.0906929\pi\)
−0.236419 + 0.971651i \(0.575974\pi\)
\(152\) 10.2758 0.833481
\(153\) 5.52460 17.8995i 0.446637 1.44709i
\(154\) 0 0
\(155\) −1.51246 2.61967i −0.121484 0.210417i
\(156\) −9.95627 + 22.8147i −0.797139 + 1.82664i
\(157\) 1.00863 1.74700i 0.0804974 0.139426i −0.822966 0.568090i \(-0.807682\pi\)
0.903464 + 0.428665i \(0.141016\pi\)
\(158\) 3.93833 6.82138i 0.313317 0.542680i
\(159\) −6.87289 9.31410i −0.545056 0.738656i
\(160\) −0.727822 1.26063i −0.0575394 0.0996612i
\(161\) 6.41229 0.505359
\(162\) −1.57354 + 20.9019i −0.123629 + 1.64221i
\(163\) −1.58042 −0.123788 −0.0618940 0.998083i \(-0.519714\pi\)
−0.0618940 + 0.998083i \(0.519714\pi\)
\(164\) 6.62526 + 11.4753i 0.517346 + 0.896069i
\(165\) 0 0
\(166\) 15.7062 27.2039i 1.21904 2.11143i
\(167\) −7.66081 + 13.2689i −0.592812 + 1.02678i 0.401040 + 0.916061i \(0.368649\pi\)
−0.993852 + 0.110719i \(0.964685\pi\)
\(168\) 3.25965 7.46947i 0.251488 0.576282i
\(169\) −2.30756 3.99681i −0.177505 0.307447i
\(170\) 4.61036 0.353598
\(171\) −2.74084 + 8.88021i −0.209597 + 0.679087i
\(172\) 12.1664 0.927681
\(173\) 0.493020 + 0.853935i 0.0374836 + 0.0649235i 0.884159 0.467187i \(-0.154732\pi\)
−0.846675 + 0.532110i \(0.821399\pi\)
\(174\) 11.7390 1.32166i 0.889934 0.100195i
\(175\) −3.47495 + 6.01879i −0.262682 + 0.454978i
\(176\) 0 0
\(177\) −20.7828 + 2.33987i −1.56213 + 0.175875i
\(178\) −3.14119 5.44070i −0.235442 0.407797i
\(179\) −11.2258 −0.839056 −0.419528 0.907742i \(-0.637804\pi\)
−0.419528 + 0.907742i \(0.637804\pi\)
\(180\) −3.17514 + 0.724135i −0.236661 + 0.0539739i
\(181\) 17.9256 1.33240 0.666201 0.745773i \(-0.267919\pi\)
0.666201 + 0.745773i \(0.267919\pi\)
\(182\) 6.93282 + 12.0080i 0.513895 + 0.890091i
\(183\) −3.20081 + 7.33463i −0.236611 + 0.542192i
\(184\) 7.49743 12.9859i 0.552718 0.957336i
\(185\) 0.134336 0.232677i 0.00987660 0.0171068i
\(186\) 22.8541 + 30.9717i 1.67574 + 2.27096i
\(187\) 0 0
\(188\) −25.5141 −1.86081
\(189\) 5.58556 + 4.80925i 0.406289 + 0.349821i
\(190\) −2.28727 −0.165936
\(191\) −6.44397 11.1613i −0.466269 0.807602i 0.532988 0.846123i \(-0.321069\pi\)
−0.999258 + 0.0385203i \(0.987736\pi\)
\(192\) 12.8016 + 17.3486i 0.923874 + 1.25203i
\(193\) 11.5755 20.0494i 0.833224 1.44319i −0.0622450 0.998061i \(-0.519826\pi\)
0.895469 0.445125i \(-0.146841\pi\)
\(194\) 6.12230 10.6041i 0.439555 0.761332i
\(195\) 0.921759 2.11220i 0.0660086 0.151258i
\(196\) 8.53987 + 14.7915i 0.609991 + 1.05654i
\(197\) 1.07766 0.0767801 0.0383900 0.999263i \(-0.487777\pi\)
0.0383900 + 0.999263i \(0.487777\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) 8.12602 + 14.0747i 0.574596 + 0.995230i
\(201\) 17.1562 1.93156i 1.21010 0.136242i
\(202\) 11.0974 19.2213i 0.780810 1.35240i
\(203\) 2.07699 3.59745i 0.145776 0.252491i
\(204\) −36.8018 + 4.14339i −2.57664 + 0.290095i
\(205\) −0.613372 1.06239i −0.0428397 0.0742006i
\(206\) 22.2085 1.54734
\(207\) 9.22246 + 9.94285i 0.641006 + 0.691076i
\(208\) 3.68076 0.255215
\(209\) 0 0
\(210\) −0.725557 + 1.66261i −0.0500682 + 0.114731i
\(211\) 7.47489 12.9469i 0.514593 0.891301i −0.485264 0.874368i \(-0.661276\pi\)
0.999857 0.0169331i \(-0.00539024\pi\)
\(212\) −11.4422 + 19.8185i −0.785854 + 1.36114i
\(213\) −3.01394 4.08447i −0.206511 0.279863i
\(214\) −6.02350 10.4330i −0.411758 0.713186i
\(215\) −1.12638 −0.0768183
\(216\) 16.2703 5.68855i 1.10705 0.387057i
\(217\) 13.5349 0.918810
\(218\) −16.8581 29.1991i −1.14177 1.97761i
\(219\) −4.36217 5.91158i −0.294768 0.399468i
\(220\) 0 0
\(221\) 13.1036 22.6961i 0.881444 1.52671i
\(222\) −1.36740 + 3.13338i −0.0917737 + 0.210299i
\(223\) −0.963139 1.66821i −0.0644966 0.111711i 0.831974 0.554815i \(-0.187211\pi\)
−0.896471 + 0.443103i \(0.853877\pi\)
\(224\) 6.51322 0.435183
\(225\) −14.3305 + 3.26828i −0.955369 + 0.217885i
\(226\) −17.3082 −1.15133
\(227\) 8.00554 + 13.8660i 0.531347 + 0.920319i 0.999331 + 0.0365825i \(0.0116472\pi\)
−0.467984 + 0.883737i \(0.655020\pi\)
\(228\) 18.2580 2.05560i 1.20916 0.136136i
\(229\) 0.261463 0.452867i 0.0172779 0.0299263i −0.857257 0.514888i \(-0.827833\pi\)
0.874535 + 0.484962i \(0.161167\pi\)
\(230\) −1.66883 + 2.89050i −0.110040 + 0.190594i
\(231\) 0 0
\(232\) −4.85695 8.41248i −0.318874 0.552306i
\(233\) −10.2525 −0.671665 −0.335833 0.941922i \(-0.609018\pi\)
−0.335833 + 0.941922i \(0.609018\pi\)
\(234\) −8.64839 + 28.0204i −0.565363 + 1.83175i
\(235\) 2.36212 0.154087
\(236\) 20.6735 + 35.8076i 1.34573 + 2.33088i
\(237\) 2.34293 5.36882i 0.152190 0.348742i
\(238\) −10.3144 + 17.8651i −0.668585 + 1.15802i
\(239\) 4.82052 8.34939i 0.311814 0.540077i −0.666941 0.745110i \(-0.732397\pi\)
0.978755 + 0.205033i \(0.0657302\pi\)
\(240\) 0.285922 + 0.387479i 0.0184562 + 0.0250117i
\(241\) 0.139366 + 0.241388i 0.00897733 + 0.0155492i 0.870479 0.492205i \(-0.163809\pi\)
−0.861502 + 0.507754i \(0.830476\pi\)
\(242\) 0 0
\(243\) 0.576234 + 15.5778i 0.0369654 + 0.999317i
\(244\) 15.8211 1.01284
\(245\) −0.790628 1.36941i −0.0505114 0.0874883i
\(246\) 9.26835 + 12.5604i 0.590928 + 0.800822i
\(247\) −6.50091 + 11.2599i −0.413643 + 0.716450i
\(248\) 15.8254 27.4104i 1.00491 1.74056i
\(249\) 9.34370 21.4110i 0.592133 1.35687i
\(250\) −3.65460 6.32995i −0.231137 0.400341i
\(251\) 4.42541 0.279329 0.139665 0.990199i \(-0.455398\pi\)
0.139665 + 0.990199i \(0.455398\pi\)
\(252\) 4.29749 13.9237i 0.270717 0.877111i
\(253\) 0 0
\(254\) 15.3766 + 26.6330i 0.964813 + 1.67111i
\(255\) 3.40714 0.383598i 0.213363 0.0240219i
\(256\) 10.6185 18.3917i 0.663655 1.14948i
\(257\) −1.82726 + 3.16491i −0.113981 + 0.197422i −0.917372 0.398031i \(-0.869694\pi\)
0.803391 + 0.595452i \(0.203027\pi\)
