Properties

Label 1089.2.e.o.727.18
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.18
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.o.364.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16450 - 2.01697i) q^{2} +(-1.02841 + 1.39369i) q^{3} +(-1.71213 - 2.96549i) q^{4} +(0.158510 + 0.274547i) q^{5} +(1.61346 + 3.69723i) q^{6} +(-0.709246 + 1.22845i) q^{7} -3.31708 q^{8} +(-0.884754 - 2.86657i) q^{9} +0.738340 q^{10} +(5.89374 + 0.663556i) q^{12} +(2.09852 + 3.63474i) q^{13} +(1.65184 + 2.86106i) q^{14} +(-0.545647 - 0.0614326i) q^{15} +(-0.438496 + 0.759497i) q^{16} +6.24422 q^{17} +(-6.81209 - 1.55359i) q^{18} -3.09786 q^{19} +(0.542778 - 0.940119i) q^{20} +(-0.982687 - 2.25182i) q^{21} +(2.26025 + 3.91487i) q^{23} +(3.41131 - 4.62299i) q^{24} +(2.44975 - 4.24309i) q^{25} +9.77491 q^{26} +(4.90500 + 1.71493i) q^{27} +4.85727 q^{28} +(1.46422 - 2.53611i) q^{29} +(-0.759315 + 1.02902i) q^{30} +(4.77088 + 8.26341i) q^{31} +(-2.29583 - 3.97649i) q^{32} +(7.27140 - 12.5944i) q^{34} -0.449690 q^{35} +(-6.98596 + 7.53165i) q^{36} +0.847494 q^{37} +(-3.60746 + 6.24830i) q^{38} +(-7.22384 - 0.813308i) q^{39} +(-0.525791 - 0.910696i) q^{40} +(-1.93480 - 3.35118i) q^{41} +(-5.68620 - 0.640191i) q^{42} +(1.77651 - 3.07700i) q^{43} +(0.646766 - 0.697286i) q^{45} +10.5282 q^{46} +(3.72550 - 6.45275i) q^{47} +(-0.607552 - 1.39220i) q^{48} +(2.49394 + 4.31963i) q^{49} +(-5.70547 - 9.88217i) q^{50} +(-6.42160 + 8.70251i) q^{51} +(7.18585 - 12.4463i) q^{52} +6.68304 q^{53} +(9.17084 - 7.89623i) q^{54} +(2.35263 - 4.07487i) q^{56} +(3.18586 - 4.31746i) q^{57} +(-3.41018 - 5.90660i) q^{58} +(6.03739 + 10.4571i) q^{59} +(0.752039 + 1.72329i) q^{60} +(2.31016 - 4.00131i) q^{61} +22.2228 q^{62} +(4.14895 + 0.946226i) q^{63} -12.4479 q^{64} +(-0.665272 + 1.15229i) q^{65} +(-4.98385 - 8.63229i) q^{67} +(-10.6909 - 18.5172i) q^{68} +(-7.78058 - 0.875989i) q^{69} +(-0.523665 + 0.907014i) q^{70} +2.93068 q^{71} +(2.93480 + 9.50864i) q^{72} -4.24167 q^{73} +(0.986908 - 1.70938i) q^{74} +(3.39422 + 7.77782i) q^{75} +(5.30392 + 9.18665i) q^{76} +(-10.0526 + 13.6232i) q^{78} +(-1.69099 + 2.92889i) q^{79} -0.278024 q^{80} +(-7.43442 + 5.07241i) q^{81} -9.01233 q^{82} +(-6.74374 + 11.6805i) q^{83} +(-4.99526 + 6.76954i) q^{84} +(0.989771 + 1.71433i) q^{85} +(-4.13749 - 7.16635i) q^{86} +(2.02873 + 4.64883i) q^{87} +2.69745 q^{89} +(-0.653249 - 2.11650i) q^{90} -5.95347 q^{91} +(7.73966 - 13.4055i) q^{92} +(-16.4231 - 1.84902i) q^{93} +(-8.67670 - 15.0285i) q^{94} +(-0.491041 - 0.850508i) q^{95} +(7.90304 + 0.889777i) q^{96} +(2.62872 - 4.55308i) q^{97} +11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} + 9 q^{3} - 12 q^{4} + q^{5} + q^{6} + q^{7} + 12 q^{8} - q^{9} + 4 q^{10} - 8 q^{12} + 3 q^{13} - 5 q^{15} + 8 q^{16} + 40 q^{17} - 17 q^{18} + 6 q^{19} + 5 q^{20} + 8 q^{21} + 10 q^{23}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16450 2.01697i 0.823427 1.42622i −0.0796893 0.996820i \(-0.525393\pi\)
0.903116 0.429397i \(-0.141274\pi\)
\(3\) −1.02841 + 1.39369i −0.593752 + 0.804648i
\(4\) −1.71213 2.96549i −0.856063 1.48274i
\(5\) 0.158510 + 0.274547i 0.0708878 + 0.122781i 0.899291 0.437352i \(-0.144083\pi\)
−0.828403 + 0.560133i \(0.810750\pi\)
\(6\) 1.61346 + 3.69723i 0.658692 + 1.50939i
\(7\) −0.709246 + 1.22845i −0.268070 + 0.464311i −0.968363 0.249544i \(-0.919719\pi\)
0.700293 + 0.713855i \(0.253052\pi\)
\(8\) −3.31708 −1.17277
\(9\) −0.884754 2.86657i −0.294918 0.955523i
\(10\) 0.738340 0.233484
\(11\) 0 0
\(12\) 5.89374 + 0.663556i 1.70138 + 0.191552i
\(13\) 2.09852 + 3.63474i 0.582024 + 1.00810i 0.995239 + 0.0974621i \(0.0310725\pi\)
−0.413215 + 0.910634i \(0.635594\pi\)
\(14\) 1.65184 + 2.86106i 0.441472 + 0.764652i
\(15\) −0.545647 0.0614326i −0.140886 0.0158618i
\(16\) −0.438496 + 0.759497i −0.109624 + 0.189874i
\(17\) 6.24422 1.51445 0.757223 0.653157i \(-0.226556\pi\)
0.757223 + 0.653157i \(0.226556\pi\)
\(18\) −6.81209 1.55359i −1.60563 0.366186i
\(19\) −3.09786 −0.710697 −0.355348 0.934734i \(-0.615638\pi\)
−0.355348 + 0.934734i \(0.615638\pi\)
\(20\) 0.542778 0.940119i 0.121369 0.210217i
\(21\) −0.982687 2.25182i −0.214440 0.491387i
\(22\) 0 0
\(23\) 2.26025 + 3.91487i 0.471295 + 0.816306i 0.999461 0.0328349i \(-0.0104536\pi\)
−0.528166 + 0.849141i \(0.677120\pi\)
\(24\) 3.41131 4.62299i 0.696332 0.943664i
\(25\) 2.44975 4.24309i 0.489950 0.848618i
\(26\) 9.77491 1.91702
\(27\) 4.90500 + 1.71493i 0.943968 + 0.330038i
\(28\) 4.85727 0.917939
\(29\) 1.46422 2.53611i 0.271899 0.470943i −0.697449 0.716635i \(-0.745682\pi\)
0.969348 + 0.245691i \(0.0790149\pi\)
\(30\) −0.759315 + 1.02902i −0.138631 + 0.187872i
\(31\) 4.77088 + 8.26341i 0.856876 + 1.48415i 0.874894 + 0.484314i \(0.160931\pi\)
−0.0180185 + 0.999838i \(0.505736\pi\)
\(32\) −2.29583 3.97649i −0.405848 0.702950i
\(33\) 0 0
\(34\) 7.27140 12.5944i 1.24703 2.15993i
\(35\) −0.449690 −0.0760116
\(36\) −6.98596 + 7.53165i −1.16433 + 1.25528i
\(37\) 0.847494 0.139327 0.0696636 0.997571i \(-0.477807\pi\)
0.0696636 + 0.997571i \(0.477807\pi\)
\(38\) −3.60746 + 6.24830i −0.585207 + 1.01361i
\(39\) −7.22384 0.813308i −1.15674 0.130234i
\(40\) −0.525791 0.910696i −0.0831348 0.143994i
\(41\) −1.93480 3.35118i −0.302166 0.523366i 0.674461 0.738311i \(-0.264376\pi\)
−0.976626 + 0.214945i \(0.931043\pi\)
\(42\) −5.68620 0.640191i −0.877400 0.0987835i
\(43\) 1.77651 3.07700i 0.270915 0.469239i −0.698181 0.715921i \(-0.746007\pi\)
0.969096 + 0.246682i \(0.0793404\pi\)
\(44\) 0 0
\(45\) 0.646766 0.697286i 0.0964142 0.103945i
\(46\) 10.5282 1.55231
\(47\) 3.72550 6.45275i 0.543420 0.941231i −0.455285 0.890346i \(-0.650462\pi\)
0.998705 0.0508850i \(-0.0162042\pi\)
\(48\) −0.607552 1.39220i −0.0876926 0.200947i
\(49\) 2.49394 + 4.31963i 0.356277 + 0.617090i
\(50\) −5.70547 9.88217i −0.806875 1.39755i
\(51\) −6.42160 + 8.70251i −0.899204 + 1.21860i
\(52\) 7.18585 12.4463i 0.996498 1.72599i
\(53\) 6.68304 0.917986 0.458993 0.888440i \(-0.348210\pi\)
0.458993 + 0.888440i \(0.348210\pi\)
\(54\) 9.17084 7.89623i 1.24799 1.07454i
\(55\) 0 0
\(56\) 2.35263 4.07487i 0.314383 0.544528i
\(57\) 3.18586 4.31746i 0.421977 0.571861i
\(58\) −3.41018 5.90660i −0.447778 0.775575i
\(59\) 6.03739 + 10.4571i 0.786001 + 1.36139i 0.928399 + 0.371584i \(0.121185\pi\)
−0.142399 + 0.989809i \(0.545482\pi\)
\(60\) 0.752039 + 1.72329i 0.0970878 + 0.222476i
\(61\) 2.31016 4.00131i 0.295786 0.512316i −0.679382 0.733785i \(-0.737752\pi\)
0.975167 + 0.221469i \(0.0710853\pi\)
\(62\) 22.2228 2.82230
\(63\) 4.14895 + 0.946226i 0.522718 + 0.119213i
\(64\) −12.4479 −1.55599
\(65\) −0.665272 + 1.15229i −0.0825169 + 0.142923i
\(66\) 0 0
\(67\) −4.98385 8.63229i −0.608875 1.05460i −0.991426 0.130668i \(-0.958288\pi\)
0.382552 0.923934i \(-0.375045\pi\)
\(68\) −10.6909 18.5172i −1.29646 2.24553i
\(69\) −7.78058 0.875989i −0.936671 0.105457i
\(70\) −0.523665 + 0.907014i −0.0625899 + 0.108409i
\(71\) 2.93068 0.347808 0.173904 0.984763i \(-0.444362\pi\)
0.173904 + 0.984763i \(0.444362\pi\)
\(72\) 2.93480 + 9.50864i 0.345870 + 1.12060i
