Properties

Label 1089.2.e.o.727.15
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.15
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.o.364.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.773068 - 1.33899i) q^{2} +(1.56806 - 0.735660i) q^{3} +(-0.195269 - 0.338216i) q^{4} +(-0.296016 - 0.512715i) q^{5} +(0.227172 - 2.66833i) q^{6} +(0.360975 - 0.625227i) q^{7} +2.48845 q^{8} +(1.91761 - 2.30711i) q^{9} -0.915362 q^{10} +(-0.555005 - 0.386690i) q^{12} +(-0.787482 - 1.36396i) q^{13} +(-0.558117 - 0.966687i) q^{14} +(-0.841354 - 0.586199i) q^{15} +(2.31428 - 4.00845i) q^{16} -4.59200 q^{17} +(-1.60677 - 4.35122i) q^{18} -2.50860 q^{19} +(-0.115606 + 0.200235i) q^{20} +(0.106075 - 1.24595i) q^{21} +(2.22600 + 3.85554i) q^{23} +(3.90203 - 1.83065i) q^{24} +(2.32475 - 4.02658i) q^{25} -2.43511 q^{26} +(1.30967 - 5.02840i) q^{27} -0.281949 q^{28} +(3.48931 - 6.04366i) q^{29} +(-1.43534 + 0.673395i) q^{30} +(4.56412 + 7.90529i) q^{31} +(-1.08974 - 1.88749i) q^{32} +(-3.54993 + 6.14866i) q^{34} -0.427418 q^{35} +(-1.15475 - 0.198058i) q^{36} +2.89170 q^{37} +(-1.93932 + 3.35900i) q^{38} +(-2.23823 - 1.55945i) q^{39} +(-0.736620 - 1.27586i) q^{40} +(-0.577060 - 0.999497i) q^{41} +(-1.58631 - 1.10524i) q^{42} +(-2.10724 + 3.64985i) q^{43} +(-1.75053 - 0.300244i) q^{45} +6.88340 q^{46} +(0.113778 - 0.197069i) q^{47} +(0.680067 - 7.98800i) q^{48} +(3.23939 + 5.61079i) q^{49} +(-3.59438 - 6.22565i) q^{50} +(-7.20052 + 3.37815i) q^{51} +(-0.307542 + 0.532678i) q^{52} -5.70359 q^{53} +(-5.72053 - 5.64093i) q^{54} +(0.898268 - 1.55585i) q^{56} +(-3.93363 + 1.84548i) q^{57} +(-5.39495 - 9.34433i) q^{58} +(-3.56678 - 6.17784i) q^{59} +(-0.0339715 + 0.399026i) q^{60} +(2.27948 - 3.94817i) q^{61} +14.1135 q^{62} +(-0.750262 - 2.03175i) q^{63} +5.88733 q^{64} +(-0.466215 + 0.807507i) q^{65} +(4.04571 + 7.00738i) q^{67} +(0.896676 + 1.55309i) q^{68} +(6.32686 + 4.40814i) q^{69} +(-0.330423 + 0.572310i) q^{70} -12.3094 q^{71} +(4.77187 - 5.74113i) q^{72} -15.4833 q^{73} +(2.23548 - 3.87196i) q^{74} +(0.683144 - 8.02414i) q^{75} +(0.489852 + 0.848448i) q^{76} +(-3.81839 + 1.79141i) q^{78} +(-7.30978 + 12.6609i) q^{79} -2.74025 q^{80} +(-1.64555 - 8.84829i) q^{81} -1.78443 q^{82} +(-3.47650 + 6.02148i) q^{83} +(-0.442113 + 0.207419i) q^{84} +(1.35931 + 2.35439i) q^{85} +(3.25808 + 5.64316i) q^{86} +(1.02536 - 12.0438i) q^{87} +12.4803 q^{89} +(-1.75531 + 2.11185i) q^{90} -1.13705 q^{91} +(0.869338 - 1.50574i) q^{92} +(12.9724 + 9.03831i) q^{93} +(-0.175916 - 0.304695i) q^{94} +(0.742586 + 1.28620i) q^{95} +(-3.09733 - 2.15801i) q^{96} +(-7.09023 + 12.2806i) q^{97} +10.0171 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} + 9 q^{3} - 12 q^{4} + q^{5} + q^{6} + q^{7} + 12 q^{8} - q^{9} + 4 q^{10} - 8 q^{12} + 3 q^{13} - 5 q^{15} + 8 q^{16} + 40 q^{17} - 17 q^{18} + 6 q^{19} + 5 q^{20} + 8 q^{21} + 10 q^{23}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.773068 1.33899i 0.546642 0.946811i −0.451860 0.892089i \(-0.649239\pi\)
0.998502 0.0547224i \(-0.0174274\pi\)
\(3\) 1.56806 0.735660i 0.905318 0.424733i
\(4\) −0.195269 0.338216i −0.0976345 0.169108i
\(5\) −0.296016 0.512715i −0.132382 0.229293i 0.792212 0.610246i \(-0.208929\pi\)
−0.924594 + 0.380953i \(0.875596\pi\)
\(6\) 0.227172 2.66833i 0.0927424 1.08934i
\(7\) 0.360975 0.625227i 0.136436 0.236314i −0.789709 0.613481i \(-0.789769\pi\)
0.926145 + 0.377168i \(0.123102\pi\)
\(8\) 2.48845 0.879799
\(9\) 1.91761 2.30711i 0.639203 0.769038i
\(10\) −0.915362 −0.289463
\(11\) 0 0
\(12\) −0.555005 0.386690i −0.160216 0.111628i
\(13\) −0.787482 1.36396i −0.218408 0.378294i 0.735913 0.677076i \(-0.236753\pi\)
−0.954322 + 0.298782i \(0.903420\pi\)
\(14\) −0.558117 0.966687i −0.149163 0.258358i
\(15\) −0.841354 0.586199i −0.217237 0.151356i
\(16\) 2.31428 4.00845i 0.578570 1.00211i
\(17\) −4.59200 −1.11372 −0.556862 0.830605i \(-0.687995\pi\)
−0.556862 + 0.830605i \(0.687995\pi\)
\(18\) −1.60677 4.35122i −0.378719 1.02559i
\(19\) −2.50860 −0.575512 −0.287756 0.957704i \(-0.592909\pi\)
−0.287756 + 0.957704i \(0.592909\pi\)
\(20\) −0.115606 + 0.200235i −0.0258502 + 0.0447738i
\(21\) 0.106075 1.24595i 0.0231475 0.271888i
\(22\) 0 0
\(23\) 2.22600 + 3.85554i 0.464153 + 0.803937i 0.999163 0.0409092i \(-0.0130255\pi\)
−0.535010 + 0.844846i \(0.679692\pi\)
\(24\) 3.90203 1.83065i 0.796498 0.373680i
\(25\) 2.32475 4.02658i 0.464950 0.805317i
\(26\) −2.43511 −0.477564
\(27\) 1.30967 5.02840i 0.252046 0.967715i
\(28\) −0.281949 −0.0532834
\(29\) 3.48931 6.04366i 0.647949 1.12228i −0.335663 0.941982i \(-0.608960\pi\)
0.983612 0.180298i \(-0.0577062\pi\)
\(30\) −1.43534 + 0.673395i −0.262056 + 0.122945i
\(31\) 4.56412 + 7.90529i 0.819740 + 1.41983i 0.905874 + 0.423548i \(0.139216\pi\)
−0.0861334 + 0.996284i \(0.527451\pi\)
\(32\) −1.08974 1.88749i −0.192641 0.333664i
\(33\) 0 0
\(34\) −3.54993 + 6.14866i −0.608808 + 1.05449i
\(35\) −0.427418 −0.0722468
\(36\) −1.15475 0.198058i −0.192459 0.0330096i
\(37\) 2.89170 0.475392 0.237696 0.971340i \(-0.423608\pi\)
0.237696 + 0.971340i \(0.423608\pi\)
\(38\) −1.93932 + 3.35900i −0.314599 + 0.544902i
\(39\) −2.23823 1.55945i −0.358403 0.249711i
\(40\) −0.736620 1.27586i −0.116470 0.201732i
\(41\) −0.577060 0.999497i −0.0901216 0.156095i 0.817441 0.576013i \(-0.195392\pi\)
−0.907562 + 0.419918i \(0.862059\pi\)
\(42\) −1.58631 1.10524i −0.244773 0.170542i
\(43\) −2.10724 + 3.64985i −0.321351 + 0.556596i −0.980767 0.195182i \(-0.937470\pi\)
0.659416 + 0.751778i \(0.270804\pi\)
\(44\) 0 0
\(45\) −1.75053 0.300244i −0.260954 0.0447577i
\(46\) 6.88340 1.01490
\(47\) 0.113778 0.197069i 0.0165962 0.0287454i −0.857608 0.514304i \(-0.828050\pi\)
0.874204 + 0.485558i \(0.161384\pi\)
\(48\) 0.680067 7.98800i 0.0981592 1.15297i
\(49\) 3.23939 + 5.61079i 0.462771 + 0.801542i
\(50\) −3.59438 6.22565i −0.508322 0.880440i
\(51\) −7.20052 + 3.37815i −1.00828 + 0.473036i
\(52\) −0.307542 + 0.532678i −0.0426484 + 0.0738691i
\(53\) −5.70359 −0.783449 −0.391724 0.920083i \(-0.628121\pi\)
−0.391724 + 0.920083i \(0.628121\pi\)
\(54\) −5.72053 5.64093i −0.778465 0.767634i
\(55\) 0 0
\(56\) 0.898268 1.55585i 0.120036 0.207909i
\(57\) −3.93363 + 1.84548i −0.521022 + 0.244439i
\(58\) −5.39495 9.34433i −0.708392 1.22697i
\(59\) −3.56678 6.17784i −0.464355 0.804286i 0.534817 0.844968i \(-0.320380\pi\)
−0.999172 + 0.0406816i \(0.987047\pi\)
\(60\) −0.0339715 + 0.399026i −0.00438570 + 0.0515140i
\(61\) 2.27948 3.94817i 0.291857 0.505512i −0.682392 0.730987i \(-0.739060\pi\)
0.974249 + 0.225475i \(0.0723934\pi\)
\(62\) 14.1135 1.79242
\(63\) −0.750262 2.03175i −0.0945241 0.255977i
\(64\) 5.88733 0.735917
\(65\) −0.466215 + 0.807507i −0.0578268 + 0.100159i
\(66\) 0 0
\(67\) 4.04571 + 7.00738i 0.494262 + 0.856087i 0.999978 0.00661279i \(-0.00210493\pi\)
−0.505716 + 0.862700i \(0.668772\pi\)
\(68\) 0.896676 + 1.55309i 0.108738 + 0.188340i
\(69\) 6.32686 + 4.40814i 0.761665 + 0.530677i
\(70\) −0.330423 + 0.572310i −0.0394931 + 0.0684041i
\(71\) −12.3094 −1.46086 −0.730429 0.682989i \(-0.760680\pi\)
−0.730429 + 0.682989i \(0.760680\pi\)
\(72\) 4.77187 5.74113i 0.562370 0.676599i