\(258\) 14.2427 1.60354i 0.886712 0.0998320i
\(259\) 0.601082 + 1.04111i 0.0373494 + 0.0646911i
\(260\) −4.55612 −0.282558
\(261\) 8.56540 1.95346i 0.530185 0.120916i
\(262\) −17.0027 −1.05043
\(263\) 7.22621 + 12.5162i 0.445587 + 0.771780i 0.998093 0.0617294i \(-0.0196616\pi\)
−0.552506 + 0.833509i \(0.686328\pi\)
\(264\) 0 0
\(265\) 1.05933 1.83481i 0.0650741 0.112712i
\(266\) 5.11715 8.86316i 0.313753 0.543435i
\(267\) −2.77408 3.75942i −0.169771 0.230073i
\(268\) −17.0660 29.5591i −1.04247 1.80561i
\(269\) 0.917748 0.0559561 0.0279780 0.999609i \(-0.491093\pi\)
0.0279780 + 0.999609i \(0.491093\pi\)
\(270\) −3.62156 + 1.26620i −0.220401 + 0.0770584i
\(271\) −2.64421 −0.160624 −0.0803120 0.996770i \(-0.525592\pi\)
−0.0803120 + 0.996770i \(0.525592\pi\)
\(272\) 2.73806 + 4.74246i 0.166019 + 0.287554i
\(273\) 6.12259 + 8.29730i 0.370556 + 0.502175i
\(274\) −11.4206 + 19.7811i −0.689947 + 1.19502i
\(275\) 0 0
\(276\) 10.7236 24.5730i 0.645484 1.47912i
\(277\) −14.4522 25.0320i −0.868351 1.50403i −0.863681 0.504040i \(-0.831847\pi\)
−0.00467084 0.999989i \(-0.501487\pi\)
\(278\) −22.0717 −1.32377
\(279\) 19.4666 + 20.9871i 1.16543 + 1.25647i
\(280\) 1.49166 0.0891437
\(281\) −4.37128 7.57129i −0.260769 0.451665i 0.705678 0.708533i \(-0.250643\pi\)
−0.966446 + 0.256868i \(0.917309\pi\)
\(282\) −29.8683 + 3.36277i −1.77863 + 0.200250i
\(283\) 11.6086 20.1067i 0.690061 1.19522i −0.281756 0.959486i \(-0.590917\pi\)
0.971817 0.235735i \(-0.0757499\pi\)
\(284\) −5.01769 + 8.69090i −0.297745 + 0.515710i
\(285\) −1.69034 + 0.190309i −0.100127 + 0.0112730i
\(286\) 0 0
\(287\) 5.48901 0.324006
\(288\) 9.36763 + 10.0994i 0.551993 + 0.595110i
\(289\) 21.9902 1.29354
\(290\) 1.08109 + 1.87251i 0.0634840 + 0.109958i
\(291\) 3.64219 8.34605i 0.213509 0.489254i
\(292\) −7.26227 + 12.5786i −0.424992 + 0.736108i
\(293\) 10.4877 18.1652i 0.612698 1.06122i −0.378086 0.925770i \(-0.623418\pi\)
0.990784 0.135453i \(-0.0432490\pi\)
\(294\) 11.9468 + 16.1902i 0.696751 + 0.944232i
\(295\) −1.91397 3.31510i −0.111436 0.193012i
\(296\) 2.81121 0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) 9.48635 + 16.4308i 0.548610 + 0.950220i
\(300\) 17.2537 + 23.3821i 0.996144 + 1.34997i
\(301\) 2.51996 4.36471i 0.145248 0.251577i
\(302\) 20.6993 35.8523i 1.19111 2.06307i
\(303\) 6.60191 15.1282i 0.379270 0.869093i
\(304\) −1.35840 2.35281i −0.0779094 0.134943i
\(305\) −1.46473 −0.0838704
\(306\) −42.5362 + 9.70098i −2.43163 + 0.554568i
\(307\) 23.1324 1.32024 0.660118 0.751162i \(-0.270506\pi\)
0.660118 + 0.751162i \(0.270506\pi\)
\(308\) 0 0
\(309\) 16.4125 1.84783i 0.933675 0.105119i
\(310\) −3.52253 + 6.10121i −0.200066 + 0.346525i
\(311\) −10.2074 + 17.6798i −0.578809 + 1.00253i 0.416807 + 0.908995i \(0.363149\pi\)
−0.995616 + 0.0935319i \(0.970184\pi\)
\(312\) 23.9621 2.69781i 1.35659 0.152733i
\(313\) 17.0197 + 29.4789i 0.962008 + 1.66625i 0.717446 + 0.696614i \(0.245311\pi\)
0.244562 + 0.969634i \(0.421356\pi\)
\(314\) −4.69820 −0.265135
\(315\) −0.397865 + 1.28907i −0.0224172 + 0.0726308i
\(316\) −11.5808 −0.651469
\(317\) 13.7102 + 23.7468i 0.770042 + 1.33375i 0.937539 + 0.347879i \(0.113098\pi\)
−0.167498 + 0.985872i \(0.553569\pi\)
\(318\) −10.7828 + 24.7087i −0.604670 + 1.38560i
\(319\) 0 0
\(320\) −1.97312 + 3.41755i −0.110301 + 0.191047i
\(321\) −5.31954 7.20901i −0.296908 0.402368i
\(322\) −7.46712 12.9334i −0.416126 0.720752i
\(323\) −19.3437 −1.07631
\(324\) 27.7708 13.3621i 1.54282 0.742338i
\(325\) −20.5634 −1.14065
\(326\) 1.84040 + 3.18767i 0.101930 + 0.176549i
\(327\) −14.8879 20.1760i −0.823304 1.11574i
\(328\) 6.41791 11.1161i 0.354370 0.613786i
\(329\) −5.28459 + 9.15318i −0.291349 + 0.504631i
\(330\) 0 0
\(331\) 8.98622 + 15.5646i 0.493927 + 0.855507i 0.999976 0.00699827i \(-0.00222764\pi\)
−0.506048 + 0.862505i \(0.668894\pi\)
\(332\) −46.1845 −2.53470
\(333\) −0.749824 + 2.42940i −0.0410901 + 0.133130i
\(334\) 35.6841 1.95255
\(335\) 1.57998 + 2.73661i 0.0863236 + 0.149517i
\(336\) −2.14115 + 0.241065i −0.116809 + 0.0131512i
\(337\) −5.48607 + 9.50216i −0.298845 + 0.517615i −0.975872 0.218343i \(-0.929935\pi\)
0.677027 + 0.735958i \(0.263268\pi\)
\(338\) −5.37431 + 9.30858i −0.292324 + 0.506320i
\(339\) −12.7911 + 1.44011i −0.694718 + 0.0782159i
\(340\) −3.38922 5.87031i −0.183806 0.318362i
\(341\) 0 0
\(342\) 21.1029 4.81281i 1.14111 0.260247i
\(343\) 17.0047 0.918168
\(344\) −5.89283 10.2067i −0.317720 0.550307i
\(345\) −0.992798 + 2.27499i −0.0534505 + 0.122481i
\(346\) 1.14824 1.98882i 0.0617300 0.106919i
\(347\) −11.0494 + 19.1381i −0.593163 + 1.02739i 0.400640 + 0.916236i \(0.368788\pi\)
−0.993803 + 0.111153i \(0.964546\pi\)
\(348\) −10.3126 13.9756i −0.552813 0.749169i
\(349\) 9.20186 + 15.9381i 0.492564 + 0.853147i 0.999963 0.00856475i \(-0.00272628\pi\)
−0.507399 + 0.861711i \(0.669393\pi\)
\(350\) 16.1863 0.865196
\(351\) −4.05992 + 21.4272i −0.216703 + 1.14370i
\(352\) 0 0
\(353\) −16.5354 28.6401i −0.880089 1.52436i −0.851241 0.524776i \(-0.824149\pi\)
−0.0288486 0.999584i \(-0.509184\pi\)
\(354\) 28.9211 + 39.1936i 1.53714 + 2.08312i
\(355\) 0.464542 0.804611i 0.0246553 0.0427043i
\(356\) −4.61838 + 7.99927i −0.244774 + 0.423960i
\(357\) −6.13611 + 14.0608i −0.324757 + 0.744179i
\(358\) 13.0725 + 22.6422i 0.690901 + 1.19668i
\(359\) 2.99864 0.158262 0.0791311 0.996864i \(-0.474785\pi\)
0.0791311 + 0.996864i \(0.474785\pi\)
\(360\) 2.14538 + 2.31296i 0.113071 + 0.121904i
\(361\) −9.40329 −0.494910
\(362\) −20.8744 36.1555i −1.09713 1.90029i
\(363\) 0 0
\(364\) 10.1931 17.6549i 0.534262 0.925370i
\(365\) 0.672347 1.16454i 0.0351922 0.0609548i
\(366\) 18.5211 2.08523i 0.968115 0.108997i
