Properties

Label 1089.2.e.g.727.1
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.1
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.g.364.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.190983 - 0.330792i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(0.927051 + 1.60570i) q^{4} +(0.618034 + 1.07047i) q^{5} +0.661585i q^{6} +(0.500000 - 0.866025i) q^{7} +1.47214 q^{8} +(1.50000 - 2.59808i) q^{9} +0.472136 q^{10} +(-2.78115 - 1.60570i) q^{12} +(3.23607 + 5.60503i) q^{13} +(-0.190983 - 0.330792i) q^{14} +(-1.85410 - 1.07047i) q^{15} +(-1.57295 + 2.72443i) q^{16} +4.85410 q^{17} +(-0.572949 - 0.992377i) q^{18} +1.00000 q^{19} +(-1.14590 + 1.98475i) q^{20} +1.73205i q^{21} +(-2.30902 - 3.99933i) q^{23} +(-2.20820 + 1.27491i) q^{24} +(1.73607 - 3.00696i) q^{25} +2.47214 q^{26} +5.19615i q^{27} +1.85410 q^{28} +(2.42705 - 4.20378i) q^{29} +(-0.708204 + 0.408882i) q^{30} +(-0.309017 - 0.535233i) q^{31} +(2.07295 + 3.59045i) q^{32} +(0.927051 - 1.60570i) q^{34} +1.23607 q^{35} +5.56231 q^{36} -5.09017 q^{37} +(0.190983 - 0.330792i) q^{38} +(-9.70820 - 5.60503i) q^{39} +(0.909830 + 1.57587i) q^{40} +(1.26393 + 2.18919i) q^{41} +(0.572949 + 0.330792i) q^{42} +(-0.927051 + 1.60570i) q^{43} +3.70820 q^{45} -1.76393 q^{46} +(-5.97214 + 10.3440i) q^{47} -5.44886i q^{48} +(3.00000 + 5.19615i) q^{49} +(-0.663119 - 1.14856i) q^{50} +(-7.28115 + 4.20378i) q^{51} +(-6.00000 + 10.3923i) q^{52} +4.09017 q^{53} +(1.71885 + 0.992377i) q^{54} +(0.736068 - 1.27491i) q^{56} +(-1.50000 + 0.866025i) q^{57} +(-0.927051 - 1.60570i) q^{58} +(-0.809017 - 1.40126i) q^{59} -3.96951i q^{60} +(-5.42705 + 9.39993i) q^{61} -0.236068 q^{62} +(-1.50000 - 2.59808i) q^{63} -4.70820 q^{64} +(-4.00000 + 6.92820i) q^{65} +(-3.00000 - 5.19615i) q^{67} +(4.50000 + 7.79423i) q^{68} +(6.92705 + 3.99933i) q^{69} +(0.236068 - 0.408882i) q^{70} -2.90983 q^{71} +(2.20820 - 3.82472i) q^{72} -0.145898 q^{73} +(-0.972136 + 1.68379i) q^{74} +6.01392i q^{75} +(0.927051 + 1.60570i) q^{76} +(-3.70820 + 2.14093i) q^{78} +(-5.28115 + 9.14723i) q^{79} -3.88854 q^{80} +(-4.50000 - 7.79423i) q^{81} +0.965558 q^{82} +(4.88197 - 8.45581i) q^{83} +(-2.78115 + 1.60570i) q^{84} +(3.00000 + 5.19615i) q^{85} +(0.354102 + 0.613323i) q^{86} +8.40755i q^{87} -6.76393 q^{89} +(0.708204 - 1.22665i) q^{90} +6.47214 q^{91} +(4.28115 - 7.41517i) q^{92} +(0.927051 + 0.535233i) q^{93} +(2.28115 + 3.95107i) q^{94} +(0.618034 + 1.07047i) q^{95} +(-6.21885 - 3.59045i) q^{96} +(-3.00000 + 5.19615i) q^{97} +2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 6 q^{3} - 3 q^{4} - 2 q^{5} + 2 q^{7} - 12 q^{8} + 6 q^{9} - 16 q^{10} + 9 q^{12} + 4 q^{13} - 3 q^{14} + 6 q^{15} - 13 q^{16} + 6 q^{17} - 9 q^{18} + 4 q^{19} - 18 q^{20} - 7 q^{23} + 18 q^{24}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.190983 0.330792i 0.135045 0.233905i −0.790569 0.612372i \(-0.790215\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) 0.927051 + 1.60570i 0.463525 + 0.802850i
\(5\) 0.618034 + 1.07047i 0.276393 + 0.478727i 0.970486 0.241159i \(-0.0775275\pi\)
−0.694092 + 0.719886i \(0.744194\pi\)
\(6\) 0.661585i 0.270091i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 1.47214 0.520479
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0.472136 0.149302
\(11\) 0 0
\(12\) −2.78115 1.60570i −0.802850 0.463525i
\(13\) 3.23607 + 5.60503i 0.897524 + 1.55456i 0.830650 + 0.556795i \(0.187969\pi\)
0.0668741 + 0.997761i \(0.478697\pi\)
\(14\) −0.190983 0.330792i −0.0510424 0.0884080i
\(15\) −1.85410 1.07047i −0.478727 0.276393i
\(16\) −1.57295 + 2.72443i −0.393237 + 0.681107i
\(17\) 4.85410 1.17729 0.588646 0.808391i \(-0.299661\pi\)
0.588646 + 0.808391i \(0.299661\pi\)
\(18\) −0.572949 0.992377i −0.135045 0.233905i
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) −1.14590 + 1.98475i −0.256231 + 0.443804i
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −2.30902 3.99933i −0.481463 0.833919i 0.518310 0.855193i \(-0.326561\pi\)
−0.999774 + 0.0212736i \(0.993228\pi\)
\(24\) −2.20820 + 1.27491i −0.450748 + 0.260239i
\(25\) 1.73607 3.00696i 0.347214 0.601392i
\(26\) 2.47214 0.484826
\(27\) 5.19615i 1.00000i
\(28\) 1.85410 0.350392
\(29\) 2.42705 4.20378i 0.450692 0.780622i −0.547737 0.836651i \(-0.684511\pi\)
0.998429 + 0.0560290i \(0.0178439\pi\)
\(30\) −0.708204 + 0.408882i −0.129300 + 0.0746512i
\(31\) −0.309017 0.535233i −0.0555011 0.0961307i 0.836940 0.547295i \(-0.184342\pi\)
−0.892441 + 0.451164i \(0.851009\pi\)
\(32\) 2.07295 + 3.59045i 0.366449 + 0.634708i
\(33\) 0 0
\(34\) 0.927051 1.60570i 0.158988 0.275375i
\(35\) 1.23607 0.208934
\(36\) 5.56231 0.927051
\(37\) −5.09017 −0.836819 −0.418409 0.908259i \(-0.637412\pi\)
−0.418409 + 0.908259i \(0.637412\pi\)
\(38\) 0.190983 0.330792i 0.0309815 0.0536616i
\(39\) −9.70820 5.60503i −1.55456 0.897524i
\(40\) 0.909830 + 1.57587i 0.143857 + 0.249167i
\(41\) 1.26393 + 2.18919i 0.197393 + 0.341895i 0.947682 0.319215i \(-0.103419\pi\)
−0.750289 + 0.661110i \(0.770086\pi\)
\(42\) 0.572949 + 0.330792i 0.0884080 + 0.0510424i
\(43\) −0.927051 + 1.60570i −0.141374 + 0.244867i −0.928014 0.372545i \(-0.878485\pi\)
0.786640 + 0.617412i \(0.211819\pi\)
\(44\) 0 0
\(45\) 3.70820 0.552786
\(46\) −1.76393 −0.260078
\(47\) −5.97214 + 10.3440i −0.871126 + 1.50883i −0.0102921 + 0.999947i \(0.503276\pi\)
−0.860834 + 0.508887i \(0.830057\pi\)
\(48\) 5.44886i 0.786475i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) −0.663119 1.14856i −0.0937792 0.162430i
\(51\) −7.28115 + 4.20378i −1.01957 + 0.588646i
\(52\) −6.00000 + 10.3923i −0.832050 + 1.44115i
\(53\) 4.09017 0.561828 0.280914 0.959733i \(-0.409362\pi\)
0.280914 + 0.959733i \(0.409362\pi\)
\(54\) 1.71885 + 0.992377i 0.233905 + 0.135045i
\(55\) 0 0
\(56\) 0.736068 1.27491i 0.0983612 0.170367i
\(57\) −1.50000 + 0.866025i −0.198680 + 0.114708i
\(58\) −0.927051 1.60570i −0.121728 0.210839i
\(59\) −0.809017 1.40126i −0.105325 0.182428i 0.808546 0.588433i \(-0.200255\pi\)
−0.913871 + 0.406005i \(0.866922\pi\)