\(73\) −15.4833 −1.81219 −0.906093 0.423078i \(-0.860950\pi\)
−0.906093 + 0.423078i \(0.860950\pi\)
\(74\) 2.23548 3.87196i 0.259869 0.450107i
\(75\) 0.683144 8.02414i 0.0788827 0.926548i
\(76\) 0.489852 + 0.848448i 0.0561899 + 0.0973237i
\(77\) 0 0
\(78\) −3.81839 + 1.79141i −0.432348 + 0.202838i
\(79\) −7.30978 + 12.6609i −0.822414 + 1.42446i 0.0814654 + 0.996676i \(0.474040\pi\)
−0.903880 + 0.427787i \(0.859293\pi\)
\(80\) −2.74025 −0.306370
\(81\) −1.64555 8.84829i −0.182839 0.983143i
\(82\) −1.78443 −0.197057
\(83\) −3.47650 + 6.02148i −0.381596 + 0.660943i −0.991291 0.131693i \(-0.957959\pi\)
0.609695 + 0.792636i \(0.291292\pi\)
\(84\) −0.442113 + 0.207419i −0.0482384 + 0.0226312i
\(85\) 1.35931 + 2.35439i 0.147437 + 0.255369i
\(86\) 3.25808 + 5.64316i 0.351328 + 0.608518i
\(87\) 1.02536 12.0438i 0.109930 1.29123i
\(88\) 0 0
\(89\) 12.4803 1.32291 0.661453 0.749986i \(-0.269940\pi\)
0.661453 + 0.749986i \(0.269940\pi\)
\(90\) −1.75531 + 2.11185i −0.185026 + 0.222608i
\(91\) −1.13705 −0.119195
\(92\) 0.869338 1.50574i 0.0906347 0.156984i
\(93\) 12.9724 + 9.03831i 1.34518 + 0.937229i
\(94\) −0.175916 0.304695i −0.0181443 0.0314269i
\(95\) 0.742586 + 1.28620i 0.0761877 + 0.131961i
\(96\) −3.09733 2.15801i −0.316120 0.220251i
\(97\) −7.09023 + 12.2806i −0.719904 + 1.24691i 0.241133 + 0.970492i \(0.422481\pi\)
−0.961037 + 0.276419i \(0.910852\pi\)
\(98\) 10.0171 1.01188
\(99\) 0 0
\(100\) −1.81581 −0.181581
\(101\) −7.18427 + 12.4435i −0.714861 + 1.23818i 0.248151 + 0.968721i \(0.420177\pi\)
−0.963013 + 0.269455i \(0.913156\pi\)
\(102\) −1.04317 + 12.2530i −0.103289 + 1.21323i
\(103\) 2.21443 + 3.83550i 0.218194 + 0.377923i 0.954256 0.298991i \(-0.0966501\pi\)
−0.736062 + 0.676914i \(0.763317\pi\)
\(104\) −1.95961 3.39414i −0.192155 0.332823i
\(105\) −0.670216 + 0.314434i −0.0654064 + 0.0306856i
\(106\) −4.40927 + 7.63708i −0.428266 + 0.741778i
\(107\) 15.7444 1.52207 0.761035 0.648711i \(-0.224692\pi\)
0.761035 + 0.648711i \(0.224692\pi\)
\(108\) −1.95642 + 0.538939i −0.188257 + 0.0518594i
\(109\) 13.6970 1.31194 0.655969 0.754788i \(-0.272260\pi\)
0.655969 + 0.754788i \(0.272260\pi\)
\(110\) 0 0
\(111\) 4.53435 2.12731i 0.430381 0.201915i
\(112\) −1.67079 2.89390i −0.157875 0.273448i
\(113\) −4.01507 6.95430i −0.377706 0.654205i 0.613022 0.790066i \(-0.289954\pi\)
−0.990728 + 0.135860i \(0.956620\pi\)
\(114\) −0.569883 + 6.69378i −0.0533744 + 0.626930i
\(115\) 1.31786 2.28261i 0.122891 0.212854i
\(116\) −2.72542 −0.253049
\(117\) −4.65689 0.798729i −0.430530 0.0738425i
\(118\) −11.0294 −1.01534
\(119\) −1.65760 + 2.87105i −0.151952 + 0.263188i
\(120\) −2.09367 1.45873i −0.191125 0.133163i
\(121\) 0 0
\(122\) −3.52438 6.10441i −0.319083 0.552668i
\(123\) −1.64015 1.14275i −0.147888 0.103038i
\(124\) 1.78246 3.08732i 0.160070 0.277249i
\(125\) −5.71281 −0.510969
\(126\) −3.30051 0.566088i −0.294033 0.0504311i
\(127\) 11.9963 1.06450 0.532250 0.846587i \(-0.321347\pi\)
0.532250 + 0.846587i \(0.321347\pi\)
\(128\) 6.73079 11.6581i 0.594924 1.03044i
\(129\) −0.619227 + 7.27338i −0.0545199 + 0.640386i
\(130\) 0.720832 + 1.24852i 0.0632211 + 0.109502i
\(131\) −3.44555 5.96786i −0.301039 0.521414i 0.675333 0.737513i \(-0.264000\pi\)
−0.976372 + 0.216099i \(0.930667\pi\)
\(132\) 0 0
\(133\) −0.905543 + 1.56845i −0.0785205 + 0.136002i
\(134\) 12.5104 1.08074
\(135\) −2.96582 + 0.816999i −0.255257 + 0.0703161i
\(136\) −11.4270 −0.979854
\(137\) −4.62327 + 8.00775i −0.394993 + 0.684148i −0.993100 0.117268i \(-0.962586\pi\)
0.598107 + 0.801416i \(0.295920\pi\)
\(138\) 10.7936 5.06384i 0.918809 0.431063i
\(139\) 10.8056 + 18.7159i 0.916523 + 1.58746i 0.804656 + 0.593741i \(0.202350\pi\)
0.111867 + 0.993723i \(0.464317\pi\)
\(140\) 0.0834615 + 0.144559i 0.00705378 + 0.0122175i
\(141\) 0.0334344 0.392717i 0.00281568 0.0330727i
\(142\) −9.51601 + 16.4822i −0.798566 + 1.38316i
\(143\) 0 0
\(144\) −4.81007 13.0259i −0.400839 1.08549i
\(145\) −4.13157 −0.343108
\(146\) −11.9697 + 20.7321i −0.990617 + 1.71580i
\(147\) 9.20719 + 6.41496i 0.759396 + 0.529097i
\(148\) −0.564659 0.978018i −0.0464147 0.0803926i
\(149\) −0.573216 0.992840i −0.0469597 0.0813366i 0.841590 0.540117i \(-0.181620\pi\)
−0.888550 + 0.458780i \(0.848287\pi\)
\(150\) −10.2162 7.11793i −0.834145 0.581177i
\(151\) 0.440320 0.762657i 0.0358327 0.0620641i −0.847553 0.530711i \(-0.821925\pi\)
0.883386 + 0.468647i \(0.155258\pi\)
\(152\) −6.24252 −0.506335
\(153\) −8.80566 + 10.5943i −0.711896 + 0.856496i
\(154\) 0 0
\(155\) 2.70211 4.68018i 0.217038 0.375921i
\(156\) −0.0903733 + 1.06152i −0.00723566 + 0.0849893i
\(157\) 4.89311 + 8.47511i 0.390512 + 0.676387i 0.992517 0.122105i \(-0.0389645\pi\)
−0.602005 + 0.798493i \(0.705631\pi\)
\(158\) 11.3019 + 19.5755i 0.899132 + 1.55734i
\(159\) −8.94356 + 4.19591i −0.709271 + 0.332757i
\(160\) −0.645162 + 1.11745i −0.0510045 + 0.0883425i
\(161\) 3.21412 0.253308
\(162\) −13.1199 4.63694i −1.03080 0.364313i
\(163\) 4.62976 0.362631 0.181315 0.983425i \(-0.441965\pi\)
0.181315 + 0.983425i \(0.441965\pi\)
\(164\) −0.225364 + 0.390342i −0.0175980 + 0.0304806i
\(165\) 0 0
\(166\) 5.37515 + 9.31002i 0.417192 + 0.722598i
\(167\) −8.49369 14.7115i −0.657262 1.13841i −0.981322 0.192374i \(-0.938381\pi\)
0.324060 0.946036i \(-0.394952\pi\)
\(168\) 0.263962 3.10048i 0.0203651 0.239207i
\(169\) 5.25974 9.11014i 0.404596 0.700780i
\(170\) 4.20335 0.322382
\(171\) −4.81051 + 5.78763i −0.367869 + 0.442591i
\(172\) 1.64592 0.125500
\(173\) −0.295528 + 0.511869i −0.0224686 + 0.0389167i −0.877041 0.480415i \(-0.840486\pi\)
0.854572 + 0.519332i \(0.173819\pi\)
\(174\) −15.3338 10.6836i −1.16246 0.809921i
\(175\) −1.67835 2.90699i −0.126872 0.219748i
\(176\) 0 0
\(177\) −10.1377 7.06327i −0.761996 0.530908i
\(178\) 9.64811 16.7110i 0.723156 1.25254i
\(179\) −9.64093 −0.720597 −0.360298 0.932837i \(-0.617325\pi\)
−0.360298 + 0.932837i \(0.617325\pi\)
\(180\) 0.240278 + 0.650687i 0.0179093 + 0.0484993i
\(181\) −4.76187 −0.353947 −0.176973 0.984216i \(-0.556631\pi\)
−0.176973 + 0.984216i \(0.556631\pi\)
\(182\) −0.879014 + 1.52250i −0.0651569 + 0.112855i
\(183\) 0.669841 7.86788i 0.0495161 0.581611i
\(184\) 5.53928 + 9.59432i 0.408361 + 0.707303i
\(185\) −0.855988 1.48262i −0.0629335 0.109004i
\(186\) 22.1308 10.3827i 1.62271 0.761300i
\(187\) 0 0
\(188\) −0.0888691 −0.00648144
\(189\) −2.67113 2.63397i −0.194296 0.191593i
\(190\) 2.29628 0.166590
\(191\) 2.59901 4.50162i 0.188058 0.325726i −0.756545 0.653942i \(-0.773114\pi\)
0.944603 + 0.328216i \(0.106447\pi\)
\(192\) 9.23168 4.33108i 0.666239 0.312568i
\(193\) 1.63402 + 2.83021i 0.117620 + 0.203723i 0.918824 0.394668i \(-0.129140\pi\)
−0.801204 + 0.598391i \(0.795807\pi\)
\(194\) 10.9625 + 18.9876i 0.787060 + 1.36323i
\(195\) −0.137000 + 1.60919i −0.00981081 + 0.115237i
\(196\) 1.26511 2.19123i 0.0903648 0.156516i
\(197\) 22.4626 1.60039 0.800197 0.599737i \(-0.204728\pi\)
0.800197 + 0.599737i \(0.204728\pi\)
\(198\) 0 0
\(199\) −20.8291 −1.47654 −0.738269 0.674507i \(-0.764356\pi\)
−0.738269 + 0.674507i \(0.764356\pi\)
\(200\) 5.78502 10.0199i 0.409062 0.708517i
\(201\) 11.4990 + 8.01170i 0.811074 + 0.565102i