\(73\) −4.24167 −0.496450 −0.248225 0.968702i \(-0.579847\pi\)
−0.248225 + 0.968702i \(0.579847\pi\)
\(74\) 0.986908 1.70938i 0.114726 0.198711i
\(75\) 3.39422 + 7.77782i 0.391931 + 0.898106i
\(76\) 5.30392 + 9.18665i 0.608401 + 1.05378i
\(77\) 0 0
\(78\) −10.0526 + 13.6232i −1.13823 + 1.54252i
\(79\) −1.69099 + 2.92889i −0.190252 + 0.329526i −0.945334 0.326105i \(-0.894264\pi\)
0.755082 + 0.655630i \(0.227597\pi\)
\(80\) −0.278024 −0.0310840
\(81\) −7.43442 + 5.07241i −0.826047 + 0.563602i
\(82\) −9.01233 −0.995245
\(83\) −6.74374 + 11.6805i −0.740221 + 1.28210i 0.212173 + 0.977232i \(0.431946\pi\)
−0.952394 + 0.304869i \(0.901387\pi\)
\(84\) −4.99526 + 6.76954i −0.545027 + 0.738618i
\(85\) 0.989771 + 1.71433i 0.107356 + 0.185946i
\(86\) −4.13749 7.16635i −0.446157 0.772767i
\(87\) 2.02873 + 4.64883i 0.217503 + 0.498407i
\(88\) 0 0
\(89\) 2.69745 0.285929 0.142965 0.989728i \(-0.454336\pi\)
0.142965 + 0.989728i \(0.454336\pi\)
\(90\) −0.653249 2.11650i −0.0688585 0.223099i
\(91\) −5.95347 −0.624093
\(92\) 7.73966 13.4055i 0.806915 1.39762i
\(93\) −16.4231 1.84902i −1.70299 0.191734i
\(94\) −8.67670 15.0285i −0.894933 1.55007i
\(95\) −0.491041 0.850508i −0.0503797 0.0872603i
\(96\) 7.90304 + 0.889777i 0.806601 + 0.0908125i
\(97\) 2.62872 4.55308i 0.266906 0.462295i −0.701155 0.713009i \(-0.747332\pi\)
0.968061 + 0.250714i \(0.0806653\pi\)
\(98\) 11.6168 1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) −4.76487 + 8.25300i −0.474123 + 0.821204i −0.999561 0.0296273i \(-0.990568\pi\)
0.525438 + 0.850832i \(0.323901\pi\)
\(102\) 10.0748 + 23.0863i 0.997553 + 2.28588i
\(103\) −4.76782 8.25810i −0.469787 0.813695i 0.529616 0.848237i \(-0.322336\pi\)
−0.999403 + 0.0345427i \(0.989003\pi\)
\(104\) −6.96096 12.0567i −0.682578 1.18226i
\(105\) 0.462465 0.626730i 0.0451320 0.0611626i
\(106\) 7.78241 13.4795i 0.755894 1.30925i
\(107\) −5.17260 −0.500054 −0.250027 0.968239i \(-0.580440\pi\)
−0.250027 + 0.968239i \(0.580440\pi\)
\(108\) −3.31238 17.4819i −0.318734 1.68220i
\(109\) −14.4767 −1.38661 −0.693307 0.720643i \(-0.743847\pi\)
−0.693307 + 0.720643i \(0.743847\pi\)
\(110\) 0 0
\(111\) −0.871570 + 1.18115i −0.0827258 + 0.112109i
\(112\) −0.622003 1.07734i −0.0587737 0.101799i
\(113\) 3.71580 + 6.43596i 0.349553 + 0.605444i 0.986170 0.165736i \(-0.0530000\pi\)
−0.636617 + 0.771180i \(0.719667\pi\)
\(114\) −4.99826 11.4535i −0.468130 1.07272i
\(115\) −0.716544 + 1.24109i −0.0668181 + 0.115732i
\(116\) −10.0277 −0.931051
\(117\) 8.56256 9.23140i 0.791609 0.853443i
\(118\) 28.1222 2.58886
\(119\) −4.42869 + 7.67071i −0.405977 + 0.703173i
\(120\) 1.80996 + 0.203777i 0.165226 + 0.0186022i
\(121\) 0 0
\(122\) −5.38037 9.31907i −0.487116 0.843709i
\(123\) 6.66028 + 0.749859i 0.600537 + 0.0676125i
\(124\) 16.3367 28.2960i 1.46708 2.54105i
\(125\) 3.13834 0.280702
\(126\) 6.73996 7.26644i 0.600444 0.647346i
\(127\) 13.2044 1.17171 0.585853 0.810418i \(-0.300760\pi\)
0.585853 + 0.810418i \(0.300760\pi\)
\(128\) −9.90400 + 17.1542i −0.875398 + 1.51623i
\(129\) 2.46142 + 5.64032i 0.216716 + 0.496603i
\(130\) 1.54942 + 2.68367i 0.135893 + 0.235374i
\(131\) −3.65021 6.32236i −0.318921 0.552387i 0.661342 0.750084i \(-0.269987\pi\)
−0.980263 + 0.197697i \(0.936654\pi\)
\(132\) 0 0
\(133\) 2.19714 3.80556i 0.190516 0.329984i
\(134\) −23.2148 −2.00545
\(135\) 0.306663 + 1.61849i 0.0263933 + 0.139297i
\(136\) −20.7126 −1.77609
\(137\) −4.90367 + 8.49340i −0.418948 + 0.725640i −0.995834 0.0911850i \(-0.970935\pi\)
0.576886 + 0.816825i \(0.304268\pi\)
\(138\) −10.8273 + 14.6731i −0.921684 + 1.24906i
\(139\) −4.73845 8.20723i −0.401910 0.696128i 0.592047 0.805904i \(-0.298320\pi\)
−0.993956 + 0.109775i \(0.964987\pi\)
\(140\) 0.769926 + 1.33355i 0.0650707 + 0.112706i
\(141\) 5.16182 + 11.8283i 0.434703 + 0.996119i
\(142\) 3.41278 5.91111i 0.286394 0.496049i
\(143\) 0 0
\(144\) 2.56511 + 0.585009i 0.213759 + 0.0487508i
\(145\) 0.928375 0.0770974
\(146\) −4.93943 + 8.55534i −0.408790 + 0.708045i
\(147\) −8.58502 0.966559i −0.708081 0.0797204i
\(148\) −1.45102 2.51323i −0.119273 0.206587i
\(149\) −2.06372 3.57448i −0.169067 0.292832i 0.769025 0.639218i \(-0.220742\pi\)
−0.938092 + 0.346386i \(0.887409\pi\)
\(150\) 19.6402 + 2.21123i 1.60362 + 0.180546i
\(151\) −8.88763 + 15.3938i −0.723265 + 1.25273i 0.236419 + 0.971651i \(0.424026\pi\)
−0.959684 + 0.281081i \(0.909307\pi\)
\(152\) 10.2758 0.833481
\(153\) −5.52460 17.8995i −0.446637 1.44709i
\(154\) 0 0
\(155\) −1.51246 + 2.61967i −0.121484 + 0.210417i
\(156\) 9.95627 + 22.8147i 0.797139 + 1.82664i
\(157\) 1.00863 + 1.74700i 0.0804974 + 0.139426i 0.903464 0.428665i \(-0.141016\pi\)
−0.822966 + 0.568090i \(0.807682\pi\)
\(158\) 3.93833 + 6.82138i 0.313317 + 0.542680i
\(159\) −6.87289 + 9.31410i −0.545056 + 0.738656i
\(160\) 0.727822 1.26063i 0.0575394 0.0996612i
\(161\) −6.41229 −0.505359
\(162\) 1.57354 + 20.9019i 0.123629 + 1.64221i
\(163\) −1.58042 −0.123788 −0.0618940 0.998083i \(-0.519714\pi\)
−0.0618940 + 0.998083i \(0.519714\pi\)
\(164\) −6.62526 + 11.4753i −0.517346 + 0.896069i
\(165\) 0 0
\(166\) 15.7062 + 27.2039i 1.21904 + 2.11143i
\(167\) 7.66081 + 13.2689i 0.592812 + 1.02678i 0.993852 + 0.110719i \(0.0353155\pi\)
−0.401040 + 0.916061i \(0.631351\pi\)
\(168\) 3.25965 + 7.46947i 0.251488 + 0.576282i
\(169\) −2.30756 + 3.99681i −0.177505 + 0.307447i
\(170\) 4.61036 0.353598
\(171\) 2.74084 + 8.88021i 0.209597 + 0.679087i
\(172\) −12.1664 −0.927681
\(173\) −0.493020 + 0.853935i −0.0374836 + 0.0649235i −0.884159 0.467187i \(-0.845268\pi\)
0.846675 + 0.532110i \(0.178601\pi\)
\(174\) 11.7390 + 1.32166i 0.889934 + 0.100195i
\(175\) 3.47495 + 6.01879i 0.262682 + 0.454978i
\(176\) 0 0
\(177\) −20.7828 2.33987i −1.56213 0.175875i
\(178\) 3.14119 5.44070i 0.235442 0.407797i
\(179\) −11.2258 −0.839056 −0.419528 0.907742i \(-0.637804\pi\)
−0.419528 + 0.907742i \(0.637804\pi\)
\(180\) −3.17514 0.724135i −0.236661 0.0539739i
\(181\) 17.9256 1.33240 0.666201 0.745773i \(-0.267919\pi\)
0.666201 + 0.745773i \(0.267919\pi\)
\(182\) −6.93282 + 12.0080i −0.513895 + 0.890091i
\(183\) 3.20081 + 7.33463i 0.236611 + 0.542192i
\(184\) −7.49743 12.9859i −0.552718 0.957336i
\(185\) 0.134336 + 0.232677i 0.00987660 + 0.0171068i
\(186\) −22.8541 + 30.9717i −1.67574 + 2.27096i
\(187\) 0 0
\(188\) −25.5141 −1.86081
\(189\) −5.58556 + 4.80925i −0.406289 + 0.349821i
\(190\) −2.28727 −0.165936
\(191\) −6.44397 + 11.1613i −0.466269 + 0.807602i −0.999258 0.0385203i \(-0.987736\pi\)
0.532988 + 0.846123i \(0.321069\pi\)
\(192\) 12.8016 17.3486i 0.923874 1.25203i
\(193\) −11.5755 20.0494i −0.833224 1.44319i −0.895469 0.445125i \(-0.853159\pi\)
0.0622450 0.998061i \(-0.480174\pi\)
\(194\) −6.12230 10.6041i −0.439555 0.761332i
\(195\) −0.921759 2.11220i −0.0660086 0.151258i
\(196\) 8.53987 14.7915i 0.609991 1.05654i
\(197\) −1.07766 −0.0767801 −0.0383900 0.999263i \(-0.512223\pi\)
−0.0383900 + 0.999263i \(0.512223\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) −8.12602 + 14.0747i −0.574596 + 0.995230i
\(201\) 17.1562 + 1.93156i 1.21010 + 0.136242i