\(60\) 3.96951i 0.512461i
\(61\) −5.42705 + 9.39993i −0.694863 + 1.20354i 0.275364 + 0.961340i \(0.411202\pi\)
−0.970227 + 0.242198i \(0.922132\pi\)
\(62\) −0.236068 −0.0299807
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) −4.70820 −0.588525
\(65\) −4.00000 + 6.92820i −0.496139 + 0.859338i
\(66\) 0 0
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) 4.50000 + 7.79423i 0.545705 + 0.945189i
\(69\) 6.92705 + 3.99933i 0.833919 + 0.481463i
\(70\) 0.236068 0.408882i 0.0282155 0.0488707i
\(71\) −2.90983 −0.345333 −0.172667 0.984980i \(-0.555238\pi\)
−0.172667 + 0.984980i \(0.555238\pi\)
\(72\) 2.20820 3.82472i 0.260239 0.450748i
\(73\) −0.145898 −0.0170761 −0.00853804 0.999964i \(-0.502718\pi\)
−0.00853804 + 0.999964i \(0.502718\pi\)
\(74\) −0.972136 + 1.68379i −0.113009 + 0.195736i
\(75\) 6.01392i 0.694427i
\(76\) 0.927051 + 1.60570i 0.106340 + 0.184186i
\(77\) 0 0
\(78\) −3.70820 + 2.14093i −0.419871 + 0.242413i
\(79\) −5.28115 + 9.14723i −0.594176 + 1.02914i 0.399486 + 0.916739i \(0.369188\pi\)
−0.993663 + 0.112404i \(0.964145\pi\)
\(80\) −3.88854 −0.434752
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0.965558 0.106628
\(83\) 4.88197 8.45581i 0.535865 0.928146i −0.463256 0.886225i \(-0.653319\pi\)
0.999121 0.0419213i \(-0.0133479\pi\)
\(84\) −2.78115 + 1.60570i −0.303449 + 0.175196i
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 0.354102 + 0.613323i 0.0381838 + 0.0661363i
\(87\) 8.40755i 0.901384i
\(88\) 0 0
\(89\) −6.76393 −0.716975 −0.358488 0.933534i \(-0.616707\pi\)
−0.358488 + 0.933534i \(0.616707\pi\)
\(90\) 0.708204 1.22665i 0.0746512 0.129300i
\(91\) 6.47214 0.678464
\(92\) 4.28115 7.41517i 0.446341 0.773085i
\(93\) 0.927051 + 0.535233i 0.0961307 + 0.0555011i
\(94\) 2.28115 + 3.95107i 0.235283 + 0.407522i
\(95\) 0.618034 + 1.07047i 0.0634089 + 0.109828i
\(96\) −6.21885 3.59045i −0.634708 0.366449i
\(97\) −3.00000 + 5.19615i −0.304604 + 0.527589i −0.977173 0.212445i \(-0.931857\pi\)
0.672569 + 0.740034i \(0.265191\pi\)
\(98\) 2.29180 0.231506
\(99\) 0 0
\(100\) 6.43769 0.643769
\(101\) 4.23607 7.33708i 0.421505 0.730067i −0.574582 0.818447i \(-0.694835\pi\)
0.996087 + 0.0883795i \(0.0281688\pi\)
\(102\) 3.21140i 0.317976i
\(103\) 5.11803 + 8.86469i 0.504295 + 0.873464i 0.999988 + 0.00496641i \(0.00158086\pi\)
−0.495693 + 0.868498i \(0.665086\pi\)
\(104\) 4.76393 + 8.25137i 0.467142 + 0.809114i
\(105\) −1.85410 + 1.07047i −0.180942 + 0.104467i
\(106\) 0.781153 1.35300i 0.0758723 0.131415i
\(107\) 14.0344 1.35676 0.678380 0.734711i \(-0.262682\pi\)
0.678380 + 0.734711i \(0.262682\pi\)
\(108\) −8.34346 + 4.81710i −0.802850 + 0.463525i
\(109\) 7.14590 0.684453 0.342226 0.939618i \(-0.388819\pi\)
0.342226 + 0.939618i \(0.388819\pi\)
\(110\) 0 0
\(111\) 7.63525 4.40822i 0.724706 0.418409i
\(112\) 1.57295 + 2.72443i 0.148630 + 0.257434i
\(113\) −8.61803 14.9269i −0.810716 1.40420i −0.912363 0.409382i \(-0.865745\pi\)
0.101647 0.994821i \(-0.467589\pi\)
\(114\) 0.661585i 0.0619631i
\(115\) 2.85410 4.94345i 0.266146 0.460979i
\(116\) 9.00000 0.835629
\(117\) 19.4164 1.79505
\(118\) −0.618034 −0.0568946
\(119\) 2.42705 4.20378i 0.222487 0.385359i
\(120\) −2.72949 1.57587i −0.249167 0.143857i
\(121\) 0 0
\(122\) 2.07295 + 3.59045i 0.187676 + 0.325064i
\(123\) −3.79180 2.18919i −0.341895 0.197393i
\(124\) 0.572949 0.992377i 0.0514523 0.0891181i
\(125\) 10.4721 0.936656
\(126\) −1.14590 −0.102085
\(127\) −10.5623 −0.937253 −0.468627 0.883396i \(-0.655251\pi\)
−0.468627 + 0.883396i \(0.655251\pi\)
\(128\) −5.04508 + 8.73834i −0.445927 + 0.772368i
\(129\) 3.21140i 0.282748i
\(130\) 1.52786 + 2.64634i 0.134003 + 0.232099i
\(131\) −10.6180 18.3910i −0.927702 1.60683i −0.787157 0.616753i \(-0.788448\pi\)
−0.140545 0.990074i \(-0.544885\pi\)
\(132\) 0 0
\(133\) 0.500000 0.866025i 0.0433555 0.0750939i
\(134\) −2.29180 −0.197981
\(135\) −5.56231 + 3.21140i −0.478727 + 0.276393i
\(136\) 7.14590 0.612756
\(137\) 4.30902 7.46344i 0.368144 0.637644i −0.621131 0.783707i \(-0.713327\pi\)
0.989275 + 0.146062i \(0.0466600\pi\)
\(138\) 2.64590 1.52761i 0.225234 0.130039i
\(139\) −4.85410 8.40755i −0.411720 0.713119i 0.583358 0.812215i \(-0.301738\pi\)
−0.995078 + 0.0990957i \(0.968405\pi\)
\(140\) 1.14590 + 1.98475i 0.0968461 + 0.167742i
\(141\) 20.6881i 1.74225i
\(142\) −0.555728 + 0.962549i −0.0466357 + 0.0807753i
\(143\) 0 0
\(144\) 4.71885 + 8.17328i 0.393237 + 0.681107i
\(145\) 6.00000 0.498273
\(146\) −0.0278640 + 0.0482619i −0.00230604 + 0.00399419i
\(147\) −9.00000 5.19615i −0.742307 0.428571i
\(148\) −4.71885 8.17328i −0.387887 0.671840i
\(149\) 7.59017 + 13.1466i 0.621811 + 1.07701i 0.989148 + 0.146920i \(0.0469361\pi\)
−0.367337 + 0.930088i \(0.619731\pi\)
\(150\) 1.98936 + 1.14856i 0.162430 + 0.0937792i
\(151\) −2.16312 + 3.74663i −0.176032 + 0.304897i −0.940518 0.339744i \(-0.889660\pi\)
0.764486 + 0.644641i \(0.222993\pi\)
\(152\) 1.47214 0.119406
\(153\) 7.28115 12.6113i 0.588646 1.01957i
\(154\) 0 0
\(155\) 0.381966 0.661585i 0.0306802 0.0531397i
\(156\) 20.7846i 1.66410i
\(157\) −3.57295 6.18853i −0.285152 0.493898i 0.687494 0.726190i \(-0.258711\pi\)
−0.972646 + 0.232292i \(0.925378\pi\)
\(158\) 2.01722 + 3.49393i 0.160481 + 0.277962i
\(159\) −6.13525 + 3.54219i −0.486557 + 0.280914i
\(160\) −2.56231 + 4.43804i −0.202568 + 0.350858i
\(161\) −4.61803 −0.363952
\(162\) −3.43769 −0.270091
\(163\) 20.7082 1.62199 0.810996 0.585052i \(-0.198926\pi\)
0.810996 + 0.585052i \(0.198926\pi\)
\(164\) −2.34346 + 4.05899i −0.182993 + 0.316954i
\(165\) 0 0
\(166\) −1.86475 3.22983i −0.144732 0.250684i
\(167\) 2.88197 + 4.99171i 0.223013 + 0.386270i 0.955722 0.294273i \(-0.0950774\pi\)
−0.732708 + 0.680543i \(0.761744\pi\)
\(168\) 2.54981i 0.196722i
\(169\) −14.4443 + 25.0182i −1.11110 + 1.92448i
\(170\) 2.29180 0.175773
\(171\) 1.50000 2.59808i 0.114708 0.198680i
\(172\) −3.43769 −0.262122
\(173\) 11.5451 19.9967i 0.877757 1.52032i 0.0239595 0.999713i \(-0.492373\pi\)
0.853797 0.520606i \(-0.174294\pi\)