\(202\) 11.1079 + 19.2394i 0.781546 + 1.35368i
\(203\) −2.51911 4.36323i −0.176807 0.306238i
\(204\) 2.54858 + 1.77568i 0.178437 + 0.124323i
\(205\) −0.341638 + 0.591734i −0.0238610 + 0.0413285i
\(206\) 6.84761 0.477096
\(207\) 13.1638 + 2.25779i 0.914946 + 0.156927i
\(208\) −7.28981 −0.505457
\(209\) 0 0
\(210\) −0.0970972 + 1.14049i −0.00670034 + 0.0787015i
\(211\) 1.69601 + 2.93758i 0.116758 + 0.202231i 0.918481 0.395465i \(-0.129416\pi\)
−0.801723 + 0.597696i \(0.796083\pi\)
\(212\) 1.11374 + 1.92905i 0.0764917 + 0.132487i
\(213\) −19.3019 + 9.05553i −1.32254 + 0.620475i
\(214\) 12.1715 21.0817i 0.832027 1.44111i
\(215\) 2.49511 0.170165
\(216\) 3.25904 12.5129i 0.221750 0.851395i
\(217\) 6.59014 0.447368
\(218\) 10.5887 18.3402i 0.717160 1.24216i
\(219\) −24.2787 + 11.3905i −1.64061 + 0.769696i
\(220\) 0 0
\(221\) 3.61612 + 6.26330i 0.243247 + 0.421315i
\(222\) 0.656911 7.71601i 0.0440890 0.517865i
\(223\) 5.51320 9.54913i 0.369191 0.639457i −0.620248 0.784405i \(-0.712968\pi\)
0.989439 + 0.144948i \(0.0463015\pi\)
\(224\) −1.57348 −0.105133
\(225\) −4.83183 13.0849i −0.322122 0.872325i
\(226\) −12.4157 −0.825879
\(227\) −2.98344 + 5.16748i −0.198018 + 0.342978i −0.947886 0.318610i \(-0.896784\pi\)
0.749868 + 0.661588i \(0.230117\pi\)
\(228\) 1.39229 + 0.970052i 0.0922064 + 0.0642432i
\(229\) −12.3753 21.4347i −0.817785 1.41645i −0.907311 0.420461i \(-0.861868\pi\)
0.0895253 0.995985i \(-0.471465\pi\)
\(230\) −2.03760 3.52922i −0.134355 0.232710i
\(231\) 0 0
\(232\) 8.68297 15.0393i 0.570065 0.987381i
\(233\) −4.18842 −0.274392 −0.137196 0.990544i \(-0.543809\pi\)
−0.137196 + 0.990544i \(0.543809\pi\)
\(234\) −4.66959 + 5.61808i −0.305261 + 0.367265i
\(235\) −0.134720 −0.00878817
\(236\) −1.39296 + 2.41268i −0.0906741 + 0.157052i
\(237\) −2.14803 + 25.2305i −0.139530 + 1.63890i
\(238\) 2.56287 + 4.43903i 0.166126 + 0.287740i
\(239\) −3.68642 6.38507i −0.238455 0.413016i 0.721816 0.692085i \(-0.243308\pi\)
−0.960271 + 0.279069i \(0.909974\pi\)
\(240\) −4.29687 + 2.01589i −0.277362 + 0.130125i
\(241\) −4.41462 + 7.64634i −0.284371 + 0.492544i −0.972456 0.233085i \(-0.925118\pi\)
0.688086 + 0.725629i \(0.258451\pi\)
\(242\) 0 0
\(243\) −9.08965 12.6641i −0.583101 0.812399i
\(244\) −1.78045 −0.113981
\(245\) 1.91782 3.32177i 0.122525 0.212220i
\(246\) −2.79808 + 1.31273i −0.178399 + 0.0836967i
\(247\) 1.97548 + 3.42163i 0.125697 + 0.217713i
\(248\) 11.3576 + 19.6719i 0.721207 + 1.24917i
\(249\) −1.02159 + 11.9995i −0.0647409 + 0.760440i
\(250\) −4.41639 + 7.64942i −0.279317 + 0.483792i
\(251\) 20.5731 1.29856 0.649280 0.760550i \(-0.275070\pi\)
0.649280 + 0.760550i \(0.275070\pi\)
\(252\) −0.540668 + 0.650489i −0.0340589 + 0.0409770i
\(253\) 0 0
\(254\) 9.27397 16.0630i 0.581901 1.00788i
\(255\) 3.86350 + 2.69183i 0.241942 + 0.168569i
\(256\) −4.51939 7.82782i −0.282462 0.489239i
\(257\) 1.69119 + 2.92923i 0.105494 + 0.182721i 0.913940 0.405850i \(-0.133024\pi\)
−0.808446 + 0.588570i \(0.799691\pi\)
\(258\) 9.26031 + 6.45196i 0.576522 + 0.401682i
\(259\) 1.04383 1.80797i 0.0648605 0.112342i
\(260\) 0.364149 0.0225836
\(261\) −7.25229 19.6396i −0.448905 1.21566i
\(262\) −10.6546 −0.658241
\(263\) −7.14112 + 12.3688i −0.440341 + 0.762692i −0.997715 0.0675692i \(-0.978476\pi\)
0.557374 + 0.830262i \(0.311809\pi\)
\(264\) 0 0
\(265\) 1.68836 + 2.92432i 0.103715 + 0.179639i
\(266\) 1.40009 + 2.42503i 0.0858452 + 0.148688i
\(267\) 19.5698 9.18124i 1.19765 0.561883i
\(268\) 1.58000 2.73665i 0.0965141 0.167167i
\(269\) 6.72041 0.409751 0.204875 0.978788i \(-0.434321\pi\)
0.204875 + 0.978788i \(0.434321\pi\)
\(270\) −1.19882 + 4.60280i −0.0729580 + 0.280118i
\(271\) 3.98035 0.241789 0.120895 0.992665i \(-0.461424\pi\)
0.120895 + 0.992665i \(0.461424\pi\)
\(272\) −10.6272 + 18.4068i −0.644367 + 1.11608i
\(273\) −1.78295 + 0.836480i −0.107909 + 0.0506260i
\(274\) 7.14821 + 12.3811i 0.431839 + 0.747968i
\(275\) 0 0
\(276\) 0.255461 3.00062i 0.0153769 0.180616i
\(277\) −6.56600 + 11.3726i −0.394513 + 0.683316i −0.993039 0.117787i \(-0.962420\pi\)
0.598526 + 0.801103i \(0.295753\pi\)
\(278\) 33.4140 2.00404
\(279\) 26.9906 + 4.62930i 1.61589 + 0.277149i
\(280\) −1.06361 −0.0635627
\(281\) −1.48393 + 2.57025i −0.0885241 + 0.153328i −0.906887 0.421373i \(-0.861548\pi\)
0.818363 + 0.574701i \(0.194882\pi\)
\(282\) −0.499998 0.348365i −0.0297745 0.0207449i
\(283\) 4.04639 + 7.00855i 0.240533 + 0.416615i 0.960866 0.277013i \(-0.0893445\pi\)
−0.720333 + 0.693628i \(0.756011\pi\)
\(284\) 2.40365 + 4.16324i 0.142630 + 0.247043i
\(285\) 2.11062 + 1.47054i 0.125022 + 0.0871072i
\(286\) 0 0
\(287\) −0.833217 −0.0491833
\(288\) −6.44435 1.10531i −0.379737 0.0651307i
\(289\) 4.08649 0.240382
\(290\) −3.19398 + 5.53214i −0.187557 + 0.324859i
\(291\) −2.08352 + 24.4728i −0.122138 + 1.43462i
\(292\) 3.02341 + 5.23671i 0.176932 + 0.306455i
\(293\) −7.85779 13.6101i −0.459057 0.795110i 0.539854 0.841758i \(-0.318479\pi\)
−0.998911 + 0.0466485i \(0.985146\pi\)
\(294\) 15.7074 7.36917i 0.916073 0.429779i
\(295\) −2.11165 + 3.65748i −0.122945 + 0.212947i
\(296\) 7.19584 0.418249
\(297\) 0 0
\(298\) −1.77254 −0.102681
\(299\) 3.50587 6.07235i 0.202750 0.351173i
\(300\) −2.84729 + 1.33582i −0.164388 + 0.0771234i
\(301\) 1.52132 + 2.63501i 0.0876876 + 0.151879i
\(302\) −0.680795 1.17917i −0.0391754 0.0678537i
\(303\) −2.11115 + 24.7973i −0.121282 + 1.42457i
\(304\) −5.80560 + 10.0556i −0.332974 + 0.576728i
\(305\) −2.69905 −0.154547
\(306\) 7.37829 + 19.9808i 0.421788 + 1.14223i
\(307\) 3.51315 0.200506 0.100253 0.994962i \(-0.468035\pi\)
0.100253 + 0.994962i \(0.468035\pi\)
\(308\) 0 0
\(309\) 6.29397 + 4.38522i 0.358051 + 0.249466i
\(310\) −4.17782 7.23620i −0.237284 0.410989i
\(311\) −13.1672 22.8063i −0.746644 1.29323i −0.949423 0.314001i \(-0.898331\pi\)
0.202779 0.979225i \(-0.435003\pi\)
\(312\) −5.56971 3.88060i −0.315323 0.219696i
\(313\) 1.23057 2.13141i 0.0695560 0.120474i −0.829150 0.559026i \(-0.811175\pi\)
0.898706 + 0.438552i \(0.144508\pi\)
\(314\) 15.1308 0.853882
\(315\) −0.819620 + 0.986102i −0.0461804 + 0.0555605i
\(316\) 5.70949 0.321184
\(317\) 13.2536 22.9559i 0.744395 1.28933i −0.206082 0.978535i \(-0.566071\pi\)
0.950477 0.310795i \(-0.100595\pi\)
\(318\) −1.29569 + 15.2191i −0.0726589 + 0.853444i
\(319\) 0 0
\(320\) −1.74274 3.01852i −0.0974224 0.168741i
\(321\) 24.6881 11.5825i 1.37796 0.646474i
\(322\) 2.48474 4.30369i 0.138469 0.239835i
\(323\) 11.5195 0.640962
\(324\) −2.67131 + 2.28435i −0.148406 + 0.126908i
\(325\) −7.32279 −0.406196
\(326\) 3.57912 6.19922i 0.198229 0.343343i
\(327\) 21.4777 10.0764i 1.18772 0.557224i
\(328\) −1.43598 2.48720i −0.0792889 0.137332i
\(329\) −0.0821419 0.142274i −0.00452863 0.00784382i
\(330\) 0 0
\(331\) −4.05198 + 7.01824i −0.222717 + 0.385757i −0.955632 0.294563i \(-0.904826\pi\)
0.732915 + 0.680320i \(0.238159\pi\)
\(332\) 2.71541 0.149028
\(333\) 5.54514 6.67147i 0.303872 0.365595i
\(334\) −26.2648 −1.43715
\(335\) 2.39519 4.14859i 0.130863 0.226662i
\(336\) −4.74883 3.30867i −0.259070 0.180503i
\(337\) 12.3603 + 21.4087i 0.673309 + 1.16621i 0.976960 + 0.213423i \(0.0684611\pi\)
−0.303651 + 0.952783i \(0.598206\pi\)