\(367\) −0.831230 1.43973i −0.0433899 0.0751534i 0.843515 0.537106i \(-0.180482\pi\)
−0.886905 + 0.461952i \(0.847149\pi\)
\(368\) −3.96444 −0.206661
\(369\) 7.89456 + 8.51122i 0.410974 + 0.443076i
\(370\) −0.625739 −0.0325306
\(371\) 4.73992 + 8.20979i 0.246085 + 0.426231i
\(372\) 22.6351 51.8681i 1.17357 2.68924i
\(373\) 10.7543 18.6271i 0.556839 0.964473i −0.440919 0.897547i \(-0.645348\pi\)
0.997758 0.0669259i \(-0.0213191\pi\)
\(374\) 0 0
\(375\) −3.22749 4.37388i −0.166667 0.225866i
\(376\) 12.3578 + 21.4043i 0.637304 + 1.10384i
\(377\) 12.2908 0.633008
\(378\) 3.19574 16.8663i 0.164371 0.867509i
\(379\) 12.4193 0.637938 0.318969 0.947765i \(-0.396663\pi\)
0.318969 + 0.947765i \(0.396663\pi\)
\(380\) 1.68145 + 2.91235i 0.0862564 + 0.149401i
\(381\) 13.5796 + 18.4029i 0.695702 + 0.942811i
\(382\) −15.0080 + 25.9947i −0.767877 + 1.33000i
\(383\) −0.399838 + 0.692540i −0.0204308 + 0.0353872i −0.876060 0.482202i \(-0.839837\pi\)
0.855629 + 0.517589i \(0.173170\pi\)
\(384\) 13.7224 31.4447i 0.700266 1.60465i
\(385\) 0 0
\(386\) −53.9188 −2.74439
\(387\) 10.3922 2.37009i 0.528266 0.120479i
\(388\) −18.0028 −0.913954
\(389\) 0.868343 + 1.50401i 0.0440267 + 0.0762565i 0.887199 0.461387i \(-0.152648\pi\)
−0.843172 + 0.537643i \(0.819315\pi\)
\(390\) −5.33365 + 0.600498i −0.270080 + 0.0304074i
\(391\) −14.1135 + 24.4453i −0.713750 + 1.23625i
\(392\) 8.27260 14.3286i 0.417830 0.723702i
\(393\) −12.5653 + 1.41469i −0.633837 + 0.0713616i
\(394\) −1.25494 2.17361i −0.0632228 0.109505i
\(395\) 1.07216 0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) −19.1336 33.1403i −0.959080 1.66117i
\(399\) 3.04422 6.97581i 0.152402 0.349227i
\(400\) 2.14841 3.72115i 0.107420 0.186058i
\(401\) −10.9262 + 18.9247i −0.545627 + 0.945053i 0.452940 + 0.891541i \(0.350375\pi\)
−0.998567 + 0.0535126i \(0.982958\pi\)
\(402\) −23.8743 32.3543i −1.19074 1.61369i
\(403\) 20.0236 + 34.6818i 0.997445 + 1.72762i
\(404\) −32.6322 −1.62351
\(405\) −2.57105 + 1.23707i −0.127756 + 0.0614706i
\(406\) −9.67462 −0.480143
\(407\) 0 0
\(408\) 21.3010 + 28.8670i 1.05456 + 1.42913i
\(409\) −4.01739 + 6.95832i −0.198647 + 0.344067i −0.948090 0.318002i \(-0.896988\pi\)
0.749443 + 0.662069i \(0.230321\pi\)
\(410\) −1.42854 + 2.47431i −0.0705507 + 0.122197i
\(411\) −6.79421 + 15.5689i −0.335134 + 0.767956i
\(412\) −16.3262 28.2778i −0.804334 1.39315i
\(413\) 17.1280 0.842812
\(414\) 9.31491 30.1799i 0.457803 1.48326i
\(415\) 4.27580 0.209891
\(416\) 9.63566 + 16.6895i 0.472427 + 0.818268i
\(417\) −16.3114 + 1.83645i −0.798773 + 0.0899312i
\(418\) 0 0
\(419\) 2.79840 4.84698i 0.136711 0.236790i −0.789539 0.613701i \(-0.789680\pi\)
0.926250 + 0.376910i \(0.123014\pi\)
\(420\) 2.65036 0.298395i 0.129324 0.0145602i
\(421\) −18.9272 32.7829i −0.922455 1.59774i −0.795604 0.605817i \(-0.792846\pi\)
−0.126851 0.991922i \(-0.540487\pi\)
\(422\) −34.8181 −1.69492
\(423\) −21.7934 + 4.97030i −1.05963 + 0.241664i
\(424\) 22.1682 1.07658
\(425\) −15.2968 26.4948i −0.742002 1.28519i
\(426\) −4.72854 + 10.8354i −0.229098 + 0.524977i
\(427\) 3.27694 5.67583i 0.158582 0.274673i
\(428\) −8.85614 + 15.3393i −0.428078 + 0.741452i
\(429\) 0 0
\(430\) 1.31167 + 2.27187i 0.0632542 + 0.109560i
\(431\) −29.7844 −1.43466 −0.717332 0.696731i \(-0.754637\pi\)
−0.717332 + 0.696731i \(0.754637\pi\)
\(432\) −3.45330 2.97334i −0.166147 0.143055i
\(433\) −0.279271 −0.0134209 −0.00671046 0.999977i \(-0.502136\pi\)
−0.00671046 + 0.999977i \(0.502136\pi\)
\(434\) −15.7614 27.2996i −0.756573 1.31042i
\(435\) 0.954749 + 1.29387i 0.0457767 + 0.0620363i
\(436\) −24.7859 + 42.9304i −1.18703 + 2.05599i
\(437\) 7.00193 12.1277i 0.334948 0.580146i
\(438\) −6.84376 + 15.6824i −0.327008 + 0.749335i
\(439\) −7.49827 12.9874i −0.357873 0.619854i 0.629732 0.776812i \(-0.283165\pi\)
−0.987605 + 0.156958i \(0.949831\pi\)
\(440\) 0 0
\(441\) 10.1760 + 10.9709i 0.484571 + 0.522422i
\(442\) −61.0366 −2.90322
\(443\) −7.24991 12.5572i −0.344453 0.596611i 0.640801 0.767707i \(-0.278602\pi\)
−0.985254 + 0.171096i \(0.945269\pi\)
\(444\) 4.99491 0.562360i 0.237048 0.0266884i
\(445\) 0.427573 0.740579i 0.0202689 0.0351068i
\(446\) −2.24315 + 3.88525i −0.106216 + 0.183972i
\(447\) −7.10407 + 0.799823i −0.336011 + 0.0378303i
\(448\) −8.82866 15.2917i −0.417115 0.722464i
\(449\) −21.2217 −1.00151 −0.500757 0.865588i \(-0.666945\pi\)
−0.500757 + 0.865588i \(0.666945\pi\)
\(450\) 23.2800 + 25.0984i 1.09743 + 1.18315i
\(451\) 0 0
\(452\) 12.7238 + 22.0383i 0.598479 + 1.03660i
\(453\) 12.3141 28.2178i 0.578569 1.32579i
\(454\) 18.6449 32.2940i 0.875050 1.51563i
\(455\) −0.943684 + 1.63451i −0.0442406 + 0.0766269i
\(456\) −10.5678 14.3214i −0.494881 0.670659i
\(457\) 1.60475 + 2.77951i 0.0750671 + 0.130020i 0.901115 0.433579i \(-0.142750\pi\)
−0.826048 + 0.563599i \(0.809416\pi\)
\(458\) −1.21789 −0.0569085
\(459\) −30.6279 + 10.7084i −1.42959 + 0.499824i
\(460\) 4.90725 0.228802
\(461\) −13.1628 22.7986i −0.613052 1.06184i −0.990723 0.135897i \(-0.956608\pi\)
0.377671 0.925940i \(-0.376725\pi\)
\(462\) 0 0
\(463\) −1.81412 + 3.14215i −0.0843093 + 0.146028i −0.905097 0.425206i \(-0.860202\pi\)
0.820787 + 0.571234i \(0.193535\pi\)
\(464\) −1.28411 + 2.22414i −0.0596133 + 0.103253i
\(465\) −2.09558 + 4.80199i −0.0971800 + 0.222687i
\(466\) 11.9391 + 20.6791i 0.553067 + 0.957940i
\(467\) −18.4952 −0.855854 −0.427927 0.903813i \(-0.640756\pi\)
−0.427927 + 0.903813i \(0.640756\pi\)
\(468\) 42.0358 9.58685i 1.94310 0.443152i
\(469\) −14.1391 −0.652884
\(470\) −2.75069 4.76433i −0.126880 0.219762i
\(471\) −3.47206 + 0.390907i −0.159984 + 0.0180121i
\(472\) 20.0265 34.6869i 0.921795 1.59660i