\(174\) 2.78115 + 1.60570i 0.210839 + 0.121728i
\(175\) −1.73607 3.00696i −0.131234 0.227305i
\(176\) 0 0
\(177\) 2.42705 + 1.40126i 0.182428 + 0.105325i
\(178\) −1.29180 + 2.23746i −0.0968242 + 0.167704i
\(179\) −5.05573 −0.377883 −0.188941 0.981988i \(-0.560506\pi\)
−0.188941 + 0.981988i \(0.560506\pi\)
\(180\) 3.43769 + 5.95426i 0.256231 + 0.443804i
\(181\) −9.90983 −0.736592 −0.368296 0.929709i \(-0.620059\pi\)
−0.368296 + 0.929709i \(0.620059\pi\)
\(182\) 1.23607 2.14093i 0.0916235 0.158696i
\(183\) 18.7999i 1.38973i
\(184\) −3.39919 5.88756i −0.250591 0.434037i
\(185\) −3.14590 5.44886i −0.231291 0.400608i
\(186\) 0.354102 0.204441i 0.0259640 0.0149903i
\(187\) 0 0
\(188\) −22.1459 −1.61516
\(189\) 4.50000 + 2.59808i 0.327327 + 0.188982i
\(190\) 0.472136 0.0342523
\(191\) −2.97214 + 5.14789i −0.215056 + 0.372488i −0.953290 0.302057i \(-0.902327\pi\)
0.738234 + 0.674545i \(0.235660\pi\)
\(192\) 7.06231 4.07742i 0.509678 0.294263i
\(193\) 5.50000 + 9.52628i 0.395899 + 0.685717i 0.993215 0.116289i \(-0.0370998\pi\)
−0.597317 + 0.802005i \(0.703766\pi\)
\(194\) 1.14590 + 1.98475i 0.0822707 + 0.142497i
\(195\) 13.8564i 0.992278i
\(196\) −5.56231 + 9.63420i −0.397308 + 0.688157i
\(197\) 8.23607 0.586796 0.293398 0.955990i \(-0.405214\pi\)
0.293398 + 0.955990i \(0.405214\pi\)
\(198\) 0 0
\(199\) −7.14590 −0.506559 −0.253280 0.967393i \(-0.581509\pi\)
−0.253280 + 0.967393i \(0.581509\pi\)
\(200\) 2.55573 4.42665i 0.180717 0.313011i
\(201\) 9.00000 + 5.19615i 0.634811 + 0.366508i
\(202\) −1.61803 2.80252i −0.113844 0.197184i
\(203\) −2.42705 4.20378i −0.170346 0.295047i
\(204\) −13.5000 7.79423i −0.945189 0.545705i
\(205\) −1.56231 + 2.70599i −0.109116 + 0.188995i
\(206\) 3.90983 0.272411
\(207\) −13.8541 −0.962927
\(208\) −20.3607 −1.41176
\(209\) 0 0
\(210\) 0.817763i 0.0564310i
\(211\) −10.2361 17.7294i −0.704680 1.22054i −0.966807 0.255508i \(-0.917757\pi\)
0.262127 0.965033i \(-0.415576\pi\)
\(212\) 3.79180 + 6.56758i 0.260422 + 0.451063i
\(213\) 4.36475 2.51999i 0.299067 0.172667i
\(214\) 2.68034 4.64248i 0.183224 0.317354i
\(215\) −2.29180 −0.156299
\(216\) 7.64944i 0.520479i
\(217\) −0.618034 −0.0419549
\(218\) 1.36475 2.36381i 0.0924322 0.160097i
\(219\) 0.218847 0.126351i 0.0147883 0.00853804i
\(220\) 0 0
\(221\) 15.7082 + 27.2074i 1.05665 + 1.83017i
\(222\) 3.36758i 0.226017i
\(223\) 7.75329 13.4291i 0.519199 0.899278i −0.480552 0.876966i \(-0.659564\pi\)
0.999751 0.0223124i \(-0.00710285\pi\)
\(224\) 4.14590 0.277009
\(225\) −5.20820 9.02087i −0.347214 0.601392i
\(226\) −6.58359 −0.437934
\(227\) 8.30902 14.3916i 0.551489 0.955207i −0.446679 0.894694i \(-0.647393\pi\)
0.998167 0.0605122i \(-0.0192734\pi\)
\(228\) −2.78115 1.60570i −0.184186 0.106340i
\(229\) −5.09017 8.81643i −0.336368 0.582606i 0.647379 0.762168i \(-0.275865\pi\)
−0.983747 + 0.179562i \(0.942532\pi\)
\(230\) −1.09017 1.88823i −0.0718837 0.124506i
\(231\) 0 0
\(232\) 3.57295 6.18853i 0.234576 0.406297i
\(233\) −11.1246 −0.728798 −0.364399 0.931243i \(-0.618725\pi\)
−0.364399 + 0.931243i \(0.618725\pi\)
\(234\) 3.70820 6.42280i 0.242413 0.419871i
\(235\) −14.7639 −0.963093
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) 18.2945i 1.18835i
\(238\) −0.927051 1.60570i −0.0600918 0.104082i
\(239\) −5.23607 9.06914i −0.338693 0.586634i 0.645494 0.763765i \(-0.276651\pi\)
−0.984187 + 0.177132i \(0.943318\pi\)
\(240\) 5.83282 3.36758i 0.376507 0.217376i
\(241\) 13.4164 23.2379i 0.864227 1.49688i −0.00358606 0.999994i \(-0.501141\pi\)
0.867813 0.496891i \(-0.165525\pi\)
\(242\) 0 0
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) −20.1246 −1.28835
\(245\) −3.70820 + 6.42280i −0.236908 + 0.410337i
\(246\) −1.44834 + 0.836198i −0.0923426 + 0.0533140i
\(247\) 3.23607 + 5.60503i 0.205906 + 0.356640i
\(248\) −0.454915 0.787936i −0.0288871 0.0500340i
\(249\) 16.9116i 1.07173i
\(250\) 2.00000 3.46410i 0.126491 0.219089i
\(251\) 20.5623 1.29788 0.648941 0.760839i \(-0.275212\pi\)
0.648941 + 0.760839i \(0.275212\pi\)
\(252\) 2.78115 4.81710i 0.175196 0.303449i
\(253\) 0 0
\(254\) −2.01722 + 3.49393i −0.126572 + 0.219229i
\(255\) −9.00000 5.19615i −0.563602 0.325396i
\(256\) −2.78115 4.81710i −0.173822 0.301069i
\(257\) 7.45492 + 12.9123i 0.465025 + 0.805447i 0.999203 0.0399255i \(-0.0127121\pi\)
−0.534178 + 0.845372i \(0.679379\pi\)
\(258\) −1.06231 0.613323i −0.0661363 0.0381838i
\(259\) −2.54508 + 4.40822i −0.158144 + 0.273913i
\(260\) −14.8328 −0.919892
\(261\) −7.28115 12.6113i −0.450692 0.780622i
\(262\) −8.11146 −0.501127
\(263\) 6.35410 11.0056i 0.391811 0.678636i −0.600878 0.799341i \(-0.705182\pi\)
0.992688 + 0.120705i \(0.0385155\pi\)
\(264\) 0 0
\(265\) 2.52786 + 4.37839i 0.155285 + 0.268962i
\(266\) −0.190983 0.330792i −0.0117099 0.0202822i
\(267\) 10.1459 5.85774i 0.620919 0.358488i
\(268\) 5.56231 9.63420i 0.339772 0.588502i
\(269\) −21.2705 −1.29689 −0.648443 0.761263i \(-0.724579\pi\)
−0.648443 + 0.761263i \(0.724579\pi\)
\(270\) 2.45329i 0.149302i
\(271\) 10.7639 0.653862 0.326931 0.945048i \(-0.393985\pi\)
0.326931 + 0.945048i \(0.393985\pi\)
\(272\) −7.63525 + 13.2246i −0.462955 + 0.801862i
\(273\) −9.70820 + 5.60503i −0.587567 + 0.339232i
\(274\) −1.64590 2.85078i −0.0994323 0.172222i
\(275\) 0 0
\(276\) 14.8303i 0.892682i
\(277\) 9.61803 16.6589i 0.577892 1.00094i −0.417829 0.908526i \(-0.637209\pi\)
0.995721 0.0924121i \(-0.0294577\pi\)
\(278\) −3.70820 −0.222403
\(279\) −1.85410 −0.111002
\(280\) 1.81966 0.108745
\(281\) 4.66312 8.07676i 0.278178 0.481819i −0.692754 0.721174i \(-0.743603\pi\)
0.970932 + 0.239355i \(0.0769360\pi\)
\(282\) −6.84346 3.95107i −0.407522 0.235283i
\(283\) 8.50000 + 14.7224i 0.505273 + 0.875158i 0.999981 + 0.00609896i \(0.00194137\pi\)
−0.494709 + 0.869059i \(0.664725\pi\)
\(284\) −2.69756 4.67231i −0.160071 0.277251i
\(285\) −1.85410 1.07047i −0.109828 0.0634089i
\(286\) 0 0
\(287\) 2.52786 0.149215
\(288\) 12.4377 0.732898
\(289\) 6.56231 0.386018
\(290\) 1.14590 1.98475i 0.0672894 0.116549i