\(202\) 11.0974 + 19.2213i 0.780810 + 1.35240i
\(203\) 2.07699 + 3.59745i 0.145776 + 0.252491i
\(204\) 36.8018 + 4.14339i 2.57664 + 0.290095i
\(205\) 0.613372 1.06239i 0.0428397 0.0742006i
\(206\) −22.2085 −1.54734
\(207\) 9.22246 9.94285i 0.641006 0.691076i
\(208\) −3.68076 −0.255215
\(209\) 0 0
\(210\) −0.725557 1.66261i −0.0500682 0.114731i
\(211\) −7.47489 12.9469i −0.514593 0.891301i −0.999857 0.0169331i \(-0.994610\pi\)
0.485264 0.874368i \(-0.338724\pi\)
\(212\) −11.4422 19.8185i −0.785854 1.36114i
\(213\) −3.01394 + 4.08447i −0.206511 + 0.279863i
\(214\) −6.02350 + 10.4330i −0.411758 + 0.713186i
\(215\) 1.12638 0.0768183
\(216\) −16.2703 5.68855i −1.10705 0.387057i
\(217\) −13.5349 −0.918810
\(218\) −16.8581 + 29.1991i −1.14177 + 1.97761i
\(219\) 4.36217 5.91158i 0.294768 0.399468i
\(220\) 0 0
\(221\) 13.1036 + 22.6961i 0.881444 + 1.52671i
\(222\) 1.36740 + 3.13338i 0.0917737 + 0.210299i
\(223\) −0.963139 + 1.66821i −0.0644966 + 0.111711i −0.896471 0.443103i \(-0.853877\pi\)
0.831974 + 0.554815i \(0.187211\pi\)
\(224\) 6.51322 0.435183
\(225\) −14.3305 3.26828i −0.955369 0.217885i
\(226\) 17.3082 1.15133
\(227\) −8.00554 + 13.8660i −0.531347 + 0.920319i 0.467984 + 0.883737i \(0.344980\pi\)
−0.999331 + 0.0365825i \(0.988353\pi\)
\(228\) −18.2580 2.05560i −1.20916 0.136136i
\(229\) 0.261463 + 0.452867i 0.0172779 + 0.0299263i 0.874535 0.484962i \(-0.161167\pi\)
−0.857257 + 0.514888i \(0.827833\pi\)
\(230\) 1.66883 + 2.89050i 0.110040 + 0.190594i
\(231\) 0 0
\(232\) −4.85695 + 8.41248i −0.318874 + 0.552306i
\(233\) 10.2525 0.671665 0.335833 0.941922i \(-0.390982\pi\)
0.335833 + 0.941922i \(0.390982\pi\)
\(234\) −8.64839 28.0204i −0.565363 1.83175i
\(235\) 2.36212 0.154087
\(236\) 20.6735 35.8076i 1.34573 2.33088i
\(237\) −2.34293 5.36882i −0.152190 0.348742i
\(238\) 10.3144 + 17.8651i 0.668585 + 1.15802i
\(239\) −4.82052 8.34939i −0.311814 0.540077i 0.666941 0.745110i \(-0.267603\pi\)
−0.978755 + 0.205033i \(0.934270\pi\)
\(240\) 0.285922 0.387479i 0.0184562 0.0250117i
\(241\) −0.139366 + 0.241388i −0.00897733 + 0.0155492i −0.870479 0.492205i \(-0.836191\pi\)
0.861502 + 0.507754i \(0.169524\pi\)
\(242\) 0 0
\(243\) 0.576234 15.5778i 0.0369654 0.999317i
\(244\) −15.8211 −1.01284
\(245\) −0.790628 + 1.36941i −0.0505114 + 0.0874883i
\(246\) 9.26835 12.5604i 0.590928 0.800822i
\(247\) −6.50091 11.2599i −0.413643 0.716450i
\(248\) −15.8254 27.4104i −1.00491 1.74056i
\(249\) −9.34370 21.4110i −0.592133 1.35687i
\(250\) 3.65460 6.32995i 0.231137 0.400341i
\(251\) 4.42541 0.279329 0.139665 0.990199i \(-0.455398\pi\)
0.139665 + 0.990199i \(0.455398\pi\)
\(252\) −4.29749 13.9237i −0.270717 0.877111i
\(253\) 0 0
\(254\) 15.3766 26.6330i 0.964813 1.67111i
\(255\) −3.40714 0.383598i −0.213363 0.0240219i
\(256\) 10.6185 + 18.3917i 0.663655 + 1.14948i
\(257\) −1.82726 3.16491i −0.113981 0.197422i 0.803391 0.595452i \(-0.203027\pi\)
−0.917372 + 0.398031i \(0.869694\pi\)
\(258\) 14.2427 + 1.60354i 0.886712 + 0.0998320i
\(259\) −0.601082 + 1.04111i −0.0373494 + 0.0646911i
\(260\) 4.55612 0.282558
\(261\) −8.56540 1.95346i −0.530185 0.120916i
\(262\) −17.0027 −1.05043
\(263\) −7.22621 + 12.5162i −0.445587 + 0.771780i −0.998093 0.0617294i \(-0.980338\pi\)
0.552506 + 0.833509i \(0.313672\pi\)
\(264\) 0 0
\(265\) 1.05933 + 1.83481i 0.0650741 + 0.112712i
\(266\) −5.11715 8.86316i −0.313753 0.543435i
\(267\) −2.77408 + 3.75942i −0.169771 + 0.230073i
\(268\) −17.0660 + 29.5591i −1.04247 + 1.80561i
\(269\) 0.917748 0.0559561 0.0279780 0.999609i \(-0.491093\pi\)
0.0279780 + 0.999609i \(0.491093\pi\)
\(270\) 3.62156 + 1.26620i 0.220401 + 0.0770584i
\(271\) 2.64421 0.160624 0.0803120 0.996770i \(-0.474408\pi\)
0.0803120 + 0.996770i \(0.474408\pi\)
\(272\) −2.73806 + 4.74246i −0.166019 + 0.287554i
\(273\) 6.12259 8.29730i 0.370556 0.502175i
\(274\) 11.4206 + 19.7811i 0.689947 + 1.19502i
\(275\) 0 0
\(276\) 10.7236 + 24.5730i 0.645484 + 1.47912i
\(277\) 14.4522 25.0320i 0.868351 1.50403i 0.00467084 0.999989i \(-0.498513\pi\)
0.863681 0.504040i \(-0.168153\pi\)
\(278\) −22.0717 −1.32377
\(279\) 19.4666 20.9871i 1.16543 1.25647i
\(280\) 1.49166 0.0891437
\(281\) 4.37128 7.57129i 0.260769 0.451665i −0.705678 0.708533i \(-0.749357\pi\)
0.966446 + 0.256868i \(0.0826906\pi\)
\(282\) 29.8683 + 3.36277i 1.77863 + 0.200250i
\(283\) −11.6086 20.1067i −0.690061 1.19522i −0.971817 0.235735i \(-0.924250\pi\)
0.281756 0.959486i \(-0.409083\pi\)
\(284\) −5.01769 8.69090i −0.297745 0.515710i
\(285\) 1.69034 + 0.190309i 0.100127 + 0.0112730i
\(286\) 0 0
\(287\) 5.48901 0.324006
\(288\) −9.36763 + 10.0994i −0.551993 + 0.595110i
\(289\) 21.9902 1.29354
\(290\) 1.08109 1.87251i 0.0634840 0.109958i
\(291\) 3.64219 + 8.34605i 0.213509 + 0.489254i
\(292\) 7.26227 + 12.5786i 0.424992 + 0.736108i
\(293\) −10.4877 18.1652i −0.612698 1.06122i −0.990784 0.135453i \(-0.956751\pi\)
0.378086 0.925770i \(-0.376582\pi\)
\(294\) −11.9468 + 16.1902i −0.696751 + 0.944232i
\(295\) −1.91397 + 3.31510i −0.111436 + 0.193012i
\(296\) −2.81121 −0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) −9.48635 + 16.4308i −0.548610 + 0.950220i
\(300\) 17.2537 23.3821i 0.996144 1.34997i
\(301\) 2.51996 + 4.36471i 0.145248 + 0.251577i
\(302\) 20.6993 + 35.8523i 1.19111 + 2.06307i
\(303\) −6.60191 15.1282i −0.379270 0.869093i
\(304\) 1.35840 2.35281i 0.0779094 0.134943i
\(305\) 1.46473 0.0838704
\(306\) −42.5362 9.70098i −2.43163 0.554568i
\(307\) −23.1324 −1.32024 −0.660118 0.751162i \(-0.729494\pi\)
−0.660118 + 0.751162i \(0.729494\pi\)
\(308\) 0 0
\(309\) 16.4125 + 1.84783i 0.933675 + 0.105119i
\(310\) 3.52253 + 6.10121i 0.200066 + 0.346525i
\(311\) −10.2074 17.6798i −0.578809 1.00253i −0.995616 0.0935319i \(-0.970184\pi\)
0.416807 0.908995i \(-0.363149\pi\)
\(312\) 23.9621 + 2.69781i 1.35659 + 0.152733i
\(313\) 17.0197 29.4789i 0.962008 1.66625i 0.244562 0.969634i \(-0.421356\pi\)
0.717446 0.696614i \(-0.245311\pi\)
\(314\) 4.69820 0.265135
\(315\) 0.397865 + 1.28907i 0.0224172 + 0.0726308i
\(316\) 11.5808 0.651469
\(317\) 13.7102 23.7468i 0.770042 1.33375i −0.167498 0.985872i \(-0.553569\pi\)
0.937539 0.347879i \(-0.113098\pi\)
\(318\) 10.7828 + 24.7087i 0.604670 + 1.38560i
\(319\) 0 0
\(320\) −1.97312 3.41755i −0.110301 0.191047i
\(321\) 5.31954 7.20901i 0.296908 0.402368i
\(322\) −7.46712 + 12.9334i −0.416126 + 0.720752i
\(323\) −19.3437 −1.07631
\(324\) 27.7708 + 13.3621i 1.54282 + 0.742338i
\(325\) 20.5634 1.14065
\(326\) −1.84040 + 3.18767i −0.101930 + 0.176549i
\(327\) 14.8879 20.1760i 0.823304 1.11574i
\(328\) 6.41791 + 11.1161i 0.354370 + 0.613786i
\(329\) 5.28459 + 9.15318i 0.291349 + 0.504631i
\(330\) 0 0
\(331\) 8.98622 15.5646i 0.493927 0.855507i −0.506048 0.862505i \(-0.668894\pi\)
0.999976 + 0.00699827i \(0.00222764\pi\)
\(332\) 46.1845 2.53470
\(333\) −0.749824 2.42940i −0.0410901 0.133130i
\(334\) 35.6841 1.95255
\(335\) 1.57998 2.73661i 0.0863236 0.149517i
\(336\) 2.14115 + 0.241065i 0.116809 + 0.0131512i
\(337\) 5.48607 + 9.50216i 0.298845 + 0.517615i 0.975872 0.218343i \(-0.0700652\pi\)
−0.677027 + 0.735958i \(0.736732\pi\)