\(338\) −8.13228 14.0855i −0.442338 0.766152i
\(339\) −11.4119 7.95102i −0.619807 0.431840i
\(340\) 0.530861 0.919478i 0.0287900 0.0498657i
\(341\) 0 0
\(342\) 4.03074 + 10.9155i 0.217957 + 0.590241i
\(343\) 9.73102 0.525426
\(344\) −5.24376 + 9.08245i −0.282724 + 0.489693i
\(345\) 0.387263 4.54876i 0.0208496 0.244897i
\(346\) 0.456926 + 0.791420i 0.0245645 + 0.0425470i
\(347\) −1.03482 1.79236i −0.0555522 0.0962192i 0.836912 0.547337i \(-0.184359\pi\)
−0.892464 + 0.451118i \(0.851025\pi\)
\(348\) −4.27361 + 2.00498i −0.229090 + 0.107478i
\(349\) −2.60713 + 4.51569i −0.139557 + 0.241719i −0.927329 0.374247i \(-0.877901\pi\)
0.787772 + 0.615967i \(0.211234\pi\)
\(350\) −5.18993 −0.277413
\(351\) −7.88987 + 2.17344i −0.421130 + 0.116009i
\(352\) 0 0
\(353\) −10.8363 + 18.7689i −0.576756 + 0.998970i 0.419093 + 0.907943i \(0.362348\pi\)
−0.995848 + 0.0910266i \(0.970985\pi\)
\(354\) −17.2948 + 8.11392i −0.919209 + 0.431250i
\(355\) 3.64378 + 6.31121i 0.193392 + 0.334964i
\(356\) −2.43701 4.22103i −0.129161 0.223714i
\(357\) −0.487097 + 5.72139i −0.0257799 + 0.302808i
\(358\) −7.45310 + 12.9091i −0.393908 + 0.682269i
\(359\) −8.75285 −0.461958 −0.230979 0.972959i \(-0.574193\pi\)
−0.230979 + 0.972959i \(0.574193\pi\)
\(360\) −4.35611 0.747140i −0.229587 0.0393778i
\(361\) −12.7069 −0.668786
\(362\) −3.68125 + 6.37611i −0.193482 + 0.335121i
\(363\) 0 0
\(364\) 0.222030 + 0.384567i 0.0116375 + 0.0201568i
\(365\) 4.58331 + 7.93853i 0.239902 + 0.415522i
\(366\) −10.0172 6.97932i −0.523608 0.364815i
\(367\) 3.38311 5.85972i 0.176597 0.305875i −0.764116 0.645079i \(-0.776824\pi\)
0.940713 + 0.339204i \(0.110158\pi\)
\(368\) 20.6063 1.07418
\(369\) −3.41253 0.585301i −0.177649 0.0304696i
\(370\) −2.64695 −0.137608
\(371\) −2.05886 + 3.56604i −0.106890 + 0.185140i
\(372\) 0.523789 6.15238i 0.0271572 0.318986i
\(373\) −10.9467 18.9602i −0.566797 0.981722i −0.996880 0.0789323i \(-0.974849\pi\)
0.430083 0.902790i \(-0.358484\pi\)
\(374\) 0 0
\(375\) −8.95802 + 4.20269i −0.462590 + 0.217026i
\(376\) 0.283130 0.490395i 0.0146013 0.0252902i
\(377\) −10.9911 −0.566069
\(378\) −5.59183 + 1.54039i −0.287613 + 0.0792293i
\(379\) −33.8236 −1.73740 −0.868701 0.495337i \(-0.835045\pi\)
−0.868701 + 0.495337i \(0.835045\pi\)
\(380\) 0.290008 0.502309i 0.0148771 0.0257679i
\(381\) 18.8109 8.82521i 0.963712 0.452129i
\(382\) −4.01843 6.96012i −0.205601 0.356111i
\(383\) 9.18694 + 15.9123i 0.469431 + 0.813078i 0.999389 0.0349456i \(-0.0111258\pi\)
−0.529958 + 0.848024i \(0.677792\pi\)
\(384\) 1.97789 23.2321i 0.100934 1.18556i
\(385\) 0 0
\(386\) 5.05284 0.257183
\(387\) 4.37975 + 11.8606i 0.222635 + 0.602909i
\(388\) 5.53801 0.281150
\(389\) 15.4033 26.6792i 0.780977 1.35269i −0.150396 0.988626i \(-0.548055\pi\)
0.931373 0.364066i \(-0.118612\pi\)
\(390\) 2.04879 + 1.42746i 0.103744 + 0.0722822i
\(391\) −10.2218 17.7047i −0.516938 0.895364i
\(392\) 8.06106 + 13.9622i 0.407145 + 0.705196i
\(393\) −9.79313 6.82320i −0.493998 0.344185i
\(394\) 17.3651 30.0773i 0.874842 1.51527i
\(395\) 8.65524 0.435493
\(396\) 0 0
\(397\) −8.29578 −0.416353 −0.208177 0.978091i \(-0.566753\pi\)
−0.208177 + 0.978091i \(0.566753\pi\)
\(398\) −16.1023 + 27.8901i −0.807137 + 1.39800i
\(399\) −0.266100 + 3.12558i −0.0133217 + 0.156475i
\(400\) −10.7602 18.6373i −0.538012 0.931863i
\(401\) 1.96681 + 3.40662i 0.0982179 + 0.170118i 0.910947 0.412523i \(-0.135352\pi\)
−0.812729 + 0.582642i \(0.802019\pi\)
\(402\) 19.6171 9.20343i 0.978412 0.459025i
\(403\) 7.18833 12.4505i 0.358076 0.620206i
\(404\) 5.61146 0.279181
\(405\) −4.04954 + 3.46293i −0.201223 + 0.172075i
\(406\) −7.78977 −0.386600
\(407\) 0 0
\(408\) −17.9181 + 8.40636i −0.887080 + 0.416177i
\(409\) −1.25213 2.16875i −0.0619137 0.107238i 0.833407 0.552660i \(-0.186387\pi\)
−0.895321 + 0.445422i \(0.853054\pi\)
\(410\) 0.528219 + 0.914902i 0.0260869 + 0.0451838i
\(411\) −1.35858 + 15.9578i −0.0670139 + 0.787138i
\(412\) 0.864818 1.49791i 0.0426065 0.0737966i
\(413\) −5.15007 −0.253418
\(414\) 13.1997 15.8808i 0.648728 0.780498i
\(415\) 4.11640 0.202066
\(416\) −1.71630 + 2.97273i −0.0841488 + 0.145750i
\(417\) 30.7124 + 21.3984i 1.50399 + 1.04788i
\(418\) 0 0
\(419\) −5.36970 9.30060i −0.262327 0.454364i 0.704533 0.709672i \(-0.251157\pi\)
−0.966860 + 0.255307i \(0.917823\pi\)
\(420\) 0.237219 + 0.165278i 0.0115751 + 0.00806476i
\(421\) −11.0937 + 19.2149i −0.540675 + 0.936477i 0.458190 + 0.888854i \(0.348498\pi\)
−0.998865 + 0.0476226i \(0.984836\pi\)
\(422\) 5.24453 0.255300
\(423\) −0.236479 0.640399i −0.0114980 0.0311373i
\(424\) −14.1931 −0.689278
\(425\) −10.6753 + 18.4901i −0.517826 + 0.896901i
\(426\) −2.79635 + 32.8456i −0.135483 + 1.59137i
\(427\) −1.64567 2.85039i −0.0796396 0.137940i
\(428\) −3.07440 5.32501i −0.148606 0.257394i
\(429\) 0 0
\(430\) 1.92889 3.34093i 0.0930192 0.161114i
\(431\) 18.4582 0.889100 0.444550 0.895754i \(-0.353364\pi\)
0.444550 + 0.895754i \(0.353364\pi\)
\(432\) −17.1251 16.8868i −0.823933 0.812469i
\(433\) 15.1166 0.726459 0.363230 0.931700i \(-0.381674\pi\)
0.363230 + 0.931700i \(0.381674\pi\)
\(434\) 5.09463 8.82415i 0.244550 0.423573i
\(435\) −6.47853 + 3.03943i −0.310622 + 0.145729i
\(436\) −2.67461 4.63255i −0.128090 0.221859i
\(437\) −5.58414 9.67202i −0.267126 0.462675i
\(438\) −3.51737 + 41.3147i −0.168066 + 1.97409i
\(439\) 11.9777 20.7459i 0.571663 0.990150i −0.424732 0.905319i \(-0.639632\pi\)
0.996395 0.0848306i \(-0.0270349\pi\)
\(440\) 0 0
\(441\) 19.1566 + 3.28566i 0.912221 + 0.156460i
\(442\) 11.1820 0.531875
\(443\) −12.7489 + 22.0817i −0.605716 + 1.04913i 0.386222 + 0.922406i \(0.373780\pi\)
−0.991938 + 0.126725i \(0.959553\pi\)
\(444\) −1.60491 1.11819i −0.0761655 0.0530670i
\(445\) −3.69436 6.39882i −0.175130 0.303333i
\(446\) −8.52415 14.7643i −0.403630 0.699108i
\(447\) −1.62923 1.13514i −0.0770599 0.0536902i
\(448\) 2.12518 3.68092i 0.100405 0.173907i
\(449\) −22.4824 −1.06101 −0.530505 0.847682i \(-0.677998\pi\)
−0.530505 + 0.847682i \(0.677998\pi\)
\(450\) −21.2559 3.64571i −1.00201 0.171861i
\(451\) 0 0
\(452\) −1.56804 + 2.71592i −0.0737542 + 0.127746i
\(453\) 0.129391 1.51982i 0.00607933 0.0714072i
\(454\) 4.61281 + 7.98963i 0.216490 + 0.374972i
\(455\) 0.336584 + 0.582980i 0.0157793 + 0.0273305i
\(456\) −9.78863 + 4.59237i −0.458395 + 0.215058i
\(457\) 10.8448 18.7837i 0.507298 0.878666i −0.492667 0.870218i \(-0.663978\pi\)
0.999964 0.00844735i \(-0.00268891\pi\)
\(458\) −38.2679 −1.78814
\(459\) −6.01400 + 23.0904i −0.280710 + 1.07777i
\(460\) −1.02935 −0.0479938
\(461\) −6.05182 + 10.4821i −0.281861 + 0.488198i −0.971843 0.235629i \(-0.924285\pi\)
0.689982 + 0.723827i \(0.257618\pi\)
\(462\) 0 0
\(463\) −10.0154 17.3472i −0.465455 0.806192i 0.533767 0.845632i \(-0.320776\pi\)
−0.999222 + 0.0394398i \(0.987443\pi\)
\(464\) −16.1505 27.9734i −0.749767 1.29863i
\(465\) 0.794033 9.32663i 0.0368224 0.432512i
\(466\) −3.23793 + 5.60826i −0.149994 + 0.259798i
\(467\) 6.06750 0.280770 0.140385 0.990097i \(-0.455166\pi\)
0.140385 + 0.990097i \(0.455166\pi\)
\(468\) 0.639204 + 1.73100i 0.0295472 + 0.0800156i
\(469\) 5.84161 0.269740
\(470\) −0.104148 + 0.180389i −0.00480398 + 0.00832074i