\(291\) 10.3923i 0.609208i
\(292\) −0.135255 0.234268i −0.00791520 0.0137095i
\(293\) 14.5902 + 25.2709i 0.852367 + 1.47634i 0.879067 + 0.476699i \(0.158167\pi\)
−0.0266997 + 0.999644i \(0.508500\pi\)
\(294\) −3.43769 + 1.98475i −0.200490 + 0.115753i
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) −7.49342 −0.435546
\(297\) 0 0
\(298\) 5.79837 0.335891
\(299\) 14.9443 25.8842i 0.864250 1.49692i
\(300\) −9.65654 + 5.57521i −0.557521 + 0.321885i
\(301\) 0.927051 + 1.60570i 0.0534343 + 0.0925510i
\(302\) 0.826238 + 1.43109i 0.0475446 + 0.0823497i
\(303\) 14.6742i 0.843009i
\(304\) −1.57295 + 2.72443i −0.0902148 + 0.156257i
\(305\) −13.4164 −0.768221
\(306\) −2.78115 4.81710i −0.158988 0.275375i
\(307\) 7.85410 0.448257 0.224129 0.974560i \(-0.428046\pi\)
0.224129 + 0.974560i \(0.428046\pi\)
\(308\) 0 0
\(309\) −15.3541 8.86469i −0.873464 0.504295i
\(310\) −0.145898 0.252703i −0.00828645 0.0143526i
\(311\) −7.59017 13.1466i −0.430399 0.745473i 0.566509 0.824056i \(-0.308294\pi\)
−0.996908 + 0.0785828i \(0.974960\pi\)
\(312\) −14.2918 8.25137i −0.809114 0.467142i
\(313\) −1.73607 + 3.00696i −0.0981284 + 0.169963i −0.910910 0.412605i \(-0.864619\pi\)
0.812782 + 0.582569i \(0.197952\pi\)
\(314\) −2.72949 −0.154034
\(315\) 1.85410 3.21140i 0.104467 0.180942i
\(316\) −19.5836 −1.10166
\(317\) −10.4721 + 18.1383i −0.588174 + 1.01875i 0.406298 + 0.913741i \(0.366820\pi\)
−0.994472 + 0.105006i \(0.966514\pi\)
\(318\) 2.70599i 0.151745i
\(319\) 0 0
\(320\) −2.90983 5.03997i −0.162664 0.281743i
\(321\) −21.0517 + 12.1542i −1.17499 + 0.678380i
\(322\) −0.881966 + 1.52761i −0.0491500 + 0.0851304i
\(323\) 4.85410 0.270089
\(324\) 8.34346 14.4513i 0.463525 0.802850i
\(325\) 22.4721 1.24653
\(326\) 3.95492 6.85011i 0.219042 0.379393i
\(327\) −10.7188 + 6.18853i −0.592754 + 0.342226i
\(328\) 1.86068 + 3.22279i 0.102739 + 0.177949i
\(329\) 5.97214 + 10.3440i 0.329255 + 0.570286i
\(330\) 0 0
\(331\) −7.20820 + 12.4850i −0.396199 + 0.686236i −0.993253 0.115964i \(-0.963004\pi\)
0.597055 + 0.802201i \(0.296338\pi\)
\(332\) 18.1033 0.993549
\(333\) −7.63525 + 13.2246i −0.418409 + 0.724706i
\(334\) 2.20163 0.120468
\(335\) 3.70820 6.42280i 0.202601 0.350915i
\(336\) −4.71885 2.72443i −0.257434 0.148630i
\(337\) 5.73607 + 9.93516i 0.312464 + 0.541203i 0.978895 0.204364i \(-0.0655125\pi\)
−0.666432 + 0.745566i \(0.732179\pi\)
\(338\) 5.51722 + 9.55611i 0.300097 + 0.519784i
\(339\) 25.8541 + 14.9269i 1.40420 + 0.810716i
\(340\) −5.56231 + 9.63420i −0.301658 + 0.522488i
\(341\) 0 0
\(342\) −0.572949 0.992377i −0.0309815 0.0536616i
\(343\) 13.0000 0.701934
\(344\) −1.36475 + 2.36381i −0.0735821 + 0.127448i
\(345\) 9.88690i 0.532293i
\(346\) −4.40983 7.63805i −0.237074 0.410624i
\(347\) 4.44427 + 7.69770i 0.238581 + 0.413234i 0.960307 0.278944i \(-0.0899844\pi\)
−0.721726 + 0.692179i \(0.756651\pi\)
\(348\) −13.5000 + 7.79423i −0.723676 + 0.417815i
\(349\) 2.07295 3.59045i 0.110962 0.192193i −0.805196 0.593009i \(-0.797940\pi\)
0.916159 + 0.400816i \(0.131273\pi\)
\(350\) −1.32624 −0.0708904
\(351\) −29.1246 + 16.8151i −1.55456 + 0.897524i
\(352\) 0 0
\(353\) 8.20820 14.2170i 0.436879 0.756696i −0.560568 0.828108i \(-0.689417\pi\)
0.997447 + 0.0714123i \(0.0227506\pi\)
\(354\) 0.927051 0.535233i 0.0492722 0.0284473i
\(355\) −1.79837 3.11487i −0.0954478 0.165320i
\(356\) −6.27051 10.8608i −0.332336 0.575623i
\(357\) 8.40755i 0.444975i
\(358\) −0.965558 + 1.67240i −0.0510313 + 0.0883889i
\(359\) −22.8541 −1.20619 −0.603097 0.797668i \(-0.706067\pi\)
−0.603097 + 0.797668i \(0.706067\pi\)
\(360\) 5.45898 0.287714
\(361\) −18.0000 −0.947368
\(362\) −1.89261 + 3.27810i −0.0994733 + 0.172293i
\(363\) 0 0
\(364\) 6.00000 + 10.3923i 0.314485 + 0.544705i
\(365\) −0.0901699 0.156179i −0.00471971 0.00817478i
\(366\) −6.21885 3.59045i −0.325064 0.187676i
\(367\) 6.35410 11.0056i 0.331681 0.574489i −0.651160 0.758940i \(-0.725717\pi\)
0.982842 + 0.184451i \(0.0590508\pi\)
\(368\) 14.5279 0.757317
\(369\) 7.58359 0.394786
\(370\) −2.40325 −0.124939
\(371\) 2.04508 3.54219i 0.106176 0.183901i
\(372\) 1.98475i 0.102905i
\(373\) 2.82624 + 4.89519i 0.146337 + 0.253463i 0.929871 0.367886i \(-0.119918\pi\)
−0.783534 + 0.621349i \(0.786585\pi\)
\(374\) 0 0
\(375\) −15.7082 + 9.06914i −0.811168 + 0.468328i
\(376\) −8.79180 + 15.2278i −0.453402 + 0.785316i
\(377\) 31.4164 1.61803
\(378\) 1.71885 0.992377i 0.0884080 0.0510424i
\(379\) 15.7984 0.811508 0.405754 0.913982i \(-0.367009\pi\)
0.405754 + 0.913982i \(0.367009\pi\)
\(380\) −1.14590 + 1.98475i −0.0587833 + 0.101816i
\(381\) 15.8435 9.14723i 0.811685 0.468627i
\(382\) 1.13525 + 1.96632i 0.0580847 + 0.100606i
\(383\) −9.92705 17.1942i −0.507249 0.878580i −0.999965 0.00839030i \(-0.997329\pi\)
0.492716 0.870190i \(-0.336004\pi\)
\(384\) 17.4767i 0.891853i
\(385\) 0 0
\(386\) 4.20163 0.213857
\(387\) 2.78115 + 4.81710i 0.141374 + 0.244867i
\(388\) −11.1246 −0.564767
\(389\) 11.3262 19.6176i 0.574263 0.994653i −0.421858 0.906662i \(-0.638622\pi\)
0.996121 0.0879910i \(-0.0280447\pi\)
\(390\) −4.58359 2.64634i −0.232099 0.134003i
\(391\) −11.2082 19.4132i −0.566823 0.981767i
\(392\) 4.41641 + 7.64944i 0.223062 + 0.386355i
\(393\) 31.8541 + 18.3910i 1.60683 + 0.927702i
\(394\) 1.57295 2.72443i 0.0792440 0.137255i
\(395\) −13.0557 −0.656905
\(396\) 0 0
\(397\) −2.12461 −0.106631 −0.0533156 0.998578i \(-0.516979\pi\)
−0.0533156 + 0.998578i \(0.516979\pi\)
\(398\) −1.36475 + 2.36381i −0.0684085 + 0.118487i
\(399\) 1.73205i 0.0867110i
\(400\) 5.46149 + 9.45958i 0.273075 + 0.472979i
\(401\) −7.28115 12.6113i −0.363603 0.629780i 0.624948 0.780667i \(-0.285120\pi\)
−0.988551 + 0.150887i \(0.951787\pi\)
\(402\) 3.43769 1.98475i 0.171457 0.0989905i
\(403\) 2.00000 3.46410i 0.0996271 0.172559i
\(404\) 15.7082 0.781512
\(405\) 5.56231 9.63420i 0.276393 0.478727i
\(406\) −1.85410 −0.0920175
\(407\) 0 0
\(408\) −10.7188 + 6.18853i −0.530662 + 0.306378i
\(409\) 16.8713 + 29.2220i 0.834233 + 1.44493i 0.894653 + 0.446761i \(0.147423\pi\)