\(473\) 0 0
\(474\) −13.5571 + 1.52635i −0.622699 + 0.0701076i
\(475\) 7.58897 + 13.1445i 0.348206 + 0.603110i
\(476\) 30.3299 1.39017
\(477\) −5.91285 + 19.1574i −0.270731 + 0.877157i
\(478\) −22.4540 −1.02702
\(479\) 0.0784991 + 0.135964i 0.00358672 + 0.00621238i 0.867813 0.496891i \(-0.165525\pi\)
−0.864226 + 0.503103i \(0.832192\pi\)
\(480\) −1.00843 + 2.31080i −0.0460281 + 0.105473i
\(481\) −1.77848 + 3.08042i −0.0810918 + 0.140455i
\(482\) 0.324583 0.562194i 0.0147843 0.0256072i
\(483\) −6.59445 8.93676i −0.300058 0.406637i
\(484\) 0 0
\(485\) 1.66671 0.0756816
\(486\) 30.7490 19.3026i 1.39480 0.875585i
\(487\) 17.9265 0.812327 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(488\) −7.66299 13.2727i −0.346887 0.600826i
\(489\) 1.62532 + 2.20262i 0.0734993 + 0.0996058i
\(490\) −1.84138 + 3.18936i −0.0831849 + 0.144080i
\(491\) 3.32399 5.75731i 0.150009 0.259824i −0.781221 0.624254i \(-0.785403\pi\)
0.931231 + 0.364430i \(0.118736\pi\)
\(492\) 9.17954 21.0348i 0.413846 0.948324i
\(493\) 9.14292 + 15.8360i 0.411777 + 0.713218i
\(494\) 30.2813 1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) 2.07857 + 3.60020i 0.0932368 + 0.161491i
\(498\) −54.0662 + 6.08713i −2.42276 + 0.272771i
\(499\) −16.9737 + 29.3993i −0.759846 + 1.31609i 0.183083 + 0.983097i \(0.441392\pi\)
−0.942929 + 0.332994i \(0.891941\pi\)
\(500\) −5.37323 + 9.30670i −0.240298 + 0.416208i
\(501\) 26.3712 2.96905i 1.17818 0.132647i
\(502\) −5.15339 8.92594i −0.230007 0.398384i
\(503\) 3.13729 0.139885 0.0699423 0.997551i \(-0.477718\pi\)
0.0699423 + 0.997551i \(0.477718\pi\)
\(504\) −13.7624 + 3.13871i −0.613026 + 0.139809i
\(505\) 3.02112 0.134438
\(506\) 0 0
\(507\) −3.19721 + 7.32638i −0.141993 + 0.325376i
\(508\) 22.6077 39.1576i 1.00305 1.73734i
\(509\) −11.4017 + 19.7484i −0.505374 + 0.875333i 0.494607 + 0.869117i \(0.335312\pi\)
−0.999981 + 0.00621612i \(0.998021\pi\)
\(510\) −4.74133 6.42542i −0.209949 0.284522i
\(511\) 3.00839 + 5.21068i 0.133083 + 0.230507i
\(512\) −9.84494 −0.435089
\(513\) 15.1950 5.31260i 0.670875 0.234557i
\(514\) 8.51139 0.375421
\(515\) 1.51149 + 2.61798i 0.0666043 + 0.115362i
\(516\) −12.5120 16.9562i −0.550812 0.746457i
\(517\) 0 0
\(518\) 1.39992 2.42474i 0.0615090 0.106537i
\(519\) 0.683097 1.56531i 0.0299846 0.0687095i
\(520\) 2.20676 + 3.82223i 0.0967729 + 0.167616i
\(521\) 5.26812 0.230801 0.115400 0.993319i \(-0.463185\pi\)
0.115400 + 0.993319i \(0.463185\pi\)
\(522\) −13.9145 15.0014i −0.609021 0.656593i
\(523\) 11.8956 0.520159 0.260080 0.965587i \(-0.416251\pi\)
0.260080 + 0.965587i \(0.416251\pi\)
\(524\) 12.4992 + 21.6493i 0.546032 + 0.945756i
\(525\) 11.9620 1.34676i 0.522065 0.0587775i
\(526\) 16.8299 29.1502i 0.733817 1.27101i
\(527\) −29.7904 + 51.5985i −1.29769 + 2.24767i
\(528\) 0 0
\(529\) 1.28255 + 2.22144i 0.0557629 + 0.0965843i
\(530\) −4.93436 −0.214335
\(531\) 24.6343 + 26.5585i 1.06904 + 1.15254i
\(532\) −15.0471 −0.652376
\(533\) 8.12045 + 14.0650i 0.351736 + 0.609224i
\(534\) −4.35223 + 9.97310i −0.188339 + 0.431578i
\(535\) 0.819909 1.42012i 0.0354477 0.0613973i
\(536\) −16.5319 + 28.6340i −0.714067 + 1.23680i
\(537\) 11.5447 + 15.6453i 0.498191 + 0.675145i
\(538\) −1.06872 1.85108i −0.0460757 0.0798055i
\(539\) 0 0
\(540\) 4.27456 + 3.68046i 0.183948 + 0.158382i
\(541\) 40.5807 1.74470 0.872350 0.488882i \(-0.162595\pi\)
0.872350 + 0.488882i \(0.162595\pi\)
\(542\) 3.07918 + 5.33330i 0.132262 + 0.229085i
\(543\) −18.4349 24.9828i −0.791115 1.07211i
\(544\) −14.3356 + 24.8300i −0.614635 + 1.06458i
\(545\) 2.29470 3.97453i 0.0982940 0.170250i
\(546\) 9.60567 22.0113i 0.411085 0.941998i
\(547\) −11.7672 20.3813i −0.503127 0.871442i −0.999993 0.00361458i \(-0.998849\pi\)
0.496866 0.867827i \(-0.334484\pi\)
\(548\) 33.5828 1.43458
\(549\) 13.5140 3.08205i 0.576762 0.131539i
\(550\) 0 0
\(551\) −4.53595 7.85650i −0.193238 0.334698i
\(552\) −25.8088 + 2.90573i −1.09850 + 0.123676i
\(553\) −2.39866 + 4.15460i −0.102001 + 0.176672i
\(554\) −33.6593 + 58.2996i −1.43005 + 2.47691i
\(555\) −0.462433 + 0.0520638i −0.0196292 + 0.00220998i
\(556\) 16.2256 + 28.1036i 0.688120 + 1.19186i
\(557\) −6.28652 −0.266369 −0.133184 0.991091i \(-0.542520\pi\)
−0.133184 + 0.991091i \(0.542520\pi\)
\(558\) 19.6617 63.7031i 0.832346 2.69677i
\(559\) 14.9121 0.630716
\(560\) −0.197187 0.341538i −0.00833268 0.0144326i
\(561\) 0 0
\(562\) −10.1807 + 17.6335i −0.429448 + 0.743826i
\(563\) 8.48320 14.6933i 0.357524 0.619250i −0.630022 0.776577i \(-0.716954\pi\)
0.987547 + 0.157327i \(0.0502876\pi\)
\(564\) 26.2389 + 35.5588i 1.10486 + 1.49729i
\(565\) −1.17798 2.04033i −0.0495582 0.0858373i
\(566\) −54.0731 −2.27286
\(567\) 0.958376 12.7304i 0.0402480 0.534627i
\(568\) 9.72131 0.407897
\(569\) −11.1253 19.2695i −0.466395 0.807819i 0.532868 0.846198i \(-0.321114\pi\)
−0.999263 + 0.0383786i \(0.987781\pi\)
\(570\) 2.35225 + 3.18775i 0.0985248 + 0.133520i
\(571\) −17.6576 + 30.5838i −0.738947 + 1.27989i 0.214023 + 0.976829i \(0.431343\pi\)
−0.952970 + 0.303065i \(0.901990\pi\)
\(572\) 0 0
\(573\) −8.92836 + 20.4593i −0.372988 + 0.854698i
\(574\) −6.39196 11.0712i −0.266795 0.462103i
\(575\) 22.1482 0.923643
\(576\) 11.0134 35.6829i 0.458890 1.48679i
\(577\) −38.2361 −1.59179 −0.795894 0.605436i \(-0.792999\pi\)
−0.795894 + 0.605436i \(0.792999\pi\)
\(578\) −25.6077 44.3538i −1.06514 1.84487i
\(579\) −39.8470 + 4.48624i −1.65598 + 0.186442i
\(580\) 1.58950 2.75309i 0.0660002 0.114316i
\(581\) −9.56594 + 16.5687i −0.396862 + 0.687385i
\(582\) −21.0751 + 2.37278i −0.873592 + 0.0983547i
\(583\) 0 0
\(584\) 14.0700 0.582219
\(585\) −3.89171 + 0.887559i −0.160902 + 0.0366960i