\(338\) 5.37431 + 9.30858i 0.292324 + 0.506320i
\(339\) −12.7911 1.44011i −0.694718 0.0782159i
\(340\) 3.38922 5.87031i 0.183806 0.318362i
\(341\) 0 0
\(342\) 21.1029 + 4.81281i 1.14111 + 0.260247i
\(343\) −17.0047 −0.918168
\(344\) −5.89283 + 10.2067i −0.317720 + 0.550307i
\(345\) −0.992798 2.27499i −0.0534505 0.122481i
\(346\) 1.14824 + 1.98882i 0.0617300 + 0.106919i
\(347\) 11.0494 + 19.1381i 0.593163 + 1.02739i 0.993803 + 0.111153i \(0.0354545\pi\)
−0.400640 + 0.916236i \(0.631212\pi\)
\(348\) 10.3126 13.9756i 0.552813 0.749169i
\(349\) −9.20186 + 15.9381i −0.492564 + 0.853147i −0.999963 0.00856475i \(-0.997274\pi\)
0.507399 + 0.861711i \(0.330607\pi\)
\(350\) 16.1863 0.865196
\(351\) 4.05992 + 21.4272i 0.216703 + 1.14370i
\(352\) 0 0
\(353\) −16.5354 + 28.6401i −0.880089 + 1.52436i −0.0288486 + 0.999584i \(0.509184\pi\)
−0.851241 + 0.524776i \(0.824149\pi\)
\(354\) −28.9211 + 39.1936i −1.53714 + 2.08312i
\(355\) 0.464542 + 0.804611i 0.0246553 + 0.0427043i
\(356\) −4.61838 7.99927i −0.244774 0.423960i
\(357\) −6.13611 14.0608i −0.324757 0.744179i
\(358\) −13.0725 + 22.6422i −0.690901 + 1.19668i
\(359\) −2.99864 −0.158262 −0.0791311 0.996864i \(-0.525215\pi\)
−0.0791311 + 0.996864i \(0.525215\pi\)
\(360\) −2.14538 + 2.31296i −0.113071 + 0.121904i
\(361\) −9.40329 −0.494910
\(362\) 20.8744 36.1555i 1.09713 1.90029i
\(363\) 0 0
\(364\) 10.1931 + 17.6549i 0.534262 + 0.925370i
\(365\) −0.672347 1.16454i −0.0351922 0.0609548i
\(366\) 18.5211 + 2.08523i 0.968115 + 0.108997i
\(367\) −0.831230 + 1.43973i −0.0433899 + 0.0751534i −0.886905 0.461952i \(-0.847149\pi\)
0.843515 + 0.537106i \(0.180482\pi\)
\(368\) −3.96444 −0.206661
\(369\) −7.89456 + 8.51122i −0.410974 + 0.443076i
\(370\) 0.625739 0.0325306
\(371\) −4.73992 + 8.20979i −0.246085 + 0.426231i
\(372\) 22.6351 + 51.8681i 1.17357 + 2.68924i
\(373\) −10.7543 18.6271i −0.556839 0.964473i −0.997758 0.0669259i \(-0.978681\pi\)
0.440919 0.897547i \(-0.354652\pi\)
\(374\) 0 0
\(375\) −3.22749 + 4.37388i −0.166667 + 0.225866i
\(376\) −12.3578 + 21.4043i −0.637304 + 1.10384i
\(377\) 12.2908 0.633008
\(378\) 3.19574 + 16.8663i 0.164371 + 0.867509i
\(379\) 12.4193 0.637938 0.318969 0.947765i \(-0.396663\pi\)
0.318969 + 0.947765i \(0.396663\pi\)
\(380\) −1.68145 + 2.91235i −0.0862564 + 0.149401i
\(381\) −13.5796 + 18.4029i −0.695702 + 0.942811i
\(382\) 15.0080 + 25.9947i 0.767877 + 1.33000i
\(383\) −0.399838 0.692540i −0.0204308 0.0353872i 0.855629 0.517589i \(-0.173170\pi\)
−0.876060 + 0.482202i \(0.839837\pi\)
\(384\) −13.7224 31.4447i −0.700266 1.60465i
\(385\) 0 0
\(386\) −53.9188 −2.74439
\(387\) −10.3922 2.37009i −0.528266 0.120479i
\(388\) −18.0028 −0.913954
\(389\) 0.868343 1.50401i 0.0440267 0.0762565i −0.843172 0.537643i \(-0.819315\pi\)
0.887199 + 0.461387i \(0.152648\pi\)
\(390\) −5.33365 0.600498i −0.270080 0.0304074i
\(391\) 14.1135 + 24.4453i 0.713750 + 1.23625i
\(392\) −8.27260 14.3286i −0.417830 0.723702i
\(393\) 12.5653 + 1.41469i 0.633837 + 0.0713616i
\(394\) −1.25494 + 2.17361i −0.0632228 + 0.109505i
\(395\) −1.07216 −0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) 19.1336 33.1403i 0.959080 1.66117i
\(399\) 3.04422 + 6.97581i 0.152402 + 0.349227i
\(400\) 2.14841 + 3.72115i 0.107420 + 0.186058i
\(401\) −10.9262 18.9247i −0.545627 0.945053i −0.998567 0.0535126i \(-0.982958\pi\)
0.452940 0.891541i \(-0.350375\pi\)
\(402\) 23.8743 32.3543i 1.19074 1.61369i
\(403\) −20.0236 + 34.6818i −0.997445 + 1.72762i
\(404\) 32.6322 1.62351
\(405\) −2.57105 1.23707i −0.127756 0.0614706i
\(406\) 9.67462 0.480143
\(407\) 0 0
\(408\) 21.3010 28.8670i 1.05456 1.42913i
\(409\) 4.01739 + 6.95832i 0.198647 + 0.344067i 0.948090 0.318002i \(-0.103012\pi\)
−0.749443 + 0.662069i \(0.769679\pi\)
\(410\) −1.42854 2.47431i −0.0705507 0.122197i
\(411\) −6.79421 15.5689i −0.335134 0.767956i
\(412\) −16.3262 + 28.2778i −0.804334 + 1.39315i
\(413\) −17.1280 −0.842812
\(414\) −9.31491 30.1799i −0.457803 1.48326i
\(415\) −4.27580 −0.209891
\(416\) 9.63566 16.6895i 0.472427 0.818268i
\(417\) 16.3114 + 1.83645i 0.798773 + 0.0899312i
\(418\) 0 0
\(419\) 2.79840 + 4.84698i 0.136711 + 0.236790i 0.926250 0.376910i \(-0.123014\pi\)
−0.789539 + 0.613701i \(0.789680\pi\)
\(420\) −2.65036 0.298395i −0.129324 0.0145602i
\(421\) −18.9272 + 32.7829i −0.922455 + 1.59774i −0.126851 + 0.991922i \(0.540487\pi\)
−0.795604 + 0.605817i \(0.792846\pi\)
\(422\) −34.8181 −1.69492
\(423\) −21.7934 4.97030i −1.05963 0.241664i
\(424\) −22.1682 −1.07658
\(425\) 15.2968 26.4948i 0.742002 1.28519i
\(426\) 4.72854 + 10.8354i 0.229098 + 0.524977i
\(427\) 3.27694 + 5.67583i 0.158582 + 0.274673i
\(428\) 8.85614 + 15.3393i 0.428078 + 0.741452i
\(429\) 0 0
\(430\) 1.31167 2.27187i 0.0632542 0.109560i
\(431\) 29.7844 1.43466 0.717332 0.696731i \(-0.245363\pi\)
0.717332 + 0.696731i \(0.245363\pi\)
\(432\) −3.45330 + 2.97334i −0.166147 + 0.143055i
\(433\) −0.279271 −0.0134209 −0.00671046 0.999977i \(-0.502136\pi\)
−0.00671046 + 0.999977i \(0.502136\pi\)
\(434\) −15.7614 + 27.2996i −0.756573 + 1.31042i
\(435\) −0.954749 + 1.29387i −0.0457767 + 0.0620363i
\(436\) 24.7859 + 42.9304i 1.18703 + 2.05599i
\(437\) −7.00193 12.1277i −0.334948 0.580146i
\(438\) −6.84376 15.6824i −0.327008 0.749335i
\(439\) 7.49827 12.9874i 0.357873 0.619854i −0.629732 0.776812i \(-0.716835\pi\)
0.987605 + 0.156958i \(0.0501687\pi\)
\(440\) 0 0
\(441\) 10.1760 10.9709i 0.484571 0.522422i
\(442\) 61.0366 2.90322
\(443\) −7.24991 + 12.5572i −0.344453 + 0.596611i −0.985254 0.171096i \(-0.945269\pi\)
0.640801 + 0.767707i \(0.278602\pi\)
\(444\) 4.99491 + 0.562360i 0.237048 + 0.0266884i
\(445\) 0.427573 + 0.740579i 0.0202689 + 0.0351068i
\(446\) 2.24315 + 3.88525i 0.106216 + 0.183972i
\(447\) 7.10407 + 0.799823i 0.336011 + 0.0378303i
\(448\) 8.82866 15.2917i 0.417115 0.722464i
\(449\) −21.2217 −1.00151 −0.500757 0.865588i \(-0.666945\pi\)
−0.500757 + 0.865588i \(0.666945\pi\)
\(450\) −23.2800 + 25.0984i −1.09743 + 1.18315i
\(451\) 0 0
\(452\) 12.7238 22.0383i 0.598479 1.03660i
\(453\) −12.3141 28.2178i −0.578569 1.32579i
\(454\) 18.6449 + 32.2940i 0.875050 + 1.51563i
\(455\) −0.943684 1.63451i −0.0442406 0.0766269i
\(456\) −10.5678 + 14.3214i −0.494881 + 0.670659i
\(457\) −1.60475 + 2.77951i −0.0750671 + 0.130020i −0.901115 0.433579i \(-0.857250\pi\)
0.826048 + 0.563599i \(0.190584\pi\)
\(458\) 1.21789 0.0569085
\(459\) 30.6279 + 10.7084i 1.42959 + 0.499824i
\(460\) 4.90725 0.228802
\(461\) 13.1628 22.7986i 0.613052 1.06184i −0.377671 0.925940i \(-0.623275\pi\)
0.990723 0.135897i \(-0.0433918\pi\)
\(462\) 0 0
\(463\) −1.81412 3.14215i −0.0843093 0.146028i 0.820787 0.571234i \(-0.193535\pi\)
−0.905097 + 0.425206i \(0.860202\pi\)
\(464\) 1.28411 + 2.22414i 0.0596133 + 0.103253i
\(465\) −2.09558 4.80199i −0.0971800 0.222687i
\(466\) 11.9391 20.6791i 0.553067 0.957940i
\(467\) −18.4952 −0.855854 −0.427927 0.903813i \(-0.640756\pi\)
−0.427927 + 0.903813i \(0.640756\pi\)
\(468\) −42.0358 9.58685i −1.94310 0.443152i
\(469\) 14.1391 0.652884
\(470\) 2.75069 4.76433i 0.126880 0.219762i