−0.0604200 + 0.998173i \(0.519244\pi\)
\(410\) 0.596748 + 1.03360i 0.0294713 + 0.0510457i
\(411\) 14.9269i 0.736288i
\(412\) −9.48936 + 16.4360i −0.467507 + 0.809746i
\(413\) −1.61803 −0.0796182
\(414\) −2.64590 + 4.58283i −0.130039 + 0.225234i
\(415\) 12.0689 0.592438
\(416\) −13.4164 + 23.2379i −0.657794 + 1.13933i
\(417\) 14.5623 + 8.40755i 0.713119 + 0.411720i
\(418\) 0 0
\(419\) −4.04508 7.00629i −0.197615 0.342280i 0.750139 0.661280i \(-0.229986\pi\)
−0.947755 + 0.319000i \(0.896653\pi\)
\(420\) −3.43769 1.98475i −0.167742 0.0968461i
\(421\) −5.11803 + 8.86469i −0.249438 + 0.432039i −0.963370 0.268176i \(-0.913579\pi\)
0.713932 + 0.700215i \(0.246912\pi\)
\(422\) −7.81966 −0.380655
\(423\) 17.9164 + 31.0321i 0.871126 + 1.50883i
\(424\) 6.02129 0.292420
\(425\) 8.42705 14.5961i 0.408772 0.708014i
\(426\) 1.92510i 0.0932713i
\(427\) 5.42705 + 9.39993i 0.262633 + 0.454894i
\(428\) 13.0106 + 22.5351i 0.628893 + 1.08927i
\(429\) 0 0
\(430\) −0.437694 + 0.758108i −0.0211075 + 0.0365592i
\(431\) −34.0689 −1.64104 −0.820520 0.571618i \(-0.806316\pi\)
−0.820520 + 0.571618i \(0.806316\pi\)
\(432\) −14.1565 8.17328i −0.681107 0.393237i
\(433\) 14.7426 0.708486 0.354243 0.935153i \(-0.384739\pi\)
0.354243 + 0.935153i \(0.384739\pi\)
\(434\) −0.118034 + 0.204441i −0.00566581 + 0.00981348i
\(435\) −9.00000 + 5.19615i −0.431517 + 0.249136i
\(436\) 6.62461 + 11.4742i 0.317261 + 0.549513i
\(437\) −2.30902 3.99933i −0.110455 0.191314i
\(438\) 0.0965239i 0.00461209i
\(439\) 0.354102 0.613323i 0.0169004 0.0292723i −0.857452 0.514565i \(-0.827954\pi\)
0.874352 + 0.485292i \(0.161287\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 12.0000 0.570782
\(443\) 0.618034 1.07047i 0.0293637 0.0508594i −0.850970 0.525214i \(-0.823985\pi\)
0.880334 + 0.474355i \(0.157319\pi\)
\(444\) 14.1565 + 8.17328i 0.671840 + 0.387887i
\(445\) −4.18034 7.24056i −0.198167 0.343236i
\(446\) −2.96149 5.12946i −0.140231 0.242887i
\(447\) −22.7705 13.1466i −1.07701 0.621811i
\(448\) −2.35410 + 4.07742i −0.111221 + 0.192640i
\(449\) 7.47214 0.352632 0.176316 0.984334i \(-0.443582\pi\)
0.176316 + 0.984334i \(0.443582\pi\)
\(450\) −3.97871 −0.187558
\(451\) 0 0
\(452\) 15.9787 27.6759i 0.751575 1.30177i
\(453\) 7.49326i 0.352064i
\(454\) −3.17376 5.49712i −0.148952 0.257992i
\(455\) 4.00000 + 6.92820i 0.187523 + 0.324799i
\(456\) −2.20820 + 1.27491i −0.103409 + 0.0597030i
\(457\) 0.500000 0.866025i 0.0233890 0.0405110i −0.854094 0.520119i \(-0.825888\pi\)
0.877483 + 0.479608i \(0.159221\pi\)
\(458\) −3.88854 −0.181700
\(459\) 25.2227i 1.17729i
\(460\) 10.5836 0.493463
\(461\) 8.07295 13.9828i 0.375995 0.651242i −0.614481 0.788932i \(-0.710634\pi\)
0.990475 + 0.137690i \(0.0439677\pi\)
\(462\) 0 0
\(463\) −8.50000 14.7224i −0.395029 0.684209i 0.598076 0.801439i \(-0.295932\pi\)
−0.993105 + 0.117230i \(0.962599\pi\)
\(464\) 7.63525 + 13.2246i 0.354458 + 0.613939i
\(465\) 1.32317i 0.0613605i
\(466\) −2.12461 + 3.67994i −0.0984207 + 0.170470i
\(467\) −0.763932 −0.0353506 −0.0176753 0.999844i \(-0.505627\pi\)
−0.0176753 + 0.999844i \(0.505627\pi\)
\(468\) 18.0000 + 31.1769i 0.832050 + 1.44115i
\(469\) −6.00000 −0.277054
\(470\) −2.81966 + 4.88379i −0.130061 + 0.225273i
\(471\) 10.7188 + 6.18853i 0.493898 + 0.285152i
\(472\) −1.19098 2.06284i −0.0548194 0.0949500i
\(473\) 0 0
\(474\) −6.05166 3.49393i −0.277962 0.160481i
\(475\) 1.73607 3.00696i 0.0796563 0.137969i
\(476\) 9.00000 0.412514
\(477\) 6.13525 10.6266i 0.280914 0.486557i
\(478\) −4.00000 −0.182956
\(479\) 5.88197 10.1879i 0.268754 0.465495i −0.699786 0.714352i \(-0.746722\pi\)
0.968540 + 0.248857i \(0.0800548\pi\)
\(480\) 8.87609i 0.405136i
\(481\) −16.4721 28.5306i −0.751065 1.30088i
\(482\) −5.12461 8.87609i −0.233420 0.404295i
\(483\) 6.92705 3.99933i 0.315192 0.181976i
\(484\) 0 0
\(485\) −7.41641 −0.336762
\(486\) 5.15654 2.97713i 0.233905 0.135045i
\(487\) −12.9787 −0.588122 −0.294061 0.955787i \(-0.595007\pi\)
−0.294061 + 0.955787i \(0.595007\pi\)
\(488\) −7.98936 + 13.8380i −0.361661 + 0.626416i
\(489\) −31.0623 + 17.9338i −1.40469 + 0.810996i
\(490\) 1.41641 + 2.45329i 0.0639868 + 0.110828i
\(491\) −3.66312 6.34471i −0.165314 0.286333i 0.771453 0.636287i \(-0.219531\pi\)
−0.936767 + 0.349954i \(0.886197\pi\)
\(492\) 8.11798i 0.365987i
\(493\) 11.7812 20.4056i 0.530596 0.919020i
\(494\) 2.47214 0.111227
\(495\) 0 0
\(496\) 1.94427 0.0873004
\(497\) −1.45492 + 2.51999i −0.0652619 + 0.113037i
\(498\) 5.59424 + 3.22983i 0.250684 + 0.144732i
\(499\) −19.2082 33.2696i −0.859877 1.48935i −0.872045 0.489425i \(-0.837207\pi\)
0.0121680 0.999926i \(-0.496127\pi\)
\(500\) 9.70820 + 16.8151i 0.434164 + 0.751994i
\(501\) −8.64590 4.99171i −0.386270 0.223013i
\(502\) 3.92705 6.80185i 0.175273 0.303582i
\(503\) −9.52786 −0.424826 −0.212413 0.977180i \(-0.568132\pi\)
−0.212413 + 0.977180i \(0.568132\pi\)
\(504\) −2.20820 3.82472i −0.0983612 0.170367i
\(505\) 10.4721 0.466004
\(506\) 0 0
\(507\) 50.0364i 2.22220i
\(508\) −9.79180 16.9599i −0.434441 0.752473i
\(509\) 13.5902 + 23.5389i 0.602374 + 1.04334i 0.992461 + 0.122564i \(0.0391116\pi\)
−0.390087 + 0.920778i \(0.627555\pi\)
\(510\) −3.43769 + 1.98475i −0.152224 + 0.0878864i
\(511\) −0.0729490 + 0.126351i −0.00322707 + 0.00558946i
\(512\) −22.3050 −0.985749
\(513\) 5.19615i 0.229416i
\(514\) 5.69505 0.251198
\(515\) −6.32624 + 10.9574i −0.278767 + 0.482839i
\(516\) 5.15654 2.97713i 0.227004 0.131061i
\(517\) 0 0
\(518\) 0.972136 + 1.68379i 0.0427132 + 0.0739814i
\(519\) 39.9933i 1.75551i
\(520\) −5.88854 + 10.1993i −0.258230 + 0.447267i
\(521\) −40.3607 −1.76823 −0.884117 0.467266i \(-0.845239\pi\)
−0.884117 + 0.467266i \(0.845239\pi\)
\(522\) −5.56231 −0.243456
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 19.6869 34.0987i 0.860027 1.48961i
\(525\) 5.20820 + 3.00696i 0.227305 + 0.131234i
\(526\) −2.42705 4.20378i −0.105824 0.183293i
\(527\) −1.50000 2.59808i −0.0653410 0.113174i
\(528\) 0 0
\(529\) 0.836881 1.44952i 0.0363861 0.0630226i