\(471\) 13.9075 + 9.68980i 0.640822 + 0.446482i
\(472\) −8.87574 15.3732i −0.408539 0.707610i
\(473\) 0 0
\(474\) 32.1230 + 22.3811i 1.47546 + 1.02800i
\(475\) −5.83187 + 10.1011i −0.267584 + 0.463470i
\(476\) 1.29471 0.0593430
\(477\) −10.9373 + 13.1588i −0.500783 + 0.602502i
\(478\) −11.3994 −0.521397
\(479\) 18.1364 31.4132i 0.828673 1.43530i −0.0704058 0.997518i \(-0.522429\pi\)
0.899079 0.437786i \(-0.144237\pi\)
\(480\) −0.189585 + 2.22685i −0.00865335 + 0.101641i
\(481\) −2.27716 3.94416i −0.103830 0.179838i
\(482\) 6.82560 + 11.8223i 0.310898 + 0.538491i
\(483\) 5.03993 2.36450i 0.229325 0.107589i
\(484\) 0 0
\(485\) 8.39529 0.381211
\(486\) −23.9840 + 2.38081i −1.08794 + 0.107996i
\(487\) −8.68493 −0.393552 −0.196776 0.980449i \(-0.563047\pi\)
−0.196776 + 0.980449i \(0.563047\pi\)
\(488\) 5.67236 9.82482i 0.256776 0.444749i
\(489\) 7.25973 3.40593i 0.328296 0.154021i
\(490\) −2.96522 5.13591i −0.133955 0.232017i
\(491\) −16.5987 28.7497i −0.749087 1.29746i −0.948261 0.317493i \(-0.897159\pi\)
0.199174 0.979964i \(-0.436174\pi\)
\(492\) −0.0662247 + 0.777869i −0.00298564 + 0.0350691i
\(493\) −16.0229 + 27.7525i −0.721636 + 1.24991i
\(494\) 6.10872 0.274844
\(495\) 0 0
\(496\) 42.2506 1.89711
\(497\) −4.44339 + 7.69618i −0.199313 + 0.345221i
\(498\) 15.2775 + 10.6444i 0.684603 + 0.476986i
\(499\) −10.4384 18.0799i −0.467289 0.809368i 0.532013 0.846736i \(-0.321436\pi\)
−0.999302 + 0.0373682i \(0.988103\pi\)
\(500\) 1.11554 + 1.93216i 0.0498883 + 0.0864090i
\(501\) −24.1413 16.8200i −1.07855 0.751463i
\(502\) 15.9044 27.5472i 0.709847 1.22949i
\(503\) −23.3189 −1.03974 −0.519869 0.854246i \(-0.674019\pi\)
−0.519869 + 0.854246i \(0.674019\pi\)
\(504\) −1.86699 5.05591i −0.0831622 0.225208i
\(505\) 8.50663 0.378540
\(506\) 0 0
\(507\) 1.54561 18.1546i 0.0686431 0.806275i
\(508\) −2.34251 4.05734i −0.103932 0.180016i
\(509\) −3.24061 5.61289i −0.143637 0.248787i 0.785226 0.619209i \(-0.212547\pi\)
−0.928864 + 0.370422i \(0.879213\pi\)
\(510\) 6.59109 3.09223i 0.291858 0.136926i
\(511\) −5.58910 + 9.68060i −0.247247 + 0.428245i
\(512\) 12.9480 0.572225
\(513\) −3.28544 + 12.6142i −0.145056 + 0.556932i
\(514\) 5.22963 0.230669
\(515\) 1.31101 2.27074i 0.0577701 0.100061i
\(516\) 2.58089 1.21083i 0.113617 0.0533040i
\(517\) 0 0
\(518\) −1.61390 2.79537i −0.0709109 0.122821i
\(519\) −0.0868429 + 1.02005i −0.00381198 + 0.0447752i
\(520\) −1.16015 + 2.00944i −0.0508760 + 0.0881198i
\(521\) −33.2103 −1.45497 −0.727484 0.686124i \(-0.759311\pi\)
−0.727484 + 0.686124i \(0.759311\pi\)
\(522\) −31.9038 5.47200i −1.39639 0.239503i
\(523\) 40.1386 1.75514 0.877569 0.479451i \(-0.159164\pi\)
0.877569 + 0.479451i \(0.159164\pi\)
\(524\) −1.34562 + 2.33068i −0.0587835 + 0.101816i
\(525\) −4.77031 3.32364i −0.208194 0.145055i
\(526\) 11.0412 + 19.1238i 0.481417 + 0.833839i
\(527\) −20.9585 36.3011i −0.912965 1.58130i
\(528\) 0 0
\(529\) 1.58985 2.75370i 0.0691240 0.119726i
\(530\) 5.22085 0.226779
\(531\) −21.0927 3.61772i −0.915344 0.156995i
\(532\) 0.707298 0.0306652
\(533\) −0.908849 + 1.57417i −0.0393666 + 0.0681850i
\(534\) 2.83516 33.3015i 0.122690 1.44110i
\(535\) −4.66060 8.07239i −0.201495 0.349000i
\(536\) 10.0675 + 17.4375i 0.434851 + 0.753185i
\(537\) −15.1175 + 7.09245i −0.652370 + 0.306062i
\(538\) 5.19534 8.99859i 0.223987 0.387957i
\(539\) 0 0
\(540\) 0.855454 + 0.843551i 0.0368129 + 0.0363007i
\(541\) −24.6485 −1.05972 −0.529860 0.848085i \(-0.677756\pi\)
−0.529860 + 0.848085i \(0.677756\pi\)
\(542\) 3.07708 5.32967i 0.132172 0.228929i
\(543\) −7.46688 + 3.50312i −0.320435 + 0.150333i
\(544\) 5.00410 + 8.66735i 0.214549 + 0.371610i
\(545\) −4.05454 7.02267i −0.173677 0.300818i
\(546\) −0.258305 + 3.03402i −0.0110544 + 0.129844i
\(547\) 12.8602 22.2745i 0.549861 0.952388i −0.448422 0.893822i \(-0.648014\pi\)
0.998284 0.0585660i \(-0.0186528\pi\)
\(548\) 3.61113 0.154260
\(549\) −4.73774 12.8301i −0.202202 0.547574i
\(550\) 0 0
\(551\) −8.75329 + 15.1611i −0.372902 + 0.645886i
\(552\) 15.7441 + 10.9694i 0.670112 + 0.466889i
\(553\) 5.27730 + 9.14055i 0.224414 + 0.388696i
\(554\) 10.1519 + 17.5837i 0.431314 + 0.747058i
\(555\) −2.43294 1.69511i −0.103273 0.0719534i
\(556\) 4.22002 7.30928i 0.178969 0.309983i
\(557\) −11.6815 −0.494962 −0.247481 0.968893i \(-0.579603\pi\)
−0.247481 + 0.968893i \(0.579603\pi\)
\(558\) 27.0642 32.5615i 1.14572 1.37844i
\(559\) 6.63766 0.280743
\(560\) −0.989164 + 1.71328i −0.0417998 + 0.0723994i
\(561\) 0 0
\(562\) 2.29436 + 3.97396i 0.0967819 + 0.167631i
\(563\) 4.06105 + 7.03395i 0.171153 + 0.296445i 0.938823 0.344400i \(-0.111917\pi\)
−0.767670 + 0.640845i \(0.778584\pi\)
\(564\) −0.139352 + 0.0653774i −0.00586777 + 0.00275289i
\(565\) −2.37705 + 4.11717i −0.100003 + 0.173211i
\(566\) 12.5125 0.525941
\(567\) −6.12620 2.16517i −0.257276 0.0909285i
\(568\) −30.6313 −1.28526
\(569\) −9.00331 + 15.5942i −0.377438 + 0.653742i −0.990689 0.136146i \(-0.956528\pi\)
0.613250 + 0.789888i \(0.289862\pi\)
\(570\) 3.60070 1.68928i 0.150817 0.0707561i
\(571\) −1.30322 2.25725i −0.0545382 0.0944629i 0.837467 0.546487i \(-0.184035\pi\)
−0.892006 + 0.452024i \(0.850702\pi\)
\(572\) 0 0
\(573\) 0.763738 8.97079i 0.0319056 0.374760i
\(574\) −0.644134 + 1.11567i −0.0268856 + 0.0465673i
\(575\) 20.6996 0.863231
\(576\) 11.2896 13.5827i 0.470400 0.565948i
\(577\) 35.1888 1.46493 0.732465 0.680805i \(-0.238370\pi\)
0.732465 + 0.680805i \(0.238370\pi\)
\(578\) 3.15913 5.47178i 0.131403 0.227596i
\(579\) 4.64431 + 3.23585i 0.193011 + 0.134477i
\(580\) 0.806767 + 1.39736i 0.0334992 + 0.0580223i
\(581\) 2.50986 + 4.34721i 0.104127 + 0.180353i
\(582\) 31.1582 + 21.7089i 1.29155 + 0.899864i
\(583\) 0 0
\(584\) −38.5294 −1.59436
\(585\) 0.968995 + 2.62409i 0.0400630 + 0.108493i
\(586\) −24.2984 −1.00376
\(587\) −11.7762 + 20.3970i −0.486056 + 0.841874i −0.999872 0.0160270i \(-0.994898\pi\)
0.513816 + 0.857901i \(0.328232\pi\)
\(588\) 0.371760 4.36666i 0.0153311 0.180078i
\(589\) −11.4496 19.8312i −0.471771 0.817131i
\(590\) 3.26489 + 5.65496i 0.134414 + 0.232811i
\(591\) 35.2227 16.5248i 1.44887 0.679741i
\(592\) 6.69219 11.5912i 0.275047 0.476396i
\(593\) −13.1828 −0.541354 −0.270677 0.962670i \(-0.587248\pi\)
−0.270677 + 0.962670i \(0.587248\pi\)
\(594\) 0 0
\(595\) 1.96270 0.0804630
\(596\) −0.223863 + 0.387742i −0.00916978 + 0.0158825i
\(597\) −32.6613 + 15.3232i −1.33674 + 0.627135i
\(598\) −5.42055 9.38867i −0.221663 0.383931i
\(599\) −17.1082 29.6323i −0.699022 1.21074i −0.968806 0.247821i \(-0.920285\pi\)
0.269783 0.962921i \(-0.413048\pi\)
\(600\) 1.69997 19.9677i 0.0694009 0.815176i
\(601\) 14.5143 25.1394i 0.592049 1.02546i −0.401907 0.915680i \(-0.631653\pi\)
0.993956 0.109778i \(-0.0350140\pi\)
\(602\) 4.70435 0.191735
\(603\) 23.9249 + 4.10349i 0.974298 + 0.167107i
\(604\) −0.343924 −0.0139941
\(605\) 0 0
\(606\) 31.5714 + 21.9968i 1.28250 + 0.893561i
\(607\) −1.57818 2.73348i −0.0640562 0.110949i 0.832219 0.554447i \(-0.187070\pi\)
−0.896275 + 0.443499i \(0.853737\pi\)
\(608\) 2.73373 + 4.73495i 0.110867 + 0.192028i
\(609\) −7.15996 4.98858i −0.290136 0.202148i
\(610\) −2.08655 + 3.61401i −0.0844819 + 0.146327i