\(471\) −3.47206 0.390907i −0.159984 0.0180121i
\(472\) −20.0265 34.6869i −0.921795 1.59660i
\(473\) 0 0
\(474\) −13.5571 1.52635i −0.622699 0.0701076i
\(475\) −7.58897 + 13.1445i −0.348206 + 0.603110i
\(476\) 30.3299 1.39017
\(477\) −5.91285 19.1574i −0.270731 0.877157i
\(478\) −22.4540 −1.02702
\(479\) −0.0784991 + 0.135964i −0.00358672 + 0.00621238i −0.867813 0.496891i \(-0.834475\pi\)
0.864226 + 0.503103i \(0.167808\pi\)
\(480\) 1.00843 + 2.31080i 0.0460281 + 0.105473i
\(481\) 1.77848 + 3.08042i 0.0810918 + 0.140455i
\(482\) 0.324583 + 0.562194i 0.0147843 + 0.0256072i
\(483\) 6.59445 8.93676i 0.300058 0.406637i
\(484\) 0 0
\(485\) 1.66671 0.0756816
\(486\) −30.7490 19.3026i −1.39480 0.875585i
\(487\) 17.9265 0.812327 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(488\) −7.66299 + 13.2727i −0.346887 + 0.600826i
\(489\) 1.62532 2.20262i 0.0734993 0.0996058i
\(490\) 1.84138 + 3.18936i 0.0831849 + 0.144080i
\(491\) −3.32399 5.75731i −0.150009 0.259824i 0.781221 0.624254i \(-0.214597\pi\)
−0.931231 + 0.364430i \(0.881264\pi\)
\(492\) −9.17954 21.0348i −0.413846 0.948324i
\(493\) 9.14292 15.8360i 0.411777 0.713218i
\(494\) −30.2813 −1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) −2.07857 + 3.60020i −0.0932368 + 0.161491i
\(498\) −54.0662 6.08713i −2.42276 0.272771i
\(499\) −16.9737 29.3993i −0.759846 1.31609i −0.942929 0.332994i \(-0.891941\pi\)
0.183083 0.983097i \(-0.441392\pi\)
\(500\) −5.37323 9.30670i −0.240298 0.416208i
\(501\) −26.3712 2.96905i −1.17818 0.132647i
\(502\) 5.15339 8.92594i 0.230007 0.398384i
\(503\) −3.13729 −0.139885 −0.0699423 0.997551i \(-0.522282\pi\)
−0.0699423 + 0.997551i \(0.522282\pi\)
\(504\) −13.7624 3.13871i −0.613026 0.139809i
\(505\) −3.02112 −0.134438
\(506\) 0 0
\(507\) −3.19721 7.32638i −0.141993 0.325376i
\(508\) −22.6077 39.1576i −1.00305 1.73734i
\(509\) −11.4017 19.7484i −0.505374 0.875333i −0.999981 0.00621612i \(-0.998021\pi\)
0.494607 0.869117i \(-0.335312\pi\)
\(510\) −4.74133 + 6.42542i −0.209949 + 0.284522i
\(511\) 3.00839 5.21068i 0.133083 0.230507i
\(512\) 9.84494 0.435089
\(513\) −15.1950 5.31260i −0.670875 0.234557i
\(514\) −8.51139 −0.375421
\(515\) 1.51149 2.61798i 0.0666043 0.115362i
\(516\) 12.5120 16.9562i 0.550812 0.746457i
\(517\) 0 0
\(518\) 1.39992 + 2.42474i 0.0615090 + 0.106537i
\(519\) −0.683097 1.56531i −0.0299846 0.0687095i
\(520\) 2.20676 3.82223i 0.0967729 0.167616i
\(521\) 5.26812 0.230801 0.115400 0.993319i \(-0.463185\pi\)
0.115400 + 0.993319i \(0.463185\pi\)
\(522\) −13.9145 + 15.0014i −0.609021 + 0.656593i
\(523\) −11.8956 −0.520159 −0.260080 0.965587i \(-0.583749\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(524\) −12.4992 + 21.6493i −0.546032 + 0.945756i
\(525\) −11.9620 1.34676i −0.522065 0.0587775i
\(526\) 16.8299 + 29.1502i 0.733817 + 1.27101i
\(527\) 29.7904 + 51.5985i 1.29769 + 2.24767i
\(528\) 0 0
\(529\) 1.28255 2.22144i 0.0557629 0.0965843i
\(530\) 4.93436 0.214335
\(531\) 24.6343 26.5585i 1.06904 1.15254i
\(532\) −15.0471 −0.652376
\(533\) 8.12045 14.0650i 0.351736 0.609224i
\(534\) 4.35223 + 9.97310i 0.188339 + 0.431578i
\(535\) −0.819909 1.42012i −0.0354477 0.0613973i
\(536\) 16.5319 + 28.6340i 0.714067 + 1.23680i
\(537\) 11.5447 15.6453i 0.498191 0.675145i
\(538\) 1.06872 1.85108i 0.0460757 0.0798055i
\(539\) 0 0
\(540\) 4.27456 3.68046i 0.183948 0.158382i
\(541\) −40.5807 −1.74470 −0.872350 0.488882i \(-0.837405\pi\)
−0.872350 + 0.488882i \(0.837405\pi\)
\(542\) 3.07918 5.33330i 0.132262 0.229085i
\(543\) −18.4349 + 24.9828i −0.791115 + 1.07211i
\(544\) −14.3356 24.8300i −0.614635 1.06458i
\(545\) −2.29470 3.97453i −0.0982940 0.170250i
\(546\) −9.60567 22.0113i −0.411085 0.941998i
\(547\) 11.7672 20.3813i 0.503127 0.871442i −0.496866 0.867827i \(-0.665516\pi\)
0.999993 0.00361458i \(-0.00115056\pi\)
\(548\) 33.5828 1.43458
\(549\) −13.5140 3.08205i −0.576762 0.131539i
\(550\) 0 0
\(551\) −4.53595 + 7.85650i −0.193238 + 0.334698i
\(552\) 25.8088 + 2.90573i 1.09850 + 0.123676i
\(553\) −2.39866 4.15460i −0.102001 0.176672i
\(554\) −33.6593 58.2996i −1.43005 2.47691i
\(555\) −0.462433 0.0520638i −0.0196292 0.00220998i
\(556\) −16.2256 + 28.1036i −0.688120 + 1.19186i
\(557\) 6.28652 0.266369 0.133184 0.991091i \(-0.457480\pi\)
0.133184 + 0.991091i \(0.457480\pi\)
\(558\) −19.6617 63.7031i −0.832346 2.69677i
\(559\) 14.9121 0.630716
\(560\) 0.197187 0.341538i 0.00833268 0.0144326i
\(561\) 0 0
\(562\) −10.1807 17.6335i −0.429448 0.743826i
\(563\) −8.48320 14.6933i −0.357524 0.619250i 0.630022 0.776577i \(-0.283046\pi\)
−0.987547 + 0.157327i \(0.949712\pi\)
\(564\) 26.2389 35.5588i 1.10486 1.49729i
\(565\) −1.17798 + 2.04033i −0.0495582 + 0.0858373i
\(566\) −54.0731 −2.27286
\(567\) −0.958376 12.7304i −0.0402480 0.534627i
\(568\) −9.72131 −0.407897
\(569\) 11.1253 19.2695i 0.466395 0.807819i −0.532868 0.846198i \(-0.678886\pi\)
0.999263 + 0.0383786i \(0.0122193\pi\)
\(570\) 2.35225 3.18775i 0.0985248 0.133520i
\(571\) 17.6576 + 30.5838i 0.738947 + 1.27989i 0.952970 + 0.303065i \(0.0980100\pi\)
−0.214023 + 0.976829i \(0.568657\pi\)
\(572\) 0 0
\(573\) −8.92836 20.4593i −0.372988 0.854698i
\(574\) 6.39196 11.0712i 0.266795 0.462103i
\(575\) 22.1482 0.923643
\(576\) 11.0134 + 35.6829i 0.458890 + 1.48679i
\(577\) −38.2361 −1.59179 −0.795894 0.605436i \(-0.792999\pi\)
−0.795894 + 0.605436i \(0.792999\pi\)
\(578\) 25.6077 44.3538i 1.06514 1.84487i
\(579\) 39.8470 + 4.48624i 1.65598 + 0.186442i
\(580\) −1.58950 2.75309i −0.0660002 0.114316i
\(581\) −9.56594 16.5687i −0.396862 0.687385i
\(582\) 21.0751 + 2.37278i 0.873592 + 0.0983547i
\(583\) 0 0
\(584\) 14.0700 0.582219
\(585\) 3.89171 + 0.887559i 0.160902 + 0.0366960i
\(586\) −48.8517 −2.01805
\(587\) 6.19482 10.7297i 0.255688 0.442864i −0.709394 0.704812i \(-0.751031\pi\)
0.965082 + 0.261948i \(0.0843648\pi\)
\(588\) 11.8323 + 27.1136i 0.487956 + 1.11815i
\(589\) −14.7795 25.5988i −0.608979 1.05478i
\(590\) 4.45764 + 7.72087i 0.183518 + 0.317863i
\(591\) 1.10827 1.50193i 0.0455883 0.0617810i
\(592\) −0.371623 + 0.643669i −0.0152736 + 0.0264546i
\(593\) −4.18039 −0.171668 −0.0858340 0.996309i \(-0.527355\pi\)
−0.0858340 + 0.996309i \(0.527355\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) −7.06671 + 12.2399i −0.289464 + 0.501366i
\(597\) −16.8975 + 22.8993i −0.691568 + 0.937208i
\(598\) 22.0937 + 38.2675i 0.903480 + 1.56487i
\(599\) 22.0394 + 38.1733i 0.900505 + 1.55972i 0.826840 + 0.562437i \(0.190136\pi\)
0.0736641 + 0.997283i \(0.476531\pi\)
\(600\) −11.2589 25.7997i −0.459643 1.05327i
\(601\) −0.875658 + 1.51668i −0.0357188 + 0.0618668i −0.883332 0.468748i \(-0.844705\pi\)
0.847613 + 0.530614i \(0.178039\pi\)
\(602\) 11.7380 0.478405
\(603\) −20.3356 + 21.9240i −0.828128 + 0.892815i
\(604\) 60.8670 2.47664
\(605\) 0 0
\(606\) −38.2012 4.30094i −1.55182 0.174714i
\(607\) −5.43457 9.41296i −0.220583 0.382060i 0.734402 0.678714i \(-0.237462\pi\)
−0.954985 + 0.296654i \(0.904129\pi\)
\(608\) 7.11214 + 12.3186i 0.288435 + 0.499584i
\(609\) −7.14973 0.804964i −0.289722 0.0326188i
\(610\) 1.70568 2.95433i 0.0690611 0.119617i