\(530\) 1.93112 0.0838823
\(531\) −4.85410 −0.210650
\(532\) 1.85410 0.0803855
\(533\) −8.18034 + 14.1688i −0.354330 + 0.613717i
\(534\) 4.47491i 0.193648i
\(535\) 8.67376 + 15.0234i 0.374999 + 0.649518i
\(536\) −4.41641 7.64944i −0.190760 0.330406i
\(537\) 7.58359 4.37839i 0.327256 0.188941i
\(538\) −4.06231 + 7.03612i −0.175138 + 0.303349i
\(539\) 0 0
\(540\) −10.3131 5.95426i −0.443804 0.256231i
\(541\) −11.9098 −0.512044 −0.256022 0.966671i \(-0.582412\pi\)
−0.256022 + 0.966671i \(0.582412\pi\)
\(542\) 2.05573 3.56063i 0.0883011 0.152942i
\(543\) 14.8647 8.58216i 0.637907 0.368296i
\(544\) 10.0623 + 17.4284i 0.431418 + 0.747238i
\(545\) 4.41641 + 7.64944i 0.189178 + 0.327666i
\(546\) 4.28187i 0.183247i
\(547\) 16.1631 27.9953i 0.691085 1.19699i −0.280398 0.959884i \(-0.590466\pi\)
0.971483 0.237111i \(-0.0762003\pi\)
\(548\) 15.9787 0.682577
\(549\) 16.2812 + 28.1998i 0.694863 + 1.20354i
\(550\) 0 0
\(551\) 2.42705 4.20378i 0.103396 0.179087i
\(552\) 10.1976 + 5.88756i 0.434037 + 0.250591i
\(553\) 5.28115 + 9.14723i 0.224577 + 0.388980i
\(554\) −3.67376 6.36314i −0.156083 0.270344i
\(555\) 9.43769 + 5.44886i 0.400608 + 0.231291i
\(556\) 9.00000 15.5885i 0.381685 0.661098i
\(557\) −0.652476 −0.0276463 −0.0138231 0.999904i \(-0.504400\pi\)
−0.0138231 + 0.999904i \(0.504400\pi\)
\(558\) −0.354102 + 0.613323i −0.0149903 + 0.0259640i
\(559\) −12.0000 −0.507546
\(560\) −1.94427 + 3.36758i −0.0821605 + 0.142306i
\(561\) 0 0
\(562\) −1.78115 3.08505i −0.0751334 0.130135i
\(563\) 10.1525 + 17.5846i 0.427876 + 0.741103i 0.996684 0.0813674i \(-0.0259287\pi\)
−0.568808 + 0.822470i \(0.692595\pi\)
\(564\) 33.2188 19.1789i 1.39877 0.807578i
\(565\) 10.6525 18.4506i 0.448153 0.776224i
\(566\) 6.49342 0.272939
\(567\) −9.00000 −0.377964
\(568\) −4.28367 −0.179739
\(569\) −19.3992 + 33.6004i −0.813256 + 1.40860i 0.0973171 + 0.995253i \(0.468974\pi\)
−0.910573 + 0.413348i \(0.864359\pi\)
\(570\) −0.708204 + 0.408882i −0.0296634 + 0.0171262i
\(571\) 9.26393 + 16.0456i 0.387683 + 0.671488i 0.992138 0.125153i \(-0.0399420\pi\)
−0.604454 + 0.796640i \(0.706609\pi\)
\(572\) 0 0
\(573\) 10.2958i 0.430112i
\(574\) 0.482779 0.836198i 0.0201508 0.0349022i
\(575\) −16.0344 −0.668682
\(576\) −7.06231 + 12.2323i −0.294263 + 0.509678i
\(577\) 35.4164 1.47440 0.737202 0.675672i \(-0.236147\pi\)
0.737202 + 0.675672i \(0.236147\pi\)
\(578\) 1.25329 2.17076i 0.0521299 0.0902917i
\(579\) −16.5000 9.52628i −0.685717 0.395899i
\(580\) 5.56231 + 9.63420i 0.230962 + 0.400038i
\(581\) −4.88197 8.45581i −0.202538 0.350806i
\(582\) −3.43769 1.98475i −0.142497 0.0822707i
\(583\) 0 0
\(584\) −0.214782 −0.00888773
\(585\) 12.0000 + 20.7846i 0.496139 + 0.859338i
\(586\) 11.1459 0.460433
\(587\) −6.70820 + 11.6190i −0.276877 + 0.479565i −0.970607 0.240670i \(-0.922633\pi\)
0.693730 + 0.720235i \(0.255966\pi\)
\(588\) 19.2684i 0.794615i
\(589\) −0.309017 0.535233i −0.0127328 0.0220539i
\(590\) −0.381966 0.661585i −0.0157253 0.0272370i
\(591\) −12.3541 + 7.13264i −0.508180 + 0.293398i
\(592\) 8.00658 13.8678i 0.329068 0.569963i
\(593\) −10.9443 −0.449427 −0.224714 0.974425i \(-0.572145\pi\)
−0.224714 + 0.974425i \(0.572145\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) −14.0729 + 24.3751i −0.576450 + 0.998441i
\(597\) 10.7188 6.18853i 0.438693 0.253280i
\(598\) −5.70820 9.88690i −0.233426 0.404305i
\(599\) 6.68034 + 11.5707i 0.272951 + 0.472765i 0.969616 0.244631i \(-0.0786669\pi\)
−0.696665 + 0.717397i \(0.745334\pi\)
\(600\) 8.85330i 0.361435i
\(601\) 8.73607 15.1313i 0.356352 0.617219i −0.630997 0.775786i \(-0.717354\pi\)
0.987348 + 0.158566i \(0.0506872\pi\)
\(602\) 0.708204 0.0288642
\(603\) −18.0000 −0.733017
\(604\) −8.02129 −0.326382
\(605\) 0 0
\(606\) 4.85410 + 2.80252i 0.197184 + 0.113844i
\(607\) 1.79180 + 3.10348i 0.0727268 + 0.125966i 0.900095 0.435693i \(-0.143497\pi\)
−0.827369 + 0.561659i \(0.810163\pi\)
\(608\) 2.07295 + 3.59045i 0.0840692 + 0.145612i
\(609\) 7.28115 + 4.20378i 0.295047 + 0.170346i
\(610\) −2.56231 + 4.43804i −0.103745 + 0.179691i
\(611\) −77.3050 −3.12742
\(612\) 27.0000 1.09141
\(613\) 19.8541 0.801900 0.400950 0.916100i \(-0.368680\pi\)
0.400950 + 0.916100i \(0.368680\pi\)
\(614\) 1.50000 2.59808i 0.0605351 0.104850i
\(615\) 5.41199i 0.218232i
\(616\) 0 0
\(617\) 13.5795 + 23.5204i 0.546691 + 0.946897i 0.998498 + 0.0547813i \(0.0174462\pi\)
−0.451807 + 0.892116i \(0.649221\pi\)
\(618\) −5.86475 + 3.38601i −0.235915 + 0.136205i
\(619\) −13.7812 + 23.8697i −0.553911 + 0.959403i 0.444076 + 0.895989i \(0.353532\pi\)
−0.997987 + 0.0634134i \(0.979801\pi\)
\(620\) 1.41641 0.0568843
\(621\) 20.7812 11.9980i 0.833919 0.481463i
\(622\) −5.79837 −0.232494
\(623\) −3.38197 + 5.85774i −0.135496 + 0.234685i
\(624\) 30.5410 17.6329i 1.22262 0.705880i
\(625\) −2.20820 3.82472i −0.0883282 0.152989i
\(626\) 0.663119 + 1.14856i 0.0265036 + 0.0459055i
\(627\) 0 0
\(628\) 6.62461 11.4742i 0.264351 0.457869i
\(629\) −24.7082 −0.985181
\(630\) −0.708204 1.22665i −0.0282155 0.0488707i
\(631\) −10.8885 −0.433466 −0.216733 0.976231i \(-0.569540\pi\)
−0.216733 + 0.976231i \(0.569540\pi\)
\(632\) −7.77458 + 13.4660i −0.309256 + 0.535647i
\(633\) 30.7082 + 17.7294i 1.22054 + 0.704680i
\(634\) 4.00000 + 6.92820i 0.158860 + 0.275154i
\(635\) −6.52786 11.3066i −0.259050 0.448688i
\(636\) −11.3754 6.56758i −0.451063 0.260422i
\(637\) −19.4164 + 33.6302i −0.769306 + 1.33248i
\(638\) 0 0
\(639\) −4.36475 + 7.55996i −0.172667 + 0.299067i
\(640\) −12.4721 −0.493004
\(641\) 10.2254 17.7110i 0.403880 0.699541i −0.590310 0.807176i \(-0.700995\pi\)
0.994190 + 0.107636i \(0.0343280\pi\)
\(642\) 9.28497i 0.366449i
\(643\) 3.42705 + 5.93583i 0.135150 + 0.234086i 0.925655 0.378370i \(-0.123515\pi\)
−0.790505 + 0.612456i \(0.790182\pi\)
\(644\) −4.28115 7.41517i −0.168701 0.292199i
\(645\) 3.43769 1.98475i 0.135359 0.0781496i
\(646\) 0.927051 1.60570i 0.0364743 0.0631754i
\(647\) −4.18034 −0.164346 −0.0821731 0.996618i \(-0.526186\pi\)
−0.0821731 + 0.996618i \(0.526186\pi\)