\(586\) −48.8517 −2.01805
\(587\) 6.19482 + 10.7297i 0.255688 + 0.442864i 0.965082 0.261948i \(-0.0843648\pi\)
−0.709394 + 0.704812i \(0.751031\pi\)
\(588\) 11.8323 27.1136i 0.487956 1.11815i
\(589\) 14.7795 25.5988i 0.608979 1.05478i
\(590\) −4.45764 + 7.72087i −0.183518 + 0.317863i
\(591\) −1.10827 1.50193i −0.0455883 0.0617810i
\(592\) −0.371623 0.643669i −0.0152736 0.0264546i
\(593\) 4.18039 0.171668 0.0858340 0.996309i \(-0.472645\pi\)
0.0858340 + 0.996309i \(0.472645\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) 7.06671 + 12.2399i 0.289464 + 0.501366i
\(597\) −16.8975 22.8993i −0.691568 0.937208i
\(598\) 22.0937 38.2675i 0.903480 1.56487i
\(599\) 22.0394 38.1733i 0.900505 1.55972i 0.0736641 0.997283i \(-0.476531\pi\)
0.826840 0.562437i \(-0.190136\pi\)
\(600\) 11.2589 25.7997i 0.459643 1.05327i
\(601\) 0.875658 + 1.51668i 0.0357188 + 0.0618668i 0.883332 0.468748i \(-0.155295\pi\)
−0.847613 + 0.530614i \(0.821961\pi\)
\(602\) −11.7380 −0.478405
\(603\) −20.3356 21.9240i −0.828128 0.892815i
\(604\) −60.8670 −2.47664
\(605\) 0 0
\(606\) −38.2012 + 4.30094i −1.55182 + 0.174714i
\(607\) 5.43457 9.41296i 0.220583 0.382060i −0.734402 0.678714i \(-0.762538\pi\)
0.954985 + 0.296654i \(0.0958708\pi\)
\(608\) 7.11214 12.3186i 0.288435 0.499584i
\(609\) −7.14973 + 0.804964i −0.289722 + 0.0326188i
\(610\) 1.70568 + 2.95433i 0.0690611 + 0.119617i
\(611\) −31.2721 −1.26513
\(612\) 43.6219 + 47.0293i 1.76331 + 1.90105i
\(613\) 17.7933 0.718665 0.359333 0.933210i \(-0.383004\pi\)
0.359333 + 0.933210i \(0.383004\pi\)
\(614\) −26.9377 46.6575i −1.08712 1.88294i
\(615\) −0.849849 + 1.94742i −0.0342692 + 0.0785276i
\(616\) 0 0
\(617\) −1.99805 + 3.46073i −0.0804386 + 0.139324i −0.903438 0.428718i \(-0.858965\pi\)
0.823000 + 0.568042i \(0.192299\pi\)
\(618\) −22.8394 30.9518i −0.918735 1.24506i
\(619\) 5.48769 + 9.50496i 0.220569 + 0.382037i 0.954981 0.296667i \(-0.0958753\pi\)
−0.734412 + 0.678704i \(0.762542\pi\)
\(620\) 10.3581 0.415992
\(621\) 4.37281 23.0786i 0.175475 0.926112i
\(622\) 47.5462 1.90643
\(623\) 1.91316 + 3.31369i 0.0766491 + 0.132760i
\(624\) −3.78533 5.12985i −0.151534 0.205358i
\(625\) −11.7513 + 20.3538i −0.470052 + 0.814153i
\(626\) 39.6388 68.6565i 1.58429 2.74407i
\(627\) 0 0
\(628\) 3.45380 + 5.98216i 0.137822 + 0.238714i
\(629\) −5.29194 −0.211003
\(630\) 3.06333 0.698636i 0.122046 0.0278343i
\(631\) 8.64921 0.344319 0.172160 0.985069i \(-0.444925\pi\)
0.172160 + 0.985069i \(0.444925\pi\)
\(632\) 5.60917 + 9.71536i 0.223121 + 0.386456i
\(633\) −25.7312 + 2.89699i −1.02272 + 0.115145i
\(634\) 31.9311 55.3063i 1.26815 2.19649i
\(635\) −2.09304 + 3.62525i −0.0830596 + 0.143863i
\(636\) 39.3881 4.43458i 1.56184 0.175842i
\(637\) 10.4672 + 18.1296i 0.414724 + 0.718323i
\(638\) 0 0
\(639\) −2.59293 + 8.40100i −0.102575 + 0.332338i
\(640\) 6.27953 0.248220
\(641\) −18.5438 32.1188i −0.732436 1.26862i −0.955839 0.293891i \(-0.905050\pi\)
0.223403 0.974726i \(-0.428283\pi\)
\(642\) −8.34578 + 19.1243i −0.329382 + 0.754775i
\(643\) 20.3663 35.2755i 0.803168 1.39113i −0.114353 0.993440i \(-0.536479\pi\)
0.917521 0.397688i \(-0.130187\pi\)
\(644\) −10.9786 + 19.0156i −0.432619 + 0.749319i
\(645\) 1.15838 + 1.56982i 0.0456110 + 0.0618117i
\(646\) 22.5257 + 39.0157i 0.886263 + 1.53505i
\(647\) −0.568944 −0.0223675 −0.0111837 0.999937i \(-0.503560\pi\)
−0.0111837 + 0.999937i \(0.503560\pi\)
\(648\) −24.6606 16.8256i −0.968759 0.660973i
\(649\) 0 0
\(650\) 23.9461 + 41.4758i 0.939242 + 1.62682i
\(651\) −13.9194 18.8635i −0.545545 0.739319i
\(652\) 2.70588 4.68672i 0.105970 0.183546i
\(653\) 18.2638 31.6338i 0.714718 1.23793i −0.248351 0.968670i \(-0.579889\pi\)
0.963068 0.269257i \(-0.0867781\pi\)
\(654\) −23.3575 + 53.5235i −0.913351 + 2.09294i
\(655\) −1.15719 2.00431i −0.0452152 0.0783150i
\(656\) −3.39361 −0.132498
\(657\) −3.75283 + 12.1590i −0.146412 + 0.474369i
\(658\) 24.6157 0.959618
\(659\) 12.0035 + 20.7907i 0.467590 + 0.809889i 0.999314 0.0370284i \(-0.0117892\pi\)
−0.531725 + 0.846917i \(0.678456\pi\)
\(660\) 0 0
\(661\) −6.49165 + 11.2439i −0.252496 + 0.437336i −0.964212 0.265131i \(-0.914585\pi\)
0.711717 + 0.702467i \(0.247918\pi\)
\(662\) 20.9289 36.2499i 0.813425 1.40889i
\(663\) −45.1072 + 5.07847i −1.75182 + 0.197232i
\(664\) 22.3695 + 38.7452i 0.868106 + 1.50360i
\(665\) 1.39308 0.0540212
\(666\) 5.77321 1.31666i 0.223707 0.0510196i
\(667\) −13.2380 −0.512579
\(668\) −26.2325 45.4361i −1.01497 1.75798i
\(669\) −1.33446 + 3.05792i −0.0515934 + 0.118226i
\(670\) 3.67978 6.37356i 0.142162 0.246232i
\(671\) 0 0
\(672\) −6.69825 9.07743i −0.258391 0.350169i
\(673\) −8.51283 14.7447i −0.328145 0.568365i 0.653998 0.756496i \(-0.273090\pi\)
−0.982144 + 0.188131i \(0.939757\pi\)
\(674\) 25.5541 0.984309
\(675\) 19.2926 + 16.6112i 0.742573 + 0.639366i
\(676\) 15.8033 0.607820
\(677\) 17.7158 + 30.6847i 0.680874 + 1.17931i 0.974714 + 0.223454i \(0.0717333\pi\)
−0.293840 + 0.955855i \(0.594933\pi\)
\(678\) 17.7999 + 24.1223i 0.683602 + 0.926413i
\(679\) −3.72882 + 6.45851i −0.143099 + 0.247855i
\(680\) −3.28315 + 5.68658i −0.125903 + 0.218071i
\(681\) 11.0920 25.4172i 0.425046 0.973988i
\(682\) 0 0
\(683\) 23.8967 0.914381 0.457191 0.889369i \(-0.348856\pi\)
0.457191 + 0.889369i \(0.348856\pi\)
\(684\) −21.6415 23.3320i −0.827484 0.892120i
\(685\) −3.10912 −0.118793
\(686\) −19.8020 34.2981i −0.756044 1.30951i
\(687\) −0.900047 + 0.101333i −0.0343389 + 0.00386610i
\(688\) −1.55798 + 2.69850i −0.0593975 + 0.102880i
\(689\) −14.0245 + 24.2911i −0.534290 + 0.925418i
\(690\) 5.74471 0.646778i 0.218697 0.0246224i
\(691\) 0.296307 + 0.513219i 0.0112721 + 0.0195238i 0.871606 0.490206i \(-0.163079\pi\)