\(611\) −0.358392 −0.0144990
\(612\) 5.30263 + 0.909482i 0.214346 + 0.0367636i
\(613\) −33.9410 −1.37086 −0.685432 0.728136i \(-0.740387\pi\)
−0.685432 + 0.728136i \(0.740387\pi\)
\(614\) 2.71591 4.70409i 0.109605 0.189842i
\(615\) −0.100393 + 1.17920i −0.00404822 + 0.0475500i
\(616\) 0 0
\(617\) 10.8039 + 18.7129i 0.434948 + 0.753351i 0.997291 0.0735523i \(-0.0234336\pi\)
−0.562344 + 0.826904i \(0.690100\pi\)
\(618\) 10.7374 5.03751i 0.431923 0.202638i
\(619\) −10.2563 + 17.7644i −0.412235 + 0.714013i −0.995134 0.0985323i \(-0.968585\pi\)
0.582898 + 0.812545i \(0.301919\pi\)
\(620\) −2.11055 −0.0847617
\(621\) 22.3025 6.14372i 0.894970 0.246539i
\(622\) −40.7166 −1.63259
\(623\) 4.50507 7.80301i 0.180492 0.312621i
\(624\) −11.4308 + 5.36282i −0.457600 + 0.214685i
\(625\) −9.93266 17.2039i −0.397306 0.688155i
\(626\) −1.90263 3.29545i −0.0760444 0.131713i
\(627\) 0 0
\(628\) 1.91094 3.30985i 0.0762550 0.132078i
\(629\) −13.2787 −0.529456
\(630\) 0.686761 + 1.85979i 0.0273612 + 0.0740958i
\(631\) 29.8645 1.18889 0.594443 0.804138i \(-0.297372\pi\)
0.594443 + 0.804138i \(0.297372\pi\)
\(632\) −18.1900 + 31.5060i −0.723559 + 1.25324i
\(633\) 4.82050 + 3.35860i 0.191598 + 0.133493i
\(634\) −20.4918 35.4929i −0.813835 1.40960i
\(635\) −3.55110 6.15069i −0.140921 0.244083i
\(636\) 3.16552 + 2.20552i 0.125521 + 0.0874547i
\(637\) 5.10193 8.83680i 0.202146 0.350127i
\(638\) 0 0
\(639\) −23.6046 + 28.3992i −0.933784 + 1.12345i
\(640\) −7.96969 −0.315030
\(641\) 19.0600 33.0129i 0.752826 1.30393i −0.193622 0.981076i \(-0.562024\pi\)
0.946448 0.322856i \(-0.104643\pi\)
\(642\) 3.57668 42.0113i 0.141160 1.65806i
\(643\) 8.41257 + 14.5710i 0.331759 + 0.574624i 0.982857 0.184370i \(-0.0590245\pi\)
−0.651098 + 0.758994i \(0.725691\pi\)
\(644\) −0.627619 1.08707i −0.0247316 0.0428365i
\(645\) 3.91247 1.83555i 0.154053 0.0722747i
\(646\) 8.90536 15.4245i 0.350377 0.606870i
\(647\) −20.9745 −0.824592 −0.412296 0.911050i \(-0.635273\pi\)
−0.412296 + 0.911050i \(0.635273\pi\)
\(648\) −4.09487 22.0185i −0.160862 0.864968i
\(649\) 0 0
\(650\) −5.66102 + 9.80517i −0.222043 + 0.384591i
\(651\) 10.3337 4.84810i 0.405010 0.190012i
\(652\) −0.904049 1.56586i −0.0354053 0.0613238i
\(653\) −9.88324 17.1183i −0.386761 0.669890i 0.605251 0.796035i \(-0.293073\pi\)
−0.992012 + 0.126145i \(0.959739\pi\)
\(654\) 3.11158 36.5483i 0.121672 1.42915i
\(655\) −2.03987 + 3.53316i −0.0797044 + 0.138052i
\(656\) −5.34191 −0.208566
\(657\) −29.6910 + 35.7218i −1.15835 + 1.39364i
\(658\) −0.254005 −0.00990215
\(659\) −5.90277 + 10.2239i −0.229939 + 0.398267i −0.957790 0.287469i \(-0.907186\pi\)
0.727851 + 0.685736i \(0.240519\pi\)
\(660\) 0 0
\(661\) −8.90382 15.4219i −0.346318 0.599841i 0.639274 0.768979i \(-0.279235\pi\)
−0.985592 + 0.169138i \(0.945902\pi\)
\(662\) 6.26492 + 10.8512i 0.243493 + 0.421742i
\(663\) 10.2779 + 7.16099i 0.399162 + 0.278110i
\(664\) −8.65109 + 14.9841i −0.335727 + 0.581497i
\(665\) 1.07222 0.0415789
\(666\) −4.64629 12.5824i −0.180040 0.487559i
\(667\) 31.0688 1.20299
\(668\) −3.31711 + 5.74540i −0.128343 + 0.222296i
\(669\) 1.62009 19.0294i 0.0626363 0.735720i
\(670\) −3.70329 6.41429i −0.143071 0.247806i
\(671\) 0 0
\(672\) −2.46731 + 1.15755i −0.0951784 + 0.0446533i
\(673\) 9.85264 17.0653i 0.379791 0.657818i −0.611240 0.791445i \(-0.709329\pi\)
0.991032 + 0.133627i \(0.0426624\pi\)
\(674\) 38.2215 1.47224
\(675\) −17.2026 16.9633i −0.662129 0.652916i
\(676\) −4.10826 −0.158010
\(677\) −6.20696 + 10.7508i −0.238553 + 0.413185i −0.960299 0.278972i \(-0.910006\pi\)
0.721747 + 0.692157i \(0.243340\pi\)
\(678\) −19.4685 + 9.13372i −0.747683 + 0.350778i
\(679\) 5.11880 + 8.86602i 0.196441 + 0.340247i
\(680\) 3.38256 + 5.85877i 0.129715 + 0.224674i
\(681\) −0.876706 + 10.2977i −0.0335955 + 0.394609i
\(682\) 0 0
\(683\) 2.02837 0.0776135 0.0388068 0.999247i \(-0.487644\pi\)
0.0388068 + 0.999247i \(0.487644\pi\)
\(684\) 2.89681 + 0.496848i 0.110762 + 0.0189974i
\(685\) 5.47425 0.209160
\(686\) 7.52274 13.0298i 0.287220 0.497479i
\(687\) −35.1739 24.5068i −1.34197 0.934994i
\(688\) 9.75348 + 16.8935i 0.371848 + 0.644060i
\(689\) 4.49148 + 7.77947i 0.171112 + 0.296374i
\(690\) −5.79137 4.03504i −0.220474 0.153611i
\(691\) −1.17144 + 2.02899i −0.0445635 + 0.0771862i −0.887447 0.460910i \(-0.847523\pi\)
0.842883 + 0.538096i \(0.180856\pi\)
\(692\) 0.230830 0.00877483
\(693\) 0 0
\(694\) −3.19995 −0.121469
\(695\) 6.39729 11.0804i 0.242663 0.420305i
\(696\) 2.55155 29.9703i 0.0967163 1.13602i
\(697\) 2.64986 + 4.58969i 0.100371 + 0.173847i
\(698\) 4.03098 + 6.98187i 0.152575 + 0.264268i
\(699\) −6.56768 + 3.08125i −0.248412 + 0.116544i
\(700\) −0.655461 + 1.13529i −0.0247741 + 0.0429100i
\(701\) 4.43368 0.167458 0.0837289 0.996489i \(-0.473317\pi\)
0.0837289 + 0.996489i \(0.473317\pi\)
\(702\) −3.18919 + 12.2447i −0.120368 + 0.462146i
\(703\) −7.25411 −0.273594
\(704\) 0 0
\(705\) −0.211249 + 0.0991082i −0.00795609 + 0.00373263i
\(706\) 16.7543 + 29.0193i 0.630557 + 1.09216i
\(707\) 5.18669 + 8.98361i 0.195065 + 0.337863i
\(708\) −0.409332 + 4.80797i −0.0153836 + 0.180695i
\(709\) −14.9413 + 25.8790i −0.561131 + 0.971907i 0.436267 + 0.899817i \(0.356300\pi\)
−0.997398 + 0.0720902i \(0.977033\pi\)
\(710\) 11.2676 0.422864
\(711\) 15.1929 + 41.1432i 0.569777 + 1.54299i
\(712\) 31.0565 1.16389
\(713\) −20.3195 + 35.1943i −0.760970 + 1.31804i
\(714\) 7.28435 + 5.07525i 0.272610 + 0.189936i
\(715\) 0 0
\(716\) 1.88258 + 3.26072i 0.0703551 + 0.121859i
\(717\) −10.4778 7.30020i −0.391299 0.272631i
\(718\) −6.76655 + 11.7200i −0.252525 + 0.437387i
\(719\) −21.6321 −0.806742 −0.403371 0.915037i \(-0.632162\pi\)
−0.403371 + 0.915037i \(0.632162\pi\)
\(720\) −5.25473 + 6.32208i −0.195832 + 0.235610i
\(721\) 3.19741 0.119078
\(722\) −9.82332 + 17.0145i −0.365586 + 0.633214i
\(723\) −1.29727 + 15.2376i −0.0482459 + 0.566691i
\(724\) 0.929846 + 1.61054i 0.0345574 + 0.0598552i
\(725\) −16.2235 28.1000i −0.602527 1.04361i
\(726\) 0 0
\(727\) 6.22109 10.7752i 0.230727 0.399631i −0.727295 0.686325i \(-0.759223\pi\)
0.958022 + 0.286694i \(0.0925561\pi\)
\(728\) −2.82948 −0.104868
\(729\) −23.5695 13.1711i −0.872946 0.487817i
\(730\) 14.1729 0.524561
\(731\) 9.67645 16.7601i 0.357897 0.619895i
\(732\) −2.79184 + 1.30980i −0.103189 + 0.0484117i
\(733\) −26.1761 45.3383i −0.966836 1.67461i −0.704598 0.709607i \(-0.748873\pi\)
−0.262238 0.965003i \(-0.584461\pi\)
\(734\) −5.23075 9.05993i −0.193071 0.334408i
\(735\) 0.563566 6.61959i 0.0207875 0.244167i
\(736\) 4.85153 8.40310i 0.178830 0.309742i
\(737\) 0 0
\(738\) −3.42183 + 4.11688i −0.125959 + 0.151544i
\(739\) 46.6760 1.71701 0.858503 0.512809i \(-0.171395\pi\)
0.858503 + 0.512809i \(0.171395\pi\)
\(740\) −0.334296 + 0.579018i −0.0122890 + 0.0212851i
\(741\) 5.61482 + 3.91203i 0.206266 + 0.143712i
\(742\) 3.18327 + 5.51359i 0.116862 + 0.202410i
\(743\) −10.9359 18.9416i −0.401201 0.694900i 0.592671 0.805445i \(-0.298074\pi\)
−0.993871 + 0.110545i \(0.964740\pi\)
\(744\) 32.2812 + 22.4914i 1.18348 + 0.824573i
\(745\) −0.339362 + 0.587793i −0.0124333 + 0.0215351i
\(746\) −33.8501 −1.23934
\(747\) 7.22567 + 19.5675i 0.264373 + 0.715938i