\(648\) −6.62461 11.4742i −0.260239 0.450748i
\(649\) 0 0
\(650\) 4.29180 7.43361i 0.168338 0.291570i
\(651\) 0.927051 0.535233i 0.0363340 0.0209774i
\(652\) 19.1976 + 33.2512i 0.751835 + 1.30222i
\(653\) 0.680340 + 1.17838i 0.0266238 + 0.0461137i 0.879030 0.476766i \(-0.158191\pi\)
−0.852407 + 0.522880i \(0.824858\pi\)
\(654\) 4.72762i 0.184864i
\(655\) 13.1246 22.7325i 0.512821 0.888232i
\(656\) −7.95240 −0.310489
\(657\) −0.218847 + 0.379054i −0.00853804 + 0.0147883i
\(658\) 4.56231 0.177857
\(659\) −4.98936 + 8.64182i −0.194358 + 0.336637i −0.946690 0.322147i \(-0.895596\pi\)
0.752332 + 0.658784i \(0.228929\pi\)
\(660\) 0 0
\(661\) 2.14590 + 3.71680i 0.0834658 + 0.144567i 0.904736 0.425972i \(-0.140068\pi\)
−0.821271 + 0.570539i \(0.806734\pi\)
\(662\) 2.75329 + 4.76884i 0.107010 + 0.185346i
\(663\) −47.1246 27.2074i −1.83017 1.05665i
\(664\) 7.18692 12.4481i 0.278906 0.483080i
\(665\) 1.23607 0.0479327
\(666\) 2.91641 + 5.05137i 0.113009 + 0.195736i
\(667\) −22.4164 −0.867967
\(668\) −5.34346 + 9.25514i −0.206745 + 0.358092i
\(669\) 26.8582i 1.03840i
\(670\) −1.41641 2.45329i −0.0547206 0.0947789i
\(671\) 0 0
\(672\) −6.21885 + 3.59045i −0.239897 + 0.138505i
\(673\) 14.7812 25.6017i 0.569772 0.986873i −0.426817 0.904338i \(-0.640365\pi\)
0.996588 0.0825351i \(-0.0263017\pi\)
\(674\) 4.38197 0.168787
\(675\) 15.6246 + 9.02087i 0.601392 + 0.347214i
\(676\) −53.5623 −2.06009
\(677\) −3.02786 + 5.24441i −0.116370 + 0.201559i −0.918327 0.395823i \(-0.870459\pi\)
0.801956 + 0.597383i \(0.203793\pi\)
\(678\) 9.87539 5.70156i 0.379262 0.218967i
\(679\) 3.00000 + 5.19615i 0.115129 + 0.199410i
\(680\) 4.41641 + 7.64944i 0.169362 + 0.293343i
\(681\) 28.7833i 1.10298i
\(682\) 0 0
\(683\) −5.52786 −0.211518 −0.105759 0.994392i \(-0.533727\pi\)
−0.105759 + 0.994392i \(0.533727\pi\)
\(684\) 5.56231 0.212680
\(685\) 10.6525 0.407010
\(686\) 2.48278 4.30030i 0.0947929 0.164186i
\(687\) 15.2705 + 8.81643i 0.582606 + 0.336368i
\(688\) −2.91641 5.05137i −0.111187 0.192582i
\(689\) 13.2361 + 22.9255i 0.504254 + 0.873394i
\(690\) 3.27051 + 1.88823i 0.124506 + 0.0718837i
\(691\) −7.29837 + 12.6412i −0.277643 + 0.480892i −0.970799 0.239896i \(-0.922887\pi\)
0.693155 + 0.720788i \(0.256220\pi\)
\(692\) 42.8115 1.62745
\(693\) 0 0
\(694\) 3.39512 0.128877
\(695\) 6.00000 10.3923i 0.227593 0.394203i
\(696\) 12.3771i 0.469151i
\(697\) 6.13525 + 10.6266i 0.232389 + 0.402510i
\(698\) −0.791796 1.37143i −0.0299699 0.0519094i
\(699\) 16.6869 9.63420i 0.631157 0.364399i
\(700\) 3.21885 5.57521i 0.121661 0.210723i
\(701\) −47.7214 −1.80241 −0.901205 0.433392i \(-0.857317\pi\)
−0.901205 + 0.433392i \(0.857317\pi\)
\(702\) 12.8456i 0.484826i
\(703\) −5.09017 −0.191979
\(704\) 0 0
\(705\) 22.1459 12.7859i 0.834063 0.481546i
\(706\) −3.13525 5.43042i −0.117997 0.204377i
\(707\) −4.23607 7.33708i −0.159314 0.275939i
\(708\) 5.19615i 0.195283i
\(709\) 12.8820 22.3122i 0.483792 0.837953i −0.516034 0.856568i \(-0.672592\pi\)
0.999827 + 0.0186149i \(0.00592565\pi\)
\(710\) −1.37384 −0.0515591
\(711\) 15.8435 + 27.4417i 0.594176 + 1.02914i
\(712\) −9.95743 −0.373170
\(713\) −1.42705 + 2.47172i −0.0534435 + 0.0925668i
\(714\) 2.78115 + 1.60570i 0.104082 + 0.0600918i
\(715\) 0 0
\(716\) −4.68692 8.11798i −0.175158 0.303383i
\(717\) 15.7082 + 9.06914i 0.586634 + 0.338693i
\(718\) −4.36475 + 7.55996i −0.162891 + 0.282135i
\(719\) −19.5967 −0.730835 −0.365418 0.930844i \(-0.619074\pi\)
−0.365418 + 0.930844i \(0.619074\pi\)
\(720\) −5.83282 + 10.1027i −0.217376 + 0.376507i
\(721\) 10.2361 0.381211
\(722\) −3.43769 + 5.95426i −0.127938 + 0.221595i
\(723\) 46.4758i 1.72845i
\(724\) −9.18692 15.9122i −0.341429 0.591373i
\(725\) −8.42705 14.5961i −0.312973 0.542085i
\(726\) 0 0
\(727\) −9.41641 + 16.3097i −0.349235 + 0.604893i −0.986114 0.166071i \(-0.946892\pi\)
0.636879 + 0.770964i \(0.280225\pi\)
\(728\) 9.52786 0.353126
\(729\) −27.0000 −1.00000
\(730\) −0.0688837 −0.00254950
\(731\) −4.50000 + 7.79423i −0.166439 + 0.288280i
\(732\) 30.1869 17.4284i 1.11574 0.644173i
\(733\) −24.2361 41.9781i −0.895180 1.55050i −0.833582 0.552395i \(-0.813714\pi\)
−0.0615974 0.998101i \(-0.519619\pi\)
\(734\) −2.42705 4.20378i −0.0895841 0.155164i
\(735\) 12.8456i 0.473817i
\(736\) 9.57295 16.5808i 0.352864 0.611178i
\(737\) 0 0
\(738\) 1.44834 2.50859i 0.0533140 0.0923426i
\(739\) 42.5410 1.56490 0.782448 0.622715i \(-0.213971\pi\)
0.782448 + 0.622715i \(0.213971\pi\)
\(740\) 5.83282 10.1027i 0.214419 0.371384i
\(741\) −9.70820 5.60503i −0.356640 0.205906i
\(742\) −0.781153 1.35300i −0.0286770 0.0496701i
\(743\) 21.1803 + 36.6854i 0.777031 + 1.34586i 0.933646 + 0.358198i \(0.116609\pi\)
−0.156614 + 0.987660i \(0.550058\pi\)
\(744\) 1.36475 + 0.787936i 0.0500340 + 0.0288871i
\(745\) −9.38197 + 16.2500i −0.343729 + 0.595355i
\(746\) 2.15905 0.0790486
\(747\) −14.6459 25.3674i −0.535865 0.928146i
\(748\) 0 0
\(749\) 7.01722 12.1542i 0.256404 0.444104i
\(750\) 6.92820i 0.252982i
\(751\) 15.6246 + 27.0626i 0.570150 + 0.987529i 0.996550 + 0.0829943i \(0.0264483\pi\)
−0.426400 + 0.904535i \(0.640218\pi\)
\(752\) −18.7877 32.5413i −0.685118 1.18666i
\(753\) −30.8435 + 17.8075i −1.12400 + 0.648941i
\(754\) 6.00000 10.3923i 0.218507 0.378465i
\(755\) −5.34752 −0.194616
\(756\) 9.63420i 0.350392i
\(757\) 11.0000 0.399802 0.199901 0.979816i \(-0.435938\pi\)
0.199901 + 0.979816i \(0.435938\pi\)
\(758\) 3.01722 5.22598i 0.109590 0.189816i
\(759\) 0 0
\(760\) 0.909830 + 1.57587i 0.0330030 + 0.0571629i
\(761\) −3.48936 6.04374i −0.126489 0.219086i 0.795825 0.605527i \(-0.207038\pi\)
−0.922314 + 0.386441i \(0.873704\pi\)
\(762\) 6.98786i 0.253143i
\(763\) 3.57295 6.18853i 0.129349 0.224040i
\(764\) −11.0213 −0.398736
\(765\) 18.0000 0.650791
\(766\) −7.58359 −0.274006
\(767\) 5.23607 9.06914i 0.189063 0.327468i
\(768\) 8.34346 + 4.81710i 0.301069 + 0.173822i
\(769\) 7.89919 + 13.6818i 0.284852 + 0.493378i 0.972573 0.232597i \(-0.0747222\pi\)
−0.687721 + 0.725975i \(0.741389\pi\)