\(611\) 31.2721 1.26513
\(612\) −43.6219 + 47.0293i −1.76331 + 1.90105i
\(613\) −17.7933 −0.718665 −0.359333 0.933210i \(-0.616996\pi\)
−0.359333 + 0.933210i \(0.616996\pi\)
\(614\) −26.9377 + 46.6575i −1.08712 + 1.88294i
\(615\) 0.849849 + 1.94742i 0.0342692 + 0.0785276i
\(616\) 0 0
\(617\) −1.99805 3.46073i −0.0804386 0.139324i 0.823000 0.568042i \(-0.192299\pi\)
−0.903438 + 0.428718i \(0.858965\pi\)
\(618\) 22.8394 30.9518i 0.918735 1.24506i
\(619\) 5.48769 9.50496i 0.220569 0.382037i −0.734412 0.678704i \(-0.762542\pi\)
0.954981 + 0.296667i \(0.0958753\pi\)
\(620\) 10.3581 0.415992
\(621\) 4.37281 + 23.0786i 0.175475 + 0.926112i
\(622\) −47.5462 −1.90643
\(623\) −1.91316 + 3.31369i −0.0766491 + 0.132760i
\(624\) 3.78533 5.12985i 0.151534 0.205358i
\(625\) −11.7513 20.3538i −0.470052 0.814153i
\(626\) −39.6388 68.6565i −1.58429 2.74407i
\(627\) 0 0
\(628\) 3.45380 5.98216i 0.137822 0.238714i
\(629\) 5.29194 0.211003
\(630\) 3.06333 + 0.698636i 0.122046 + 0.0278343i
\(631\) 8.64921 0.344319 0.172160 0.985069i \(-0.444925\pi\)
0.172160 + 0.985069i \(0.444925\pi\)
\(632\) 5.60917 9.71536i 0.223121 0.386456i
\(633\) 25.7312 + 2.89699i 1.02272 + 0.115145i
\(634\) −31.9311 55.3063i −1.26815 2.19649i
\(635\) 2.09304 + 3.62525i 0.0830596 + 0.143863i
\(636\) 39.3881 + 4.43458i 1.56184 + 0.175842i
\(637\) −10.4672 + 18.1296i −0.414724 + 0.718323i
\(638\) 0 0
\(639\) −2.59293 8.40100i −0.102575 0.332338i
\(640\) −6.27953 −0.248220
\(641\) −18.5438 + 32.1188i −0.732436 + 1.26862i 0.223403 + 0.974726i \(0.428283\pi\)
−0.955839 + 0.293891i \(0.905050\pi\)
\(642\) −8.34578 19.1243i −0.329382 0.754775i
\(643\) 20.3663 + 35.2755i 0.803168 + 1.39113i 0.917521 + 0.397688i \(0.130187\pi\)
−0.114353 + 0.993440i \(0.536479\pi\)
\(644\) 10.9786 + 19.0156i 0.432619 + 0.749319i
\(645\) −1.15838 + 1.56982i −0.0456110 + 0.0618117i
\(646\) −22.5257 + 39.0157i −0.886263 + 1.53505i
\(647\) −0.568944 −0.0223675 −0.0111837 0.999937i \(-0.503560\pi\)
−0.0111837 + 0.999937i \(0.503560\pi\)
\(648\) 24.6606 16.8256i 0.968759 0.660973i
\(649\) 0 0
\(650\) 23.9461 41.4758i 0.939242 1.62682i
\(651\) 13.9194 18.8635i 0.545545 0.739319i
\(652\) 2.70588 + 4.68672i 0.105970 + 0.183546i
\(653\) 18.2638 + 31.6338i 0.714718 + 1.23793i 0.963068 + 0.269257i \(0.0867781\pi\)
−0.248351 + 0.968670i \(0.579889\pi\)
\(654\) −23.3575 53.5235i −0.913351 2.09294i
\(655\) 1.15719 2.00431i 0.0452152 0.0783150i
\(656\) 3.39361 0.132498
\(657\) 3.75283 + 12.1590i 0.146412 + 0.474369i
\(658\) 24.6157 0.959618
\(659\) −12.0035 + 20.7907i −0.467590 + 0.809889i −0.999314 0.0370284i \(-0.988211\pi\)
0.531725 + 0.846917i \(0.321544\pi\)
\(660\) 0 0
\(661\) −6.49165 11.2439i −0.252496 0.437336i 0.711717 0.702467i \(-0.247918\pi\)
−0.964212 + 0.265131i \(0.914585\pi\)
\(662\) −20.9289 36.2499i −0.813425 1.40889i
\(663\) −45.1072 5.07847i −1.75182 0.197232i
\(664\) 22.3695 38.7452i 0.868106 1.50360i
\(665\) 1.39308 0.0540212
\(666\) −5.77321 1.31666i −0.223707 0.0510196i
\(667\) 13.2380 0.512579
\(668\) 26.2325 45.4361i 1.01497 1.75798i
\(669\) −1.33446 3.05792i −0.0515934 0.118226i
\(670\) −3.67978 6.37356i −0.142162 0.246232i
\(671\) 0 0
\(672\) −6.69825 + 9.07743i −0.258391 + 0.350169i
\(673\) 8.51283 14.7447i 0.328145 0.568365i −0.653998 0.756496i \(-0.726910\pi\)
0.982144 + 0.188131i \(0.0602431\pi\)
\(674\) 25.5541 0.984309
\(675\) 19.2926 16.6112i 0.742573 0.639366i
\(676\) 15.8033 0.607820
\(677\) −17.7158 + 30.6847i −0.680874 + 1.17931i 0.293840 + 0.955855i \(0.405067\pi\)
−0.974714 + 0.223454i \(0.928267\pi\)
\(678\) −17.7999 + 24.1223i −0.683602 + 0.926413i
\(679\) 3.72882 + 6.45851i 0.143099 + 0.247855i
\(680\) −3.28315 5.68658i −0.125903 0.218071i
\(681\) −11.0920 25.4172i −0.425046 0.973988i
\(682\) 0 0
\(683\) 23.8967 0.914381 0.457191 0.889369i \(-0.348856\pi\)
0.457191 + 0.889369i \(0.348856\pi\)
\(684\) 21.6415 23.3320i 0.827484 0.892120i
\(685\) −3.10912 −0.118793
\(686\) −19.8020 + 34.2981i −0.756044 + 1.30951i
\(687\) −0.900047 0.101333i −0.0343389 0.00386610i
\(688\) 1.55798 + 2.69850i 0.0593975 + 0.102880i
\(689\) 14.0245 + 24.2911i 0.534290 + 0.925418i
\(690\) −5.74471 0.646778i −0.218697 0.0246224i
\(691\) 0.296307 0.513219i 0.0112721 0.0195238i −0.860334 0.509730i \(-0.829745\pi\)
0.871606 + 0.490206i \(0.163079\pi\)
\(692\) 3.37645 0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) 1.50218 2.60186i 0.0569810 0.0986940i
\(696\) −6.72948 15.4205i −0.255080 0.584514i
\(697\) −12.0813 20.9255i −0.457613 0.792610i
\(698\) 21.4312 + 37.1198i 0.811181 + 1.40501i
\(699\) −10.5438 + 14.2889i −0.398802 + 0.540454i
\(700\) 11.8991 20.6099i 0.449744 0.778979i
\(701\) 25.4261 0.960329 0.480164 0.877179i \(-0.340577\pi\)
0.480164 + 0.877179i \(0.340577\pi\)
\(702\) 47.9459 + 16.7632i 1.80960 + 0.632688i
\(703\) −2.62542 −0.0990194
\(704\) 0 0
\(705\) −2.42922 + 3.29206i −0.0914896 + 0.123986i
\(706\) 38.5109 + 66.7029i 1.44938 + 2.51040i
\(707\) −6.75894 11.7068i −0.254196 0.440280i
\(708\) 28.6439 + 65.6373i 1.07650 + 2.46680i
\(709\) −7.55233 + 13.0810i −0.283634 + 0.491268i −0.972277 0.233832i \(-0.924873\pi\)
0.688643 + 0.725100i \(0.258207\pi\)
\(710\) 2.16384 0.0812074
\(711\) 9.89197 + 2.25600i 0.370978 + 0.0846067i
\(712\) −8.94768 −0.335328
\(713\) −21.5668 + 37.3547i −0.807681 + 1.39895i
\(714\) −35.5059 3.99749i −1.32877 0.149602i
\(715\) 0 0
\(716\) 19.2200 + 33.2900i 0.718284 + 1.24410i
\(717\) 16.5939 + 1.86826i 0.619712 + 0.0697713i
\(718\) −3.49192 + 6.04818i −0.130317 + 0.225716i
\(719\) 12.0428 0.449120 0.224560 0.974460i \(-0.427906\pi\)
0.224560 + 0.974460i \(0.427906\pi\)
\(720\) 0.245983 + 0.796974i 0.00916723 + 0.0297015i
\(721\) 13.5262 0.503743
\(722\) −10.9501 + 18.9662i −0.407522 + 0.705849i
\(723\) −0.193096 0.442478i −0.00718132 0.0164559i
\(724\) −30.6909 53.1582i −1.14062 1.97561i
\(725\) −7.17396 12.4257i −0.266434 0.461477i
\(726\) 0 0
\(727\) −24.7966 + 42.9489i −0.919654 + 1.59289i −0.119714 + 0.992808i \(0.538198\pi\)
−0.799940 + 0.600079i \(0.795136\pi\)
\(728\) 19.7481 0.731915
\(729\) 21.1181 + 16.8234i 0.782150 + 0.623090i
\(730\) −3.13179 −0.115913
\(731\) 11.0929 19.2135i 0.410286 0.710636i
\(732\) 16.2706 22.0498i 0.601378 0.814983i
\(733\) −16.1327 27.9426i −0.595875 1.03209i −0.993423 0.114504i \(-0.963472\pi\)
0.397548 0.917581i \(-0.369861\pi\)
\(734\) 1.93594 + 3.35314i 0.0714567 + 0.123767i
\(735\) −1.09545 2.51020i −0.0404061 0.0925902i
\(736\) 10.3783 17.9757i 0.382548 0.662593i
\(737\) 0 0
\(738\) 7.97369 + 25.8344i 0.293516 + 0.950979i
\(739\) 3.13253 0.115232 0.0576160 0.998339i \(-0.481650\pi\)
0.0576160 + 0.998339i \(0.481650\pi\)
\(740\) 0.460001 0.796745i 0.0169100 0.0292889i
\(741\) 22.3784 + 2.51951i 0.822092 + 0.0925566i
\(742\) 11.0393 + 19.1206i 0.405265 + 0.701940i
\(743\) 3.89438 + 6.74527i 0.142871 + 0.247460i 0.928577 0.371141i \(-0.121033\pi\)
−0.785706 + 0.618601i \(0.787700\pi\)
\(744\) 54.4766 + 6.13334i 1.99721 + 0.224859i
\(745\) 0.654242 1.13318i 0.0239696 0.0415165i
\(746\) −50.0938 −1.83406
\(747\) 39.4495 + 8.99701i 1.44338 + 0.329183i