\(748\) 0 0
\(749\) 5.68334 9.84384i 0.207665 0.359686i
\(750\) −1.29779 + 15.2437i −0.0473885 + 0.556621i
\(751\) −19.7961 34.2878i −0.722369 1.25118i −0.960048 0.279835i \(-0.909720\pi\)
0.237679 0.971344i \(-0.423613\pi\)
\(752\) −0.526627 0.912144i −0.0192041 0.0332625i
\(753\) 32.2597 15.1348i 1.17561 0.551542i
\(754\) −8.49686 + 14.7170i −0.309437 + 0.535961i
\(755\) −0.521367 −0.0189745
\(756\) −0.369260 + 1.41775i −0.0134299 + 0.0515631i
\(757\) 23.1457 0.841246 0.420623 0.907235i \(-0.361811\pi\)
0.420623 + 0.907235i \(0.361811\pi\)
\(758\) −26.1480 + 45.2896i −0.949736 + 1.64499i
\(759\) 0 0
\(760\) 1.84789 + 3.20063i 0.0670299 + 0.116099i
\(761\) −7.44643 12.8976i −0.269933 0.467538i 0.698911 0.715208i \(-0.253668\pi\)
−0.968844 + 0.247671i \(0.920335\pi\)
\(762\) 2.72522 32.0102i 0.0987243 1.15961i
\(763\) 4.94429 8.56376i 0.178995 0.310029i
\(764\) −2.03003 −0.0734438
\(765\) 8.03846 + 1.37872i 0.290631 + 0.0498477i
\(766\) 28.4085 1.02644
\(767\) −5.61755 + 9.72988i −0.202838 + 0.351325i
\(768\) −12.8453 8.94973i −0.463514 0.322946i
\(769\) 10.8117 + 18.7264i 0.389879 + 0.675290i 0.992433 0.122788i \(-0.0391836\pi\)
−0.602554 + 0.798078i \(0.705850\pi\)
\(770\) 0 0
\(771\) 4.80681 + 3.34906i 0.173113 + 0.120614i
\(772\) 0.638148 1.10531i 0.0229675 0.0397808i
\(773\) −6.07292 −0.218428 −0.109214 0.994018i \(-0.534833\pi\)
−0.109214 + 0.994018i \(0.534833\pi\)
\(774\) 19.2671 + 3.30461i 0.692543 + 0.118782i
\(775\) 42.4417 1.52455
\(776\) −17.6437 + 30.5597i −0.633371 + 1.09703i
\(777\) 0.306737 3.60290i 0.0110041 0.129253i
\(778\) −23.8156 41.2498i −0.853829 1.47888i
\(779\) 1.44761 + 2.50734i 0.0518661 + 0.0898347i
\(780\) 0.571007 0.267890i 0.0204453 0.00959200i
\(781\) 0 0
\(782\) −31.6086 −1.13032
\(783\) −25.8201 25.4608i −0.922735 0.909896i
\(784\) 29.9874 1.07098
\(785\) 2.89688 5.01754i 0.103394 0.179084i
\(786\) −16.7070 + 7.83814i −0.595918 + 0.279577i
\(787\) 25.5777 + 44.3019i 0.911746 + 1.57919i 0.811597 + 0.584218i \(0.198599\pi\)
0.100149 + 0.994972i \(0.468068\pi\)
\(788\) −4.38625 7.59721i −0.156254 0.270639i
\(789\) −2.09847 + 24.6484i −0.0747075 + 0.877507i
\(790\) 6.69109 11.5893i 0.238058 0.412329i
\(791\) −5.79736 −0.206130
\(792\) 0 0
\(793\) −7.18019 −0.254976
\(794\) −6.41320 + 11.1080i −0.227596 + 0.394208i
\(795\) 4.79874 + 3.34344i 0.170194 + 0.118580i
\(796\) 4.06728 + 7.04474i 0.144161 + 0.249694i
\(797\) 12.6306 + 21.8769i 0.447399 + 0.774918i 0.998216 0.0597082i \(-0.0190170\pi\)
−0.550817 + 0.834626i \(0.685684\pi\)
\(798\) 3.97942 + 2.77260i 0.140870 + 0.0981489i
\(799\) −0.522468 + 0.904940i −0.0184836 + 0.0320145i
\(800\) −10.1335 −0.358274
\(801\) 23.9323 28.7934i 0.845606 1.01737i
\(802\) 6.08192 0.214760
\(803\) 0 0
\(804\) 0.464295 5.45357i 0.0163744 0.192332i
\(805\) −0.951432 1.64793i −0.0335336 0.0580818i
\(806\) −11.1141 19.2502i −0.391479 0.678061i
\(807\) 10.5380 4.94394i 0.370955 0.174035i
\(808\) −17.8777 + 30.9650i −0.628935 + 1.08935i
\(809\) −51.3275 −1.80458 −0.902290 0.431130i \(-0.858115\pi\)
−0.902290 + 0.431130i \(0.858115\pi\)
\(810\) 1.50628 + 8.09939i 0.0529252 + 0.284583i
\(811\) −4.54589 −0.159628 −0.0798138 0.996810i \(-0.525433\pi\)
−0.0798138 + 0.996810i \(0.525433\pi\)
\(812\) −0.983808 + 1.70401i −0.0345249 + 0.0597989i
\(813\) 6.24142 2.92819i 0.218896 0.102696i
\(814\) 0 0
\(815\) −1.37048 2.37375i −0.0480059 0.0831487i
\(816\) −3.12287 + 36.6809i −0.109322 + 1.28409i
\(817\) 5.28622 9.15601i 0.184942 0.320328i
\(818\) −3.87192 −0.135378
\(819\) −2.18041 + 2.62330i −0.0761897 + 0.0916654i
\(820\) 0.266845 0.00931864
\(821\) 5.43690 9.41698i 0.189749 0.328655i −0.755418 0.655244i \(-0.772566\pi\)
0.945167 + 0.326589i \(0.105899\pi\)
\(822\) 20.3171 + 14.1556i 0.708639 + 0.493732i
\(823\) 11.8081 + 20.4522i 0.411604 + 0.712918i 0.995065 0.0992224i \(-0.0316355\pi\)
−0.583462 + 0.812141i \(0.698302\pi\)
\(824\) 5.51048 + 9.54444i 0.191967 + 0.332496i
\(825\) 0 0
\(826\) −3.98136 + 6.89591i −0.138529 + 0.239940i
\(827\) 27.6040 0.959886 0.479943 0.877300i \(-0.340657\pi\)
0.479943 + 0.877300i \(0.340657\pi\)
\(828\) −1.80686 4.89308i −0.0627926 0.170046i
\(829\) −16.1009 −0.559208 −0.279604 0.960115i \(-0.590203\pi\)
−0.279604 + 0.960115i \(0.590203\pi\)
\(830\) 3.18226 5.51183i 0.110458 0.191318i
\(831\) −1.92947 + 22.6633i −0.0669324 + 0.786182i
\(832\) −4.63617 8.03008i −0.160730 0.278393i
\(833\) −14.8753 25.7648i −0.515399 0.892697i
\(834\) 52.3951 24.5814i 1.81429 0.851183i
\(835\) −5.02854 + 8.70968i −0.174020 + 0.301411i
\(836\) 0 0
\(837\) 45.7284 12.5969i 1.58061 0.435412i
\(838\) −16.6046 −0.573596
\(839\) 9.71596 16.8285i 0.335432 0.580986i −0.648136 0.761525i \(-0.724451\pi\)
0.983568 + 0.180539i \(0.0577843\pi\)
\(840\) −1.66780 + 0.782453i −0.0575445 + 0.0269972i
\(841\) −9.85058 17.0617i −0.339675 0.588334i
\(842\) 17.1524 + 29.7089i 0.591111 + 1.02383i
\(843\) −0.436064 + 5.12197i −0.0150189 + 0.176410i
\(844\) 0.662357 1.14724i 0.0227993 0.0394895i
\(845\) −6.22787 −0.214245
\(846\) −1.04030 0.178428i −0.0357664 0.00613449i
\(847\) 0 0
\(848\) −13.1997 + 22.8626i −0.453280 + 0.785103i
\(849\) 11.5009 + 8.01304i 0.394709 + 0.275007i
\(850\) 16.5054 + 28.5882i 0.566131 + 0.980567i
\(851\) 6.43691 + 11.1491i 0.220655 + 0.382185i
\(852\) 6.83178 + 4.75993i 0.234053 + 0.163072i
\(853\) −9.89276 + 17.1348i −0.338722 + 0.586683i −0.984193 0.177102i \(-0.943328\pi\)
0.645471 + 0.763785i \(0.276661\pi\)
\(854\) −5.08886 −0.174137
\(855\) 4.39139 + 0.753191i 0.150182 + 0.0257586i
\(856\) 39.1791 1.33912
\(857\) −2.17032 + 3.75911i −0.0741369 + 0.128409i −0.900711 0.434420i \(-0.856953\pi\)
0.826574 + 0.562828i \(0.190287\pi\)
\(858\) 0 0
\(859\) 2.58967 + 4.48545i 0.0883586 + 0.153042i 0.906817 0.421524i \(-0.138505\pi\)
−0.818459 + 0.574565i \(0.805171\pi\)
\(860\) −0.487217 0.843885i −0.0166140 0.0287762i
\(861\) −1.30653 + 0.612965i −0.0445265 + 0.0208898i
\(862\) 14.2695 24.7154i 0.486019 0.841810i
\(863\) −2.69392 −0.0917021 −0.0458510 0.998948i \(-0.514600\pi\)
−0.0458510 + 0.998948i \(0.514600\pi\)
\(864\) −10.9182 + 3.00767i −0.371446 + 0.102323i
\(865\) 0.349924 0.0118978
\(866\) 11.6862 20.2411i 0.397113 0.687820i
\(867\) 6.40785 3.00626i 0.217622 0.102098i
\(868\) −1.28685 2.22889i −0.0436785 0.0756534i
\(869\) 0 0
\(870\) −0.938574 + 11.0244i −0.0318207 + 0.373762i
\(871\) 6.37185 11.0364i 0.215902 0.373953i
\(872\) 34.0843 1.15424
\(873\) 14.7366 + 39.9075i 0.498757 + 1.35066i
\(874\) −17.2677 −0.584088
\(875\) −2.06218 + 3.57181i −0.0697145 + 0.120749i
\(876\) 8.59332 + 5.98725i 0.290341 + 0.202291i
\(877\) −10.4224 18.0521i −0.351939 0.609576i 0.634650 0.772800i \(-0.281144\pi\)
−0.986589 + 0.163223i \(0.947811\pi\)
\(878\) −18.5191 32.0761i −0.624990 1.08251i
\(879\) −22.3339 15.5607i −0.753302 0.524851i
\(880\) 0 0
\(881\) 11.5843 0.390286 0.195143 0.980775i \(-0.437483\pi\)
0.195143 + 0.980775i \(0.437483\pi\)
\(882\) 19.2089 23.1106i 0.646796 0.778173i
\(883\) 15.3973 0.518159 0.259079 0.965856i \(-0.416581\pi\)
0.259079 + 0.965856i \(0.416581\pi\)
\(884\) 1.41223 2.44606i 0.0474985 0.0822699i