−0.860334 + 0.509730i \(0.829745\pi\)
\(692\) −3.37645 −0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) −1.50218 2.60186i −0.0569810 0.0986940i
\(696\) −6.72948 + 15.4205i −0.255080 + 0.584514i
\(697\) −12.0813 + 20.9255i −0.457613 + 0.792610i
\(698\) 21.4312 37.1198i 0.811181 1.40501i
\(699\) 10.5438 + 14.2889i 0.398802 + 0.540454i
\(700\) −11.8991 20.6099i −0.449744 0.778979i
\(701\) −25.4261 −0.960329 −0.480164 0.877179i \(-0.659423\pi\)
−0.480164 + 0.877179i \(0.659423\pi\)
\(702\) 47.9459 16.7632i 1.80960 0.632688i
\(703\) 2.62542 0.0990194
\(704\) 0 0
\(705\) −2.42922 3.29206i −0.0914896 0.123986i
\(706\) −38.5109 + 66.7029i −1.44938 + 2.51040i
\(707\) −6.75894 + 11.7068i −0.254196 + 0.440280i
\(708\) 28.6439 65.6373i 1.07650 2.46680i
\(709\) −7.55233 13.0810i −0.283634 0.491268i 0.688643 0.725100i \(-0.258207\pi\)
−0.972277 + 0.233832i \(0.924873\pi\)
\(710\) −2.16384 −0.0812074
\(711\) −9.89197 + 2.25600i −0.370978 + 0.0846067i
\(712\) 8.94768 0.335328
\(713\) −21.5668 37.3547i −0.807681 1.39895i
\(714\) 35.5059 3.99749i 1.32877 0.149602i
\(715\) 0 0
\(716\) 19.2200 33.2900i 0.718284 1.24410i
\(717\) −16.5939 + 1.86826i −0.619712 + 0.0697713i
\(718\) −3.49192 6.04818i −0.130317 0.225716i
\(719\) 12.0428 0.449120 0.224560 0.974460i \(-0.427906\pi\)
0.224560 + 0.974460i \(0.427906\pi\)
\(720\) 0.245983 0.796974i 0.00916723 0.0297015i
\(721\) −13.5262 −0.503743
\(722\) 10.9501 + 18.9662i 0.407522 + 0.705849i
\(723\) 0.193096 0.442478i 0.00718132 0.0164559i
\(724\) −30.6909 + 53.1582i −1.14062 + 1.97561i
\(725\) 7.17396 12.4257i 0.266434 0.461477i
\(726\) 0 0
\(727\) −24.7966 42.9489i −0.919654 1.59289i −0.799940 0.600079i \(-0.795136\pi\)
−0.119714 0.992808i \(-0.538198\pi\)
\(728\) −19.7481 −0.731915
\(729\) 21.1181 16.8234i 0.782150 0.623090i
\(730\) −3.13179 −0.115913
\(731\) 11.0929 + 19.2135i 0.410286 + 0.710636i
\(732\) −16.2706 22.0498i −0.601378 0.814983i
\(733\) 16.1327 27.9426i 0.595875 1.03209i −0.397548 0.917581i \(-0.630139\pi\)
0.993423 0.114504i \(-0.0365278\pi\)
\(734\) −1.93594 + 3.35314i −0.0714567 + 0.123767i
\(735\) −1.09545 + 2.51020i −0.0404061 + 0.0925902i
\(736\) −10.3783 17.9757i −0.382548 0.662593i
\(737\) 0 0
\(738\) 7.97369 25.8344i 0.293516 0.950979i
\(739\) −3.13253 −0.115232 −0.0576160 0.998339i \(-0.518350\pi\)
−0.0576160 + 0.998339i \(0.518350\pi\)
\(740\) 0.460001 + 0.796745i 0.0169100 + 0.0292889i
\(741\) 22.3784 2.51951i 0.822092 0.0925566i
\(742\) 11.0393 19.1206i 0.405265 0.701940i
\(743\) −3.89438 + 6.74527i −0.142871 + 0.247460i −0.928577 0.371141i \(-0.878967\pi\)
0.785706 + 0.618601i \(0.212300\pi\)
\(744\) −54.4766 + 6.13334i −1.99721 + 0.224859i
\(745\) −0.654242 1.13318i −0.0239696 0.0415165i
\(746\) −50.0938 −1.83406
\(747\) −39.4495 + 8.99701i −1.44338 + 0.329183i
\(748\) 0 0
\(749\) 3.66865 + 6.35428i 0.134049 + 0.232180i
\(750\) −5.06358 + 11.6032i −0.184896 + 0.423687i
\(751\) −24.8445 + 43.0320i −0.906589 + 1.57026i −0.0878193 + 0.996136i \(0.527990\pi\)
−0.818770 + 0.574122i \(0.805344\pi\)
\(752\) 3.26723 5.65901i 0.119144 0.206363i
\(753\) −4.55113 6.16766i −0.165852 0.224762i
\(754\) −14.3126 24.7902i −0.521236 0.902807i
\(755\) 5.63511 0.205083
\(756\) −23.8249 + 8.32987i −0.866504 + 0.302954i
\(757\) −27.0307 −0.982449 −0.491225 0.871033i \(-0.663451\pi\)
−0.491225 + 0.871033i \(0.663451\pi\)
\(758\) −14.4623 25.0495i −0.525295 0.909838i
\(759\) 0 0
\(760\) 1.62882 2.82121i 0.0590836 0.102336i
\(761\) −22.2553 + 38.5473i −0.806753 + 1.39734i 0.108348 + 0.994113i \(0.465444\pi\)
−0.915101 + 0.403224i \(0.867889\pi\)
\(762\) 21.3048 48.8199i 0.771793 1.76856i
\(763\) 10.2675 + 17.7839i 0.371709 + 0.643819i
\(764\) 44.1315 1.59662
\(765\) −4.03855 4.35401i −0.146014 0.157419i
\(766\) 1.86245 0.0672930
\(767\) 25.3391 + 43.8887i 0.914943 + 1.58473i
\(768\) −36.5526 + 4.11533i −1.31898 + 0.148499i
\(769\) 1.65952 2.87438i 0.0598440 0.103653i −0.834551 0.550930i \(-0.814273\pi\)
0.894395 + 0.447277i \(0.147606\pi\)
\(770\) 0 0
\(771\) 6.29008 0.708179i 0.226532 0.0255044i
\(772\) 39.6375 + 68.6541i 1.42658 + 2.47091i
\(773\) 28.4878 1.02463 0.512317 0.858797i \(-0.328787\pi\)
0.512317 + 0.858797i \(0.328787\pi\)
\(774\) −16.8822 18.2009i −0.606817 0.654216i
\(775\) 46.7498 1.67930
\(776\) 8.71969 + 15.1029i 0.313019 + 0.542164i
\(777\) 0.832822 1.90840i 0.0298773 0.0684636i
\(778\) 2.02237 3.50285i 0.0725055 0.125583i
\(779\) 5.99375 10.3815i 0.214748 0.371955i
\(780\) 4.68555 + 6.34982i 0.167769 + 0.227360i
\(781\) 0 0
\(782\) 65.7407 2.35088
\(783\) −11.5313 9.92858i −0.412093 0.354818i
\(784\) −4.37433 −0.156226
\(785\) −0.319756 0.553833i −0.0114126 0.0197671i
\(786\) 17.4857 + 23.6965i 0.623695 + 0.845228i
\(787\) −6.52435 + 11.3005i −0.232568 + 0.402820i −0.958563 0.284880i \(-0.908046\pi\)
0.725995 + 0.687700i \(0.241379\pi\)
\(788\) −1.84509 + 3.19579i −0.0657286 + 0.113845i
\(789\) 10.0122 22.9428i 0.356443 0.816786i
\(790\) −1.24853 2.16251i −0.0444207 0.0769388i
\(791\) 10.5417 0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) 28.8330 + 49.9402i 1.02324 + 1.77231i
\(795\) −3.64658 + 0.410557i −0.129331 + 0.0145609i
\(796\) −28.1314 + 48.7251i −0.997092 + 1.72701i
\(797\) −25.0867 + 43.4514i −0.888616 + 1.53913i −0.0471028 + 0.998890i \(0.514999\pi\)
−0.841513 + 0.540237i \(0.818334\pi\)
\(798\) −17.6150 + 1.98322i −0.623566 + 0.0702052i
\(799\) −23.2628 40.2924i −0.822980 1.42544i
\(800\) 22.4968 0.795382
\(801\) −2.38658 + 7.73243i −0.0843258 + 0.273212i
\(802\) 50.8941 1.79713
\(803\) 0 0
\(804\) −23.6455 + 54.1835i −0.833914 + 1.91091i