\(770\) 0 0
\(771\) −22.3647 12.9123i −0.805447 0.465025i
\(772\) −10.1976 + 17.6627i −0.367018 + 0.635694i
\(773\) 23.6525 0.850720 0.425360 0.905024i \(-0.360147\pi\)
0.425360 + 0.905024i \(0.360147\pi\)
\(774\) 2.12461 0.0763676
\(775\) −2.14590 −0.0770829
\(776\) −4.41641 + 7.64944i −0.158540 + 0.274599i
\(777\) 8.81643i 0.316288i
\(778\) −4.32624 7.49326i −0.155103 0.268647i
\(779\) 1.26393 + 2.18919i 0.0452851 + 0.0784360i
\(780\) 22.2492 12.8456i 0.796650 0.459946i
\(781\) 0 0
\(782\) −8.56231 −0.306187
\(783\) 21.8435 + 12.6113i 0.780622 + 0.450692i
\(784\) −18.8754 −0.674121
\(785\) 4.41641 7.64944i 0.157628 0.273020i
\(786\) 12.1672 7.02473i 0.433989 0.250564i
\(787\) −18.0000 31.1769i −0.641631 1.11134i −0.985069 0.172162i \(-0.944925\pi\)
0.343438 0.939175i \(-0.388408\pi\)
\(788\) 7.63525 + 13.2246i 0.271995 + 0.471109i
\(789\) 22.0113i 0.783621i
\(790\) −2.49342 + 4.31873i −0.0887120 + 0.153654i
\(791\) −17.2361 −0.612844
\(792\) 0 0
\(793\) −70.2492 −2.49462
\(794\) −0.405765 + 0.702805i −0.0144001 + 0.0249416i
\(795\) −7.58359 4.37839i −0.268962 0.155285i
\(796\) −6.62461 11.4742i −0.234803 0.406691i
\(797\) −12.1353 21.0189i −0.429853 0.744527i 0.567007 0.823713i \(-0.308101\pi\)
−0.996860 + 0.0791861i \(0.974768\pi\)
\(798\) 0.572949 + 0.330792i 0.0202822 + 0.0117099i
\(799\) −28.9894 + 50.2110i −1.02557 + 1.77634i
\(800\) 14.3951 0.508944
\(801\) −10.1459 + 17.5732i −0.358488 + 0.620919i
\(802\) −5.56231 −0.196412
\(803\) 0 0
\(804\) 19.2684i 0.679544i
\(805\) −2.85410 4.94345i −0.100594 0.174234i
\(806\) −0.763932 1.32317i −0.0269084 0.0466066i
\(807\) 31.9058 18.4208i 1.12314 0.648443i
\(808\) 6.23607 10.8012i 0.219384 0.379984i
\(809\) −18.0902 −0.636017 −0.318008 0.948088i \(-0.603014\pi\)
−0.318008 + 0.948088i \(0.603014\pi\)
\(810\) −2.12461 3.67994i −0.0746512 0.129300i
\(811\) 8.68692 0.305039 0.152519 0.988300i \(-0.451261\pi\)
0.152519 + 0.988300i \(0.451261\pi\)
\(812\) 4.50000 7.79423i 0.157919 0.273524i
\(813\) −16.1459 + 9.32184i −0.566261 + 0.326931i
\(814\) 0 0
\(815\) 12.7984 + 22.1674i 0.448307 + 0.776491i
\(816\) 26.4493i 0.925911i
\(817\) −0.927051 + 1.60570i −0.0324334 + 0.0561763i
\(818\) 12.8885 0.450637
\(819\) 9.70820 16.8151i 0.339232 0.587567i
\(820\) −5.79335 −0.202313
\(821\) −19.1074 + 33.0950i −0.666853 + 1.15502i 0.311927 + 0.950106i \(0.399026\pi\)
−0.978779 + 0.204916i \(0.934308\pi\)
\(822\) 4.93769 + 2.85078i 0.172222 + 0.0994323i
\(823\) 21.1459 + 36.6258i 0.737100 + 1.27669i 0.953796 + 0.300455i \(0.0971385\pi\)
−0.216696 + 0.976239i \(0.569528\pi\)
\(824\) 7.53444 + 13.0500i 0.262475 + 0.454620i
\(825\) 0 0
\(826\) −0.309017 + 0.535233i −0.0107521 + 0.0186231i
\(827\) −57.0344 −1.98328 −0.991641 0.129028i \(-0.958814\pi\)
−0.991641 + 0.129028i \(0.958814\pi\)
\(828\) −12.8435 22.2455i −0.446341 0.773085i
\(829\) 43.5410 1.51224 0.756121 0.654432i \(-0.227092\pi\)
0.756121 + 0.654432i \(0.227092\pi\)
\(830\) 2.30495 3.99229i 0.0800060 0.138575i
\(831\) 33.3178i 1.15578i
\(832\) −15.2361 26.3896i −0.528216 0.914896i
\(833\) 14.5623 + 25.2227i 0.504554 + 0.873913i
\(834\) 5.56231 3.21140i 0.192607 0.111202i
\(835\) −3.56231 + 6.17009i −0.123279 + 0.213525i
\(836\) 0 0
\(837\) 2.78115 1.60570i 0.0961307 0.0555011i
\(838\) −3.09017 −0.106748
\(839\) 8.64590 14.9751i 0.298490 0.516999i −0.677301 0.735706i \(-0.736851\pi\)
0.975791 + 0.218707i \(0.0701839\pi\)
\(840\) −2.72949 + 1.57587i −0.0941764 + 0.0543727i
\(841\) 2.71885 + 4.70918i 0.0937533 + 0.162386i
\(842\) 1.95492 + 3.38601i 0.0673708 + 0.116690i
\(843\) 16.1535i 0.556357i
\(844\) 18.9787 32.8721i 0.653274 1.13150i
\(845\) −35.7082 −1.22840
\(846\) 13.6869 0.470566
\(847\) 0 0
\(848\) −6.43363 + 11.1434i −0.220932 + 0.382665i
\(849\) −25.5000 14.7224i −0.875158 0.505273i
\(850\) −3.21885 5.57521i −0.110406 0.191228i
\(851\) 11.7533 + 20.3573i 0.402898 + 0.697839i
\(852\) 8.09268 + 4.67231i 0.277251 + 0.160071i
\(853\) 17.7188 30.6899i 0.606682 1.05080i −0.385102 0.922874i \(-0.625834\pi\)
0.991783 0.127929i \(-0.0408331\pi\)
\(854\) 4.14590 0.141870
\(855\) 3.70820 0.126818
\(856\) 20.6606 0.706165
\(857\) −12.6803 + 21.9630i −0.433152 + 0.750242i −0.997143 0.0755396i \(-0.975932\pi\)
0.563991 + 0.825781i \(0.309265\pi\)
\(858\) 0 0
\(859\) 16.2812 + 28.1998i 0.555506 + 0.962164i 0.997864 + 0.0653258i \(0.0208087\pi\)
−0.442358 + 0.896838i \(0.645858\pi\)
\(860\) −2.12461 3.67994i −0.0724487 0.125485i
\(861\) −3.79180 + 2.18919i −0.129224 + 0.0746075i
\(862\) −6.50658 + 11.2697i −0.221615 + 0.383848i
\(863\) 14.4508 0.491913 0.245956 0.969281i \(-0.420898\pi\)
0.245956 + 0.969281i \(0.420898\pi\)
\(864\) −18.6565 + 10.7714i −0.634708 + 0.366449i
\(865\) 28.5410 0.970424
\(866\) 2.81559 4.87675i 0.0956778 0.165719i
\(867\) −9.84346 + 5.68312i −0.334301 + 0.193009i
\(868\) −0.572949 0.992377i −0.0194472 0.0336835i
\(869\) 0 0
\(870\) 3.96951i 0.134579i
\(871\) 19.4164 33.6302i 0.657900 1.13952i
\(872\) 10.5197 0.356243
\(873\) 9.00000 + 15.5885i 0.304604 + 0.527589i
\(874\) −1.76393 −0.0596659
\(875\) 5.23607 9.06914i 0.177011 0.306593i
\(876\) 0.405765 + 0.234268i 0.0137095 + 0.00791520i
\(877\) −5.79837 10.0431i −0.195797 0.339131i 0.751364 0.659888i \(-0.229396\pi\)
−0.947162 + 0.320757i \(0.896063\pi\)
\(878\) −0.135255 0.234268i −0.00456463 0.00790618i
\(879\) −43.7705 25.2709i −1.47634 0.852367i
\(880\) 0 0
\(881\) 1.81966 0.0613059 0.0306530 0.999530i \(-0.490241\pi\)
0.0306530 + 0.999530i \(0.490241\pi\)
\(882\) 3.43769 5.95426i 0.115753 0.200490i
\(883\) −35.6525 −1.19980 −0.599901 0.800074i \(-0.704793\pi\)
−0.599901 + 0.800074i \(0.704793\pi\)
\(884\) −29.1246 + 50.4453i −0.979567 + 1.69666i
\(885\) 3.46410i 0.116445i
\(886\) −0.236068 0.408882i −0.00793086 0.0137367i
\(887\) 2.01722 + 3.49393i 0.0677316 + 0.117315i 0.897902 0.440194i \(-0.145090\pi\)
−0.830171 + 0.557509i \(0.811757\pi\)
\(888\) 11.2401 6.48949i 0.377194 0.217773i
\(889\) −5.28115 + 9.14723i −0.177124 + 0.306788i
\(890\) −3.