\(885\) −0.620522 + 7.28859i −0.0208586 + 0.245003i
\(886\) 19.7115 + 34.1413i 0.662220 + 1.14700i
\(887\) −2.95498 5.11817i −0.0992185 0.171851i 0.812143 0.583459i \(-0.198301\pi\)
−0.911361 + 0.411607i \(0.864968\pi\)
\(888\) 11.2835 5.29369i 0.378649 0.177645i
\(889\) 4.33037 7.50043i 0.145236 0.251556i
\(890\) −11.4240 −0.382932
\(891\) 0 0
\(892\) −4.30623 −0.144183
\(893\) −0.285423 + 0.494367i −0.00955131 + 0.0165434i
\(894\) −2.77945 + 1.30399i −0.0929586 + 0.0436119i
\(895\) 2.85387 + 4.94305i 0.0953943 + 0.165228i
\(896\) −4.85930 8.41655i −0.162338 0.281177i
\(897\) 1.03022 12.1009i 0.0343982 0.404038i
\(898\) −17.3804 + 30.1038i −0.579993 + 1.00458i
\(899\) 63.7025 2.12460
\(900\) −3.48201 + 4.18927i −0.116067 + 0.139642i
\(901\) 26.1909 0.872546
\(902\) 0 0
\(903\) 4.32399 + 3.01267i 0.143893 + 0.100255i
\(904\) −9.99128 17.3054i −0.332305 0.575569i
\(905\) 1.40959 + 2.44148i 0.0468563 + 0.0811576i
\(906\) −1.93500 1.34818i −0.0642859 0.0447901i
\(907\) 3.69666 6.40280i 0.122746 0.212602i −0.798104 0.602520i \(-0.794163\pi\)
0.920849 + 0.389918i \(0.127497\pi\)
\(908\) 2.33030 0.0773336
\(909\) 14.9320 + 40.4367i 0.495263 + 1.34120i
\(910\) 1.04081 0.0345025
\(911\) 7.09940 12.2965i 0.235214 0.407402i −0.724121 0.689673i \(-0.757754\pi\)
0.959335 + 0.282271i \(0.0910877\pi\)
\(912\) −1.70602 + 20.0387i −0.0564918 + 0.663547i
\(913\) 0 0
\(914\) −16.7675 29.0422i −0.554620 0.960631i
\(915\) −4.23226 + 1.98558i −0.139914 + 0.0656413i
\(916\) −4.83304 + 8.37107i −0.159688 + 0.276588i
\(917\) −4.97503 −0.164290
\(918\) 26.2687 + 25.9032i 0.866995 + 0.854932i
\(919\) 41.6426 1.37366 0.686831 0.726817i \(-0.259001\pi\)
0.686831 + 0.726817i \(0.259001\pi\)
\(920\) 3.27943 5.68014i 0.108120 0.187269i
\(921\) 5.50882 2.58449i 0.181522 0.0851617i
\(922\) 9.35693 + 16.2067i 0.308154 + 0.533739i
\(923\) 9.69344 + 16.7895i 0.319063 + 0.552634i
\(924\) 0 0
\(925\) 6.72247 11.6437i 0.221033 0.382841i
\(926\) −30.9703 −1.01775
\(927\) 13.0953 + 2.24605i 0.430107 + 0.0737700i
\(928\) −15.2098 −0.499286
\(929\) 17.0664 29.5598i 0.559930 0.969827i −0.437572 0.899184i \(-0.644161\pi\)
0.997502 0.0706435i \(-0.0225053\pi\)
\(930\) −11.8745 8.27332i −0.389379 0.271293i
\(931\) −8.12634 14.0752i −0.266330 0.461297i
\(932\) 0.817868 + 1.41659i 0.0267901 + 0.0464019i
\(933\) −37.4246 26.0750i −1.22523 0.853656i
\(934\) 4.69059 8.12434i 0.153481 0.265837i
\(935\) 0 0
\(936\) −11.5884 1.98759i −0.378780 0.0649666i
\(937\) −51.6822 −1.68838 −0.844192 0.536041i \(-0.819919\pi\)
−0.844192 + 0.536041i \(0.819919\pi\)
\(938\) 4.51596 7.82187i 0.147451 0.255393i
\(939\) 0.361612 4.24746i 0.0118008 0.138611i
\(940\) 0.0263067 + 0.0455645i 0.000858029 + 0.00148615i
\(941\) 9.00309 + 15.5938i 0.293492 + 0.508344i 0.974633 0.223809i \(-0.0718491\pi\)
−0.681141 + 0.732153i \(0.738516\pi\)
\(942\) 23.7260 11.1311i 0.773035 0.362672i
\(943\) 2.56907 4.44976i 0.0836604 0.144904i
\(944\) −33.0181 −1.07465
\(945\) −0.559776 + 2.14923i −0.0182095 + 0.0699143i
\(946\) 0 0
\(947\) −14.3151 + 24.7946i −0.465180 + 0.805715i −0.999210 0.0397506i \(-0.987344\pi\)
0.534030 + 0.845466i \(0.320677\pi\)
\(948\) 8.95281 4.20025i 0.290774 0.136418i
\(949\) 12.1928 + 21.1186i 0.395796 + 0.685540i
\(950\) 9.01686 + 15.6177i 0.292546 + 0.506704i
\(951\) 3.89466 45.7462i 0.126293 1.48342i
\(952\) −4.12485 + 7.14445i −0.133687 + 0.231553i
\(953\) −16.6893 −0.540620 −0.270310 0.962773i \(-0.587126\pi\)
−0.270310 + 0.962773i \(0.587126\pi\)
\(954\) 9.16436 + 24.8176i 0.296707 + 0.803500i
\(955\) −3.07740 −0.0995822
\(956\) −1.43969 + 2.49361i −0.0465628 + 0.0806492i
\(957\) 0 0
\(958\) −28.0414 48.5690i −0.905975 1.56919i
\(959\) 3.33778 + 5.78120i 0.107782 + 0.186685i
\(960\) −4.95333 3.45115i −0.159868 0.111385i
\(961\) −26.1624 + 45.3146i −0.843948 + 1.46176i
\(962\) −7.04160 −0.227030
\(963\) 30.1916 36.3241i 0.972911 1.17053i
\(964\) 3.44815 0.111058
\(965\) 0.967394 1.67558i 0.0311415 0.0539387i
\(966\) 0.730157 8.57635i 0.0234924 0.275940i
\(967\) 12.1597 + 21.0612i 0.391029 + 0.677281i 0.992585 0.121549i \(-0.0387860\pi\)
−0.601557 + 0.798830i \(0.705453\pi\)
\(968\) 0 0
\(969\) 18.0632 8.47443i 0.580275 0.272238i
\(970\) 6.49013 11.2412i 0.208386 0.360934i
\(971\) 7.55191 0.242352 0.121176 0.992631i \(-0.461333\pi\)
0.121176 + 0.992631i \(0.461333\pi\)
\(972\) −2.50826 + 5.54716i −0.0804524 + 0.177925i
\(973\) 15.6023 0.500186
\(974\) −6.71404 + 11.6291i −0.215132 + 0.372619i
\(975\) −11.4826 + 5.38709i −0.367736 + 0.172525i
\(976\) −10.5507 18.2743i −0.337719 0.584947i
\(977\) −1.01614 1.76001i −0.0325093 0.0563078i 0.849313 0.527890i \(-0.177017\pi\)
−0.881822 + 0.471582i \(0.843683\pi\)
\(978\) 1.05175 12.3537i 0.0336313 0.395029i
\(979\) 0 0
\(980\) −1.49797 −0.0478508
\(981\) 26.2655 31.6006i 0.838594 1.00893i
\(982\) −51.3276 −1.63793
\(983\) −16.7198 + 28.9595i −0.533279 + 0.923666i 0.465966 + 0.884803i \(0.345707\pi\)
−0.999245 + 0.0388633i \(0.987626\pi\)
\(984\) −4.08143 2.84367i −0.130111 0.0906529i
\(985\) −6.64929 11.5169i −0.211864 0.366959i
\(986\) 24.7736 + 42.9092i 0.788953 + 1.36651i
\(987\) −0.233468 0.162665i −0.00743138 0.00517769i
\(988\) 0.771499 1.33628i 0.0245447 0.0425126i
\(989\) −18.7629 −0.596624
\(990\) 0 0
\(991\) 40.1009 1.27385 0.636923 0.770927i \(-0.280207\pi\)
0.636923 + 0.770927i \(0.280207\pi\)
\(992\) 9.94743 17.2294i 0.315831 0.547036i
\(993\) −1.19070 + 13.9859i −0.0377858 + 0.443829i
\(994\) 6.87009 + 11.8993i 0.217906 + 0.377424i
\(995\) 6.16575 + 10.6794i 0.195468 + 0.338560i
\(996\) 4.25792 1.99762i 0.134917 0.0632970i
\(997\) 8.06505 13.9691i 0.255423 0.442405i −0.709588 0.704617i \(-0.751119\pi\)
0.965010 + 0.262212i \(0.0844520\pi\)
\(998\) −32.2785 −1.02176
\(999\) 3.78717 14.5406i 0.119821 0.460044i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.o.727.15 36
9.2 odd 6 9801.2.a.cn.1.15 18
9.4 even 3 inner 1089.2.e.o.364.15 36
9.7 even 3 9801.2.a.co.1.4 18
11.2 odd 10 99.2.m.b.70.8 yes 72
11.6 odd 10 99.2.m.b.25.2 yes 72
11.10 odd 2 1089.2.e.p.727.4 36
33.2 even 10 297.2.n.b.235.2 72
33.17 even 10 297.2.n.b.289.8 72
99.2 even 30 891.2.f.e.730.8 36
99.13 odd 30 99.2.m.b.4.2 72
99.43 odd 6 9801.2.a.cm.1.15 18
99.50 even 30 297.2.n.b.91.2 72
99.61 odd 30 891.2.f.f.487.2 36
99.65 even 6 9801.2.a.cp.1.4 18
99.68 even 30 297.2.n.b.37.8 72
99.76 odd 6 1089.2.e.p.364.4 36
99.79 odd 30 891.2.f.f.730.2 36
99.83 even 30 891.2.f.e.487.8 36
99.94 odd 30 99.2.m.b.58.8 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.2 72 99.13 odd 30
99.2.m.b.25.2 yes 72 11.6 odd 10
99.2.m.b.58.8 yes 72 99.94 odd 30
99.2.m.b.70.8 yes 72 11.2 odd 10
297.2.n.b.37.8 72 99.68 even 30
297.2.n.b.91.2 72 99.50 even 30
297.2.n.b.235.2 72 33.2 even 10
297.2.n.b.289.8 72 33.17 even 10
891.2.f.e.487.8 36 99.83 even 30
891.2.f.e.730.8 36 99.2 even 30
891.2.f.f.487.2 36 99.61 odd 30
891.2.f.f.730.2 36 99.79 odd 30
1089.2.e.o.364.15 36 9.4 even 3 inner
1089.2.e.o.727.15 36 1.1 even 1 trivial
1089.2.e.p.364.4 36 99.76 odd 6
1089.2.e.p.727.4 36 11.10 odd 2
9801.2.a.cm.1.15 18 99.43 odd 6
9801.2.a.cn.1.15 18 9.2 odd 6
9801.2.a.co.1.4 18 9.7 even 3
9801.2.a.cp.1.4 18 99.65 even 6