\(805\) 1.01641 1.76048i 0.0358238 0.0620487i
\(806\) 46.6349 80.7741i 1.64264 2.84514i
\(807\) −0.943820 1.27906i −0.0332240 0.0450250i
\(808\) 15.8055 + 27.3759i 0.556035 + 0.963080i
\(809\) −35.1505 −1.23583 −0.617914 0.786246i \(-0.712022\pi\)
−0.617914 + 0.786246i \(0.712022\pi\)
\(810\) 5.48913 + 3.74517i 0.192868 + 0.131592i
\(811\) 22.1055 0.776228 0.388114 0.921611i \(-0.373127\pi\)
0.388114 + 0.921611i \(0.373127\pi\)
\(812\) 7.11213 + 12.3186i 0.249587 + 0.432297i
\(813\) 2.71932 + 3.68521i 0.0953708 + 0.129246i
\(814\) 0 0
\(815\) −0.250512 + 0.433900i −0.00877506 + 0.0151989i
\(816\) 3.79369 8.69320i 0.132806 0.304323i
\(817\) −5.50337 9.53211i −0.192538 0.333486i
\(818\) 18.7130 0.654285
\(819\) 5.26735 17.0660i 0.184056 0.596335i
\(820\) 4.20068 0.146694
\(821\) −1.26860 2.19728i −0.0442744 0.0766855i 0.843039 0.537852i \(-0.180764\pi\)
−0.887313 + 0.461167i \(0.847431\pi\)
\(822\) 39.3139 4.42622i 1.37123 0.154382i
\(823\) 5.18635 8.98302i 0.180785 0.313128i −0.761363 0.648326i \(-0.775470\pi\)
0.942148 + 0.335197i \(0.108803\pi\)
\(824\) −15.8152 + 27.3928i −0.550950 + 0.954273i
\(825\) 0 0
\(826\) −19.9455 34.5467i −0.693994 1.20203i
\(827\) 52.7236 1.83338 0.916690 0.399599i \(-0.130851\pi\)
0.916690 + 0.399599i \(0.130851\pi\)
\(828\) −45.2754 + 10.3257i −1.57343 + 0.358843i
\(829\) 37.8438 1.31437 0.657184 0.753730i \(-0.271747\pi\)
0.657184 + 0.753730i \(0.271747\pi\)
\(830\) −4.97917 8.62418i −0.172830 0.299350i
\(831\) −20.0241 + 45.8851i −0.694629 + 1.59174i
\(832\) 26.1222 45.2451i 0.905626 1.56859i
\(833\) −15.5727 + 26.9727i −0.539562 + 0.934549i
\(834\) 22.6987 + 30.7612i 0.785992 + 1.06517i
\(835\) 2.42863 + 4.20651i 0.0840462 + 0.145572i
\(836\) 0 0
\(837\) 9.23003 48.7137i 0.319037 1.68379i
\(838\) −13.0350 −0.450286
\(839\) 10.0578 + 17.4206i 0.347233 + 0.601425i 0.985757 0.168177i \(-0.0537879\pi\)
−0.638524 + 0.769602i \(0.720455\pi\)
\(840\) −1.53404 2.07891i −0.0529292 0.0717294i
\(841\) 10.2121 17.6879i 0.352142 0.609927i
\(842\) −44.0815 + 76.3513i −1.51915 + 2.63124i
\(843\) −6.05658 + 13.8786i −0.208600 + 0.478004i
\(844\) 25.5959 + 44.3334i 0.881047 + 1.52602i
\(845\) −1.46308 −0.0503316
\(846\) 35.4034 + 38.1688i 1.21719 + 1.31227i
\(847\) 0 0
\(848\) −2.93048 5.07575i −0.100633 0.174302i
\(849\) −39.9610 + 4.49908i −1.37146 + 0.154408i
\(850\) −35.6262 + 61.7064i −1.22197 + 2.11651i
\(851\) 1.91555 3.31783i 0.0656642 0.113734i
\(852\) 17.2727 1.94467i 0.591752 0.0666234i
\(853\) −4.56010 7.89832i −0.156135 0.270433i 0.777337 0.629085i \(-0.216570\pi\)
−0.933472 + 0.358651i \(0.883237\pi\)
\(854\) −15.2640 −0.522324
\(855\) 2.00359 + 2.16009i 0.0685213 + 0.0738736i
\(856\) 17.1579 0.586446
\(857\) 0.922678 + 1.59813i 0.0315181 + 0.0545909i 0.881354 0.472456i \(-0.156632\pi\)
−0.849836 + 0.527047i \(0.823299\pi\)
\(858\) 0 0
\(859\) −14.2555 + 24.6913i −0.486392 + 0.842456i −0.999878 0.0156422i \(-0.995021\pi\)
0.513485 + 0.858098i \(0.328354\pi\)
\(860\) 1.92850 3.34026i 0.0657613 0.113902i
\(861\) −5.64494 7.64999i −0.192379 0.260711i
\(862\) 34.6840 + 60.0744i 1.18134 + 2.04614i
\(863\) −10.6994 −0.364210 −0.182105 0.983279i \(-0.558291\pi\)
−0.182105 + 0.983279i \(0.558291\pi\)
\(864\) 4.44164 23.4418i 0.151108 0.797508i
\(865\) 0.312594 0.0106285
\(866\) 0.325212 + 0.563283i 0.0110511 + 0.0191411i
\(867\) −22.6149 30.6476i −0.768044 1.04085i
\(868\) −23.1735 + 40.1376i −0.786559 + 1.36236i
\(869\) 0 0
\(870\) 1.49790 3.43242i 0.0507834 0.116370i
\(871\) −20.9174 36.2300i −0.708760 1.22761i
\(872\) 48.0203 1.62617
\(873\) −15.3775 + 3.50705i −0.520449 + 0.118696i
\(874\) −32.6150 −1.10322
\(875\) 2.22585 + 3.85529i 0.0752476 + 0.130333i
\(876\) 24.9993 2.81459i 0.844648 0.0950961i
\(877\) −20.4161 + 35.3618i −0.689404 + 1.19408i 0.282628 + 0.959230i \(0.408794\pi\)
−0.972031 + 0.234852i \(0.924539\pi\)
\(878\) −17.4635 + 30.2477i −0.589364 + 1.02081i
\(879\) −36.1024 + 4.06464i −1.21770 + 0.137097i
\(880\) 0 0
\(881\) 21.0458 0.709050 0.354525 0.935047i \(-0.384643\pi\)
0.354525 + 0.935047i \(0.384643\pi\)
\(882\) 10.2780 33.3003i 0.346078 1.12128i
\(883\) 12.7282 0.428338 0.214169 0.976797i \(-0.431296\pi\)
0.214169 + 0.976797i \(0.431296\pi\)
\(884\) 44.8700 + 77.7172i 1.50914 + 2.61391i
\(885\) −2.65188 + 6.07676i −0.0891419 + 0.204268i
\(886\) −16.8850 + 29.2458i −0.567264 + 0.982530i
\(887\) −5.36249 + 9.28811i −0.180055 + 0.311864i −0.941899 0.335896i \(-0.890961\pi\)
0.761844 + 0.647760i \(0.224294\pi\)
\(888\) −2.89107 3.91796i −0.0970180 0.131478i
\(889\) −9.36520 16.2210i −0.314099 0.544035i
\(890\) −1.99164 −0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) 11.5411 + 19.9897i 0.386207 + 0.668930i
\(894\) 9.88592 + 13.3973i 0.330635 + 0.448074i
\(895\) −1.77940 + 3.08201i −0.0594788 + 0.103020i
\(896\) −14.0487 + 24.3331i −0.469336 + 0.812913i
\(897\) 13.1437 30.1187i 0.438855 1.00563i
\(898\) 24.7127 + 42.8036i 0.824673 + 1.42838i
\(899\) −27.9425 −0.931935
\(900\) 14.8436 48.0927i 0.494787 1.60309i
\(901\) −41.7304 −1.39024
\(902\) 0 0
\(903\) −8.67461 + 0.976645i −0.288673 + 0.0325007i
\(904\) 12.3256 21.3486i 0.409944 0.710044i
\(905\) 2.84139 4.92143i 0.0944510 0.163594i
\(906\) −71.2543 + 8.02229i −2.36727 + 0.266523i
\(907\) 6.62279 + 11.4710i 0.219906 + 0.380889i 0.954779 0.297316i \(-0.0960916\pi\)
−0.734873 + 0.678205i \(0.762758\pi\)
\(908\) −54.8260 −1.81946
\(909\) −27.8735 + 6.35695i −0.924507 + 0.210847i
\(910\) 4.39568 0.145715
\(911\) 28.5622 + 49.4712i 0.946309 + 1.63906i 0.753109 + 0.657896i \(0.228553\pi\)
0.193200 + 0.981159i \(0.438113\pi\)
\(912\) −1.88211 + 4.31283i −0.0623228 + 0.142812i
\(913\) 0 0