\(748\) 0 0
\(749\) 3.66865 6.35428i 0.134049 0.232180i
\(750\) 5.06358 + 11.6032i 0.184896 + 0.423687i
\(751\) −24.8445 43.0320i −0.906589 1.57026i −0.818770 0.574122i \(-0.805344\pi\)
−0.0878193 0.996136i \(-0.527990\pi\)
\(752\) 3.26723 + 5.65901i 0.119144 + 0.206363i
\(753\) −4.55113 + 6.16766i −0.165852 + 0.224762i
\(754\) 14.3126 24.7902i 0.521236 0.902807i
\(755\) −5.63511 −0.205083
\(756\) 23.8249 + 8.32987i 0.866504 + 0.302954i
\(757\) −27.0307 −0.982449 −0.491225 0.871033i \(-0.663451\pi\)
−0.491225 + 0.871033i \(0.663451\pi\)
\(758\) 14.4623 25.0495i 0.525295 0.909838i
\(759\) 0 0
\(760\) 1.62882 + 2.82121i 0.0590836 + 0.102336i
\(761\) 22.2553 + 38.5473i 0.806753 + 1.39734i 0.915101 + 0.403224i \(0.132111\pi\)
−0.108348 + 0.994113i \(0.534556\pi\)
\(762\) 21.3048 + 48.8199i 0.771793 + 1.76856i
\(763\) 10.2675 17.7839i 0.371709 0.643819i
\(764\) 44.1315 1.59662
\(765\) 4.03855 4.35401i 0.146014 0.157419i
\(766\) −1.86245 −0.0672930
\(767\) −25.3391 + 43.8887i −0.914943 + 1.58473i
\(768\) −36.5526 4.11533i −1.31898 0.148499i
\(769\) −1.65952 2.87438i −0.0598440 0.103653i 0.834551 0.550930i \(-0.185727\pi\)
−0.894395 + 0.447277i \(0.852394\pi\)
\(770\) 0 0
\(771\) 6.29008 + 0.708179i 0.226532 + 0.0255044i
\(772\) −39.6375 + 68.6541i −1.42658 + 2.47091i
\(773\) 28.4878 1.02463 0.512317 0.858797i \(-0.328787\pi\)
0.512317 + 0.858797i \(0.328787\pi\)
\(774\) −16.8822 + 18.2009i −0.606817 + 0.654216i
\(775\) 46.7498 1.67930
\(776\) −8.71969 + 15.1029i −0.313019 + 0.542164i
\(777\) −0.832822 1.90840i −0.0298773 0.0684636i
\(778\) −2.02237 3.50285i −0.0725055 0.125583i
\(779\) 5.99375 + 10.3815i 0.214748 + 0.371955i
\(780\) −4.68555 + 6.34982i −0.167769 + 0.227360i
\(781\) 0 0
\(782\) 65.7407 2.35088
\(783\) 11.5313 9.92858i 0.412093 0.354818i
\(784\) −4.37433 −0.156226
\(785\) −0.319756 + 0.553833i −0.0114126 + 0.0197671i
\(786\) 17.4857 23.6965i 0.623695 0.845228i
\(787\) 6.52435 + 11.3005i 0.232568 + 0.402820i 0.958563 0.284880i \(-0.0919538\pi\)
−0.725995 + 0.687700i \(0.758621\pi\)
\(788\) 1.84509 + 3.19579i 0.0657286 + 0.113845i
\(789\) −10.0122 22.9428i −0.356443 0.816786i
\(790\) −1.24853 + 2.16251i −0.0444207 + 0.0769388i
\(791\) −10.5417 −0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) −28.8330 + 49.9402i −1.02324 + 1.77231i
\(795\) −3.64658 0.410557i −0.129331 0.0145609i
\(796\) −28.1314 48.7251i −0.997092 1.72701i
\(797\) −25.0867 43.4514i −0.888616 1.53913i −0.841513 0.540237i \(-0.818334\pi\)
−0.0471028 0.998890i \(-0.514999\pi\)
\(798\) 17.6150 + 1.98322i 0.623566 + 0.0702052i
\(799\) 23.2628 40.2924i 0.822980 1.42544i
\(800\) −22.4968 −0.795382
\(801\) −2.38658 7.73243i −0.0843258 0.273212i
\(802\) −50.8941 −1.79713
\(803\) 0 0
\(804\) −23.6455 54.1835i −0.833914 1.91091i
\(805\) −1.01641 1.76048i −0.0358238 0.0620487i
\(806\) 46.6349 + 80.7741i 1.64264 + 2.84514i
\(807\) −0.943820 + 1.27906i −0.0332240 + 0.0450250i
\(808\) 15.8055 27.3759i 0.556035 0.963080i
\(809\) 35.1505 1.23583 0.617914 0.786246i \(-0.287978\pi\)
0.617914 + 0.786246i \(0.287978\pi\)
\(810\) −5.48913 + 3.74517i −0.192868 + 0.131592i
\(811\) −22.1055 −0.776228 −0.388114 0.921611i \(-0.626873\pi\)
−0.388114 + 0.921611i \(0.626873\pi\)
\(812\) 7.11213 12.3186i 0.249587 0.432297i
\(813\) −2.71932 + 3.68521i −0.0953708 + 0.129246i
\(814\) 0 0
\(815\) −0.250512 0.433900i −0.00877506 0.0151989i
\(816\) −3.79369 8.69320i −0.132806 0.304323i
\(817\) −5.50337 + 9.53211i −0.192538 + 0.333486i
\(818\) 18.7130 0.654285
\(819\) 5.26735 + 17.0660i 0.184056 + 0.596335i
\(820\) −4.20068 −0.146694
\(821\) 1.26860 2.19728i 0.0442744 0.0766855i −0.843039 0.537852i \(-0.819236\pi\)
0.887313 + 0.461167i \(0.152569\pi\)
\(822\) −39.3139 4.42622i −1.37123 0.154382i
\(823\) 5.18635 + 8.98302i 0.180785 + 0.313128i 0.942148 0.335197i \(-0.108803\pi\)
−0.761363 + 0.648326i \(0.775470\pi\)
\(824\) 15.8152 + 27.3928i 0.550950 + 0.954273i
\(825\) 0 0
\(826\) −19.9455 + 34.5467i −0.693994 + 1.20203i
\(827\) −52.7236 −1.83338 −0.916690 0.399599i \(-0.869149\pi\)
−0.916690 + 0.399599i \(0.869149\pi\)
\(828\) −45.2754 10.3257i −1.57343 0.358843i
\(829\) 37.8438 1.31437 0.657184 0.753730i \(-0.271747\pi\)
0.657184 + 0.753730i \(0.271747\pi\)
\(830\) −4.97917 + 8.62418i −0.172830 + 0.299350i
\(831\) 20.0241 + 45.8851i 0.694629 + 1.59174i
\(832\) −26.1222 45.2451i −0.905626 1.56859i
\(833\) 15.5727 + 26.9727i 0.539562 + 0.934549i
\(834\) 22.6987 30.7612i 0.785992 1.06517i
\(835\) −2.42863 + 4.20651i −0.0840462 + 0.145572i
\(836\) 0 0
\(837\) 9.23003 + 48.7137i 0.319037 + 1.68379i
\(838\) 13.0350 0.450286
\(839\) 10.0578 17.4206i 0.347233 0.601425i −0.638524 0.769602i \(-0.720455\pi\)
0.985757 + 0.168177i \(0.0537879\pi\)
\(840\) −1.53404 + 2.07891i −0.0529292 + 0.0717294i
\(841\) 10.2121 + 17.6879i 0.352142 + 0.609927i
\(842\) 44.0815 + 76.3513i 1.51915 + 2.63124i
\(843\) 6.05658 + 13.8786i 0.208600 + 0.478004i
\(844\) −25.5959 + 44.3334i −0.881047 + 1.52602i
\(845\) −1.46308 −0.0503316
\(846\) −35.4034 + 38.1688i −1.21719 + 1.31227i
\(847\) 0 0
\(848\) −2.93048 + 5.07575i −0.100633 + 0.174302i
\(849\) 39.9610 + 4.49908i 1.37146 + 0.154408i
\(850\) −35.6262 61.7064i −1.22197 2.11651i
\(851\) 1.91555 + 3.31783i 0.0656642 + 0.113734i
\(852\) 17.2727 + 1.94467i 0.591752 + 0.0666234i
\(853\) 4.56010 7.89832i 0.156135 0.270433i −0.777337 0.629085i \(-0.783430\pi\)
0.933472 + 0.358651i \(0.116763\pi\)
\(854\) 15.2640 0.522324
\(855\) −2.00359 + 2.16009i −0.0685213 + 0.0738736i
\(856\) 17.1579 0.586446
\(857\) −0.922678 + 1.59813i −0.0315181 + 0.0545909i −0.881354 0.472456i \(-0.843368\pi\)
0.849836 + 0.527047i \(0.176701\pi\)
\(858\) 0 0
\(859\) −14.2555 24.6913i −0.486392 0.842456i 0.513485 0.858098i \(-0.328354\pi\)
−0.999878 + 0.0156422i \(0.995021\pi\)
\(860\) −1.92850 3.34026i −0.0657613 0.113902i
\(861\) −5.64494 + 7.64999i −0.192379 + 0.260711i
\(862\) 34.6840 60.0744i 1.18134 2.04614i
\(863\) −10.6994 −0.364210 −0.182105 0.983279i \(-0.558291\pi\)
−0.182105 + 0.983279i \(0.558291\pi\)
\(864\) −4.44164 23.4418i −0.151108 0.797508i
\(865\) −0.312594 −0.0106285
\(866\) −0.325212 + 0.563283i −0.0110511 + 0.0191411i
\(867\) −22.6149 + 30.6476i −0.768044 + 1.04085i
\(868\) 23.1735 + 40.1376i 0.786559 + 1.36236i
\(869\) 0 0
\(870\) 1.49790 + 3.43242i 0.0507834 + 0.116370i
\(871\) 20.9174 36.2300i 0.708760 1.22761i
\(872\) 48.0203 1.62617
\(873\) −15.3775 3.50705i −0.520449 0.118696i
\(874\) −32.6150 −1.10322
\(875\) −2.22585 + 3.85529i −0.0752476 + 0.130333i
\(876\) −24.9993 2.81459i −0.844648 0.0950961i
\(877\) 20.4161 + 35.3618i 0.689404 + 1.19408i 0.972031 + 0.234852i \(0.0754606\pi\)
−0.282628 + 0.959230i \(0.591206\pi\)
\(878\) −17.4635 30.2477i −0.589364 1.02081i
\(879\) 36.1024 + 4.06464i 1.21770 + 0.137097i
\(880\) 0 0
\(881\) 21.0458 0.709050 0.354525 0.935047i \(-0.384643\pi\)
0.354525 + 0.935047i \(0.384643\pi\)
\(882\) −10.2780 33.3003i −0.346078 1.12128i
\(883\) 12.7282 0.428338 0.214169 0.976797i \(-0.431296\pi\)
0.214169 + 0.976797i \(0.431296\pi\)
\(884\) 44.8700 77.7172i 1.50914 2.61391i