\(914\) 3.73747 6.47348i 0.123624 0.214124i
\(915\) 1.50634 + 2.04139i 0.0497982 + 0.0674862i
\(916\) 0.895314 + 1.55073i 0.0295820 + 0.0512375i
\(917\) 10.3556 0.341972
\(918\) 57.2647 + 49.3058i 1.89002 + 1.62733i
\(919\) 16.5780 0.546856 0.273428 0.961892i \(-0.411842\pi\)
0.273428 + 0.961892i \(0.411842\pi\)
\(920\) −2.37684 4.11680i −0.0783620 0.135727i
\(921\) −23.7895 32.2394i −0.783892 1.06233i
\(922\) −30.6562 + 53.0980i −1.00961 + 1.74869i
\(923\) −6.15009 + 10.6523i −0.202433 + 0.350624i
\(924\) 0 0
\(925\) 2.07615 + 3.59600i 0.0682634 + 0.118236i
\(926\) 8.45018 0.277690
\(927\) −19.4541 20.9736i −0.638955 0.688865i
\(928\) −13.4464 −0.441400
\(929\) 3.68190 + 6.37723i 0.120799 + 0.209230i 0.920083 0.391723i \(-0.128121\pi\)
−0.799284 + 0.600954i \(0.794788\pi\)
\(930\) 12.1258 1.36520i 0.397621 0.0447668i
\(931\) 7.72586 13.3816i 0.253205 0.438564i
\(932\) 17.5536 30.4037i 0.574987 0.995908i
\(933\) 35.1375 3.95601i 1.15035 0.129514i
\(934\) 21.5376 + 37.3043i 0.704733 + 1.22063i
\(935\) 0 0
\(936\) −28.4027 30.6213i −0.928372 1.00089i
\(937\) 47.2573 1.54383 0.771914 0.635727i \(-0.219299\pi\)
0.771914 + 0.635727i \(0.219299\pi\)
\(938\) 16.4650 + 28.5183i 0.537602 + 0.931154i
\(939\) 23.5814 54.0365i 0.769549 1.76342i
\(940\) −4.04424 + 7.00482i −0.131908 + 0.228472i
\(941\) 28.0644 48.6089i 0.914872 1.58460i 0.107783 0.994174i \(-0.465625\pi\)
0.807089 0.590430i \(-0.201042\pi\)
\(942\) 4.83166 + 6.54784i 0.157424 + 0.213340i
\(943\) −8.74628 15.1490i −0.284818 0.493319i
\(944\) −10.5895 −0.344658
\(945\) 2.20573 0.771186i 0.0717525 0.0250867i
\(946\) 0 0
\(947\) 6.39323 + 11.0734i 0.207752 + 0.359837i 0.951006 0.309172i \(-0.100052\pi\)
−0.743254 + 0.669009i \(0.766719\pi\)
\(948\) 11.9098 + 16.1400i 0.386811 + 0.524204i
\(949\) −8.90122 + 15.4174i −0.288946 + 0.500469i
\(950\) 17.6747 30.6135i 0.573444 0.993234i
\(951\) 18.9960 43.5292i 0.615987 1.41153i
\(952\) −14.6903 25.4444i −0.476116 0.824657i
\(953\) −23.2974 −0.754677 −0.377338 0.926075i \(-0.623161\pi\)
−0.377338 + 0.926075i \(0.623161\pi\)
\(954\) 45.5255 10.3827i 1.47394 0.336153i
\(955\) −4.08573 −0.132211
\(956\) 16.5067 + 28.5904i 0.533864 + 0.924680i
\(957\) 0 0
\(958\) 0.182825 0.316662i 0.00590680 0.0102309i
\(959\) 6.95581 12.0478i 0.224615 0.389044i
\(960\) 6.79219 0.764710i 0.219217 0.0246809i
\(961\) −30.0226 52.0007i −0.968471 1.67744i
\(962\) 8.28418 0.267093
\(963\) −4.57648 + 14.8276i −0.147475 + 0.477813i
\(964\) −0.954445 −0.0307406
\(965\) −3.66967 6.35605i −0.118131 0.204609i
\(966\) −10.3460 + 23.7077i −0.332876 + 0.762783i
\(967\) 27.7586 48.0794i 0.892657 1.54613i 0.0559798 0.998432i \(-0.482172\pi\)
0.836677 0.547696i \(-0.184495\pi\)
\(968\) 0 0
\(969\) 19.8932 + 26.9591i 0.639062 + 0.866052i
\(970\) −1.94089 3.36172i −0.0623182 0.107938i
\(971\) −4.52027 −0.145063 −0.0725313 0.997366i \(-0.523108\pi\)
−0.0725313 + 0.997366i \(0.523108\pi\)
\(972\) −47.1824 24.9623i −1.51338 0.800667i
\(973\) 13.4429 0.430960
\(974\) −20.8754 36.1573i −0.668892 1.15855i
\(975\) 21.1475 + 28.6590i 0.677263 + 0.917823i
\(976\) −2.02599 + 3.50912i −0.0648503 + 0.112324i
\(977\) 13.5196 23.4167i 0.432532 0.749167i −0.564559 0.825393i \(-0.690954\pi\)
0.997091 + 0.0762261i \(0.0242871\pi\)
\(978\) 2.54994 5.84317i 0.0815382 0.186844i
\(979\) 0 0
\(980\) 5.41462 0.172964
\(981\) −12.8083 + 41.4983i −0.408937 + 1.32494i
\(982\) −15.4831 −0.494087
\(983\) −5.31880 9.21243i −0.169643 0.293831i 0.768651 0.639668i \(-0.220928\pi\)
−0.938294 + 0.345837i \(0.887595\pi\)
\(984\) −22.0927 + 2.48734i −0.704290 + 0.0792936i
\(985\) 0.170820 0.295869i 0.00544277 0.00942716i
\(986\) 21.2939 36.8821i 0.678136 1.17457i
\(987\) 18.1914 2.04811i 0.579040 0.0651921i
\(988\) −22.2607 38.5567i −0.708208 1.22665i
\(989\) −16.0614 −0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) −21.9062 37.9427i −0.695523 1.20468i
\(993\) 12.4507 28.5308i 0.395112 0.905396i
\(994\) 4.84101 8.38487i 0.153547 0.265952i
\(995\) 2.60443 4.51101i 0.0825660 0.143009i
\(996\) 47.4965 + 64.3669i 1.50498 + 2.03954i
\(997\) 13.0637 + 22.6270i 0.413732 + 0.716605i 0.995294 0.0968969i \(-0.0308917\pi\)
−0.581562 + 0.813502i \(0.697558\pi\)
\(998\) 79.0634 2.50271
\(999\) 4.15696 1.45339i 0.131520 0.0459832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.p.364.1 36
9.4 even 3 9801.2.a.cm.1.18 18
9.5 odd 6 9801.2.a.cp.1.1 18
9.7 even 3 inner 1089.2.e.p.727.1 36
11.3 even 5 99.2.m.b.31.1 yes 72
11.4 even 5 99.2.m.b.49.9 yes 72
11.10 odd 2 1089.2.e.o.364.18 36
33.14 odd 10 297.2.n.b.64.9 72
33.26 odd 10 297.2.n.b.280.1 72
99.4 even 15 891.2.f.f.82.9 36
99.14 odd 30 891.2.f.e.163.1 36
99.25 even 15 99.2.m.b.97.9 yes 72
99.32 even 6 9801.2.a.cn.1.18 18
99.43 odd 6 1089.2.e.o.727.18 36
99.47 odd 30 297.2.n.b.262.1 72
99.58 even 15 891.2.f.f.163.9 36
99.59 odd 30 891.2.f.e.82.1 36
99.70 even 15 99.2.m.b.16.1 72
99.76 odd 6 9801.2.a.co.1.1 18
99.92 odd 30 297.2.n.b.181.9 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 99.70 even 15
99.2.m.b.31.1 yes 72 11.3 even 5
99.2.m.b.49.9 yes 72 11.4 even 5
99.2.m.b.97.9 yes 72 99.25 even 15
297.2.n.b.64.9 72 33.14 odd 10
297.2.n.b.181.9 72 99.92 odd 30
297.2.n.b.262.1 72 99.47 odd 30
297.2.n.b.280.1 72 33.26 odd 10
891.2.f.e.82.1 36 99.59 odd 30
891.2.f.e.163.1 36 99.14 odd 30
891.2.f.f.82.9 36 99.4 even 15
891.2.f.f.163.9 36 99.58 even 15
1089.2.e.o.364.18 36 11.10 odd 2
1089.2.e.o.727.18 36 99.43 odd 6
1089.2.e.p.364.1 36 1.1 even 1 trivial
1089.2.e.p.727.1 36 9.7 even 3 inner
9801.2.a.cm.1.18 18 9.4 even 3
9801.2.a.cn.1.18 18 99.32 even 6
9801.2.a.co.1.1 18 99.76 odd 6
9801.2.a.cp.1.1 18 9.5 odd 6