\(885\) −2.65188 6.07676i −0.0891419 0.204268i
\(886\) 16.8850 + 29.2458i 0.567264 + 0.982530i
\(887\) 5.36249 + 9.28811i 0.180055 + 0.311864i 0.941899 0.335896i \(-0.109039\pi\)
−0.761844 + 0.647760i \(0.775706\pi\)
\(888\) 2.89107 3.91796i 0.0970180 0.131478i
\(889\) −9.36520 + 16.2210i −0.314099 + 0.544035i
\(890\) 1.99164 0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) −11.5411 + 19.9897i −0.386207 + 0.668930i
\(894\) 9.88592 13.3973i 0.330635 0.448074i
\(895\) −1.77940 3.08201i −0.0594788 0.103020i
\(896\) −14.0487 24.3331i −0.469336 0.812913i
\(897\) −13.1437 30.1187i −0.438855 1.00563i
\(898\) −24.7127 + 42.8036i −0.824673 + 1.42838i
\(899\) 27.9425 0.931935
\(900\) 14.8436 + 48.0927i 0.494787 + 1.60309i
\(901\) 41.7304 1.39024
\(902\) 0 0
\(903\) −8.67461 0.976645i −0.288673 0.0325007i
\(904\) −12.3256 21.3486i −0.409944 0.710044i
\(905\) 2.84139 + 4.92143i 0.0944510 + 0.163594i
\(906\) −71.2543 8.02229i −2.36727 0.266523i
\(907\) 6.62279 11.4710i 0.219906 0.380889i −0.734873 0.678205i \(-0.762758\pi\)
0.954779 + 0.297316i \(0.0960916\pi\)
\(908\) 54.8260 1.81946
\(909\) 27.8735 + 6.35695i 0.924507 + 0.210847i
\(910\) −4.39568 −0.145715
\(911\) 28.5622 49.4712i 0.946309 1.63906i 0.193200 0.981159i \(-0.438113\pi\)
0.753109 0.657896i \(-0.228553\pi\)
\(912\) 1.88211 + 4.31283i 0.0623228 + 0.142812i
\(913\) 0 0
\(914\) 3.73747 + 6.47348i 0.123624 + 0.214124i
\(915\) −1.50634 + 2.04139i −0.0497982 + 0.0674862i
\(916\) 0.895314 1.55073i 0.0295820 0.0512375i
\(917\) 10.3556 0.341972
\(918\) 57.2647 49.3058i 1.89002 1.62733i
\(919\) −16.5780 −0.546856 −0.273428 0.961892i \(-0.588158\pi\)
−0.273428 + 0.961892i \(0.588158\pi\)
\(920\) 2.37684 4.11680i 0.0783620 0.135727i
\(921\) 23.7895 32.2394i 0.783892 1.06233i
\(922\) −30.6562 53.0980i −1.00961 1.74869i
\(923\) 6.15009 + 10.6523i 0.202433 + 0.350624i
\(924\) 0 0
\(925\) 2.07615 3.59600i 0.0682634 0.118236i
\(926\) −8.45018 −0.277690
\(927\) −19.4541 + 20.9736i −0.638955 + 0.688865i
\(928\) −13.4464 −0.441400
\(929\) 3.68190 6.37723i 0.120799 0.209230i −0.799284 0.600954i \(-0.794788\pi\)
0.920083 + 0.391723i \(0.128121\pi\)
\(930\) −12.1258 1.36520i −0.397621 0.0447668i
\(931\) −7.72586 13.3816i −0.253205 0.438564i
\(932\) −17.5536 30.4037i −0.574987 0.995908i
\(933\) 35.1375 + 3.95601i 1.15035 + 0.129514i
\(934\) −21.5376 + 37.3043i −0.704733 + 1.22063i
\(935\) 0 0
\(936\) −28.4027 + 30.6213i −0.928372 + 1.00089i
\(937\) −47.2573 −1.54383 −0.771914 0.635727i \(-0.780701\pi\)
−0.771914 + 0.635727i \(0.780701\pi\)
\(938\) 16.4650 28.5183i 0.537602 0.931154i
\(939\) 23.5814 + 54.0365i 0.769549 + 1.76342i
\(940\) −4.04424 7.00482i −0.131908 0.228472i
\(941\) −28.0644 48.6089i −0.914872 1.58460i −0.807089 0.590430i \(-0.798958\pi\)
−0.107783 0.994174i \(-0.534375\pi\)
\(942\) −4.83166 + 6.54784i −0.157424 + 0.213340i
\(943\) 8.74628 15.1490i 0.284818 0.493319i
\(944\) −10.5895 −0.344658
\(945\) −2.20573 0.771186i −0.0717525 0.0250867i
\(946\) 0 0
\(947\) 6.39323 11.0734i 0.207752 0.359837i −0.743254 0.669009i \(-0.766719\pi\)
0.951006 + 0.309172i \(0.100052\pi\)
\(948\) −11.9098 + 16.1400i −0.386811 + 0.524204i
\(949\) −8.90122 15.4174i −0.288946 0.500469i
\(950\) 17.6747 + 30.6135i 0.573444 + 0.993234i
\(951\) 18.9960 + 43.5292i 0.615987 + 1.41153i
\(952\) 14.6903 25.4444i 0.476116 0.824657i
\(953\) 23.2974 0.754677 0.377338 0.926075i \(-0.376839\pi\)
0.377338 + 0.926075i \(0.376839\pi\)
\(954\) −45.5255 10.3827i −1.47394 0.336153i
\(955\) −4.08573 −0.132211
\(956\) −16.5067 + 28.5904i −0.533864 + 0.924680i
\(957\) 0 0
\(958\) 0.182825 + 0.316662i 0.00590680 + 0.0102309i
\(959\) −6.95581 12.0478i −0.224615 0.389044i
\(960\) 6.79219 + 0.764710i 0.219217 + 0.0246809i
\(961\) −30.0226 + 52.0007i −0.968471 + 1.67744i
\(962\) 8.28418 0.267093
\(963\) 4.57648 + 14.8276i 0.147475 + 0.477813i
\(964\) 0.954445 0.0307406
\(965\) 3.66967 6.35605i 0.118131 0.204609i
\(966\) −10.3460 23.7077i −0.332876 0.762783i
\(967\) −27.7586 48.0794i −0.892657 1.54613i −0.836677 0.547696i \(-0.815505\pi\)
−0.0559798 0.998432i \(-0.517828\pi\)
\(968\) 0 0
\(969\) 19.8932 26.9591i 0.639062 0.866052i
\(970\) 1.94089 3.36172i 0.0623182 0.107938i
\(971\) −4.52027 −0.145063 −0.0725313 0.997366i \(-0.523108\pi\)
−0.0725313 + 0.997366i \(0.523108\pi\)
\(972\) −47.1824 + 24.9623i −1.51338 + 0.800667i
\(973\) 13.4429 0.430960
\(974\) 20.8754 36.1573i 0.668892 1.15855i
\(975\) −21.1475 + 28.6590i −0.677263 + 0.917823i
\(976\) 2.02599 + 3.50912i 0.0648503 + 0.112324i
\(977\) 13.5196 + 23.4167i 0.432532 + 0.749167i 0.997091 0.0762261i \(-0.0242871\pi\)
−0.564559 + 0.825393i \(0.690954\pi\)
\(978\) −2.54994 5.84317i −0.0815382 0.186844i
\(979\) 0 0
\(980\) 5.41462 0.172964
\(981\) 12.8083 + 41.4983i 0.408937 + 1.32494i
\(982\) −15.4831 −0.494087
\(983\) −5.31880 + 9.21243i −0.169643 + 0.293831i −0.938294 0.345837i \(-0.887595\pi\)
0.768651 + 0.639668i \(0.220928\pi\)
\(984\) −22.0927 2.48734i −0.704290 0.0792936i
\(985\) −0.170820 0.295869i −0.00544277 0.00942716i
\(986\) −21.2939 36.8821i −0.678136 1.17457i
\(987\) −18.1914 2.04811i −0.579040 0.0651921i
\(988\) −22.2607 + 38.5567i −0.708208 + 1.22665i
\(989\) 16.0614 0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) 21.9062 37.9427i 0.695523 1.20468i
\(993\) 12.4507 + 28.5308i 0.395112 + 0.905396i
\(994\) 4.84101 + 8.38487i 0.153547 + 0.265952i
\(995\) 2.60443 + 4.51101i 0.0825660 + 0.143009i
\(996\) −47.4965 + 64.3669i −1.50498 + 2.03954i
\(997\) −13.0637 + 22.6270i −0.413732 + 0.716605i −0.995294 0.0968969i \(-0.969108\pi\)
0.581562 + 0.813502i \(0.302442\pi\)
\(998\) −79.0634 −2.50271
\(999\) 4.15696 + 1.45339i 0.131520 + 0.0459832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.o.727.18 36
9.2 odd 6 9801.2.a.cn.1.18 18
9.4 even 3 inner 1089.2.e.o.364.18 36
9.7 even 3 9801.2.a.co.1.1 18
11.7 odd 10 99.2.m.b.16.1 72
11.8 odd 10 99.2.m.b.97.9 yes 72
11.10 odd 2 1089.2.e.p.727.1 36
33.8 even 10 297.2.n.b.262.1 72
33.29 even 10 297.2.n.b.181.9 72
99.7 odd 30 891.2.f.f.82.9 36
99.29 even 30 891.2.f.e.82.1 36
99.40 odd 30 99.2.m.b.49.9 yes 72
99.41 even 30 297.2.n.b.64.9 72
99.43 odd 6 9801.2.a.cm.1.18 18
99.52 odd 30 891.2.f.f.163.9 36
99.65 even 6 9801.2.a.cp.1.1 18
99.74 even 30 891.2.f.e.163.1 36
99.76 odd 6 1089.2.e.p.364.1 36
99.85 odd 30 99.2.m.b.31.1 yes 72
99.95 even 30 297.2.n.b.280.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 11.7 odd 10
99.2.m.b.31.1 yes 72 99.85 odd 30
99.2.m.b.49.9 yes 72 99.40 odd 30
99.2.m.b.97.9 yes 72 11.8 odd 10
297.2.n.b.64.9 72 99.41 even 30
297.2.n.b.181.9 72 33.29 even 10
297.2.n.b.262.1 72 33.8 even 10
297.2.n.b.280.1 72 99.95 even 30
891.2.f.e.82.1 36 99.29 even 30
891.2.f.e.163.1 36 99.74 even 30
891.2.f.f.82.9 36 99.7 odd 30
891.2.f.f.163.9 36 99.52 odd 30
1089.2.e.o.364.18 36 9.4 even 3 inner
1089.2.e.o.727.18 36 1.1 even 1 trivial
1089.2.e.p.364.1 36 99.76 odd 6
1089.2.e.p.727.1 36 11.10 odd 2
9801.2.a.cm.1.18 18 99.43 odd 6
9801.2.a.cn.1.18 18 9.2 odd 6
9801.2.a.co.1.1 18 9.7 even 3
9801.2.a.cp.1.1 18 99.65 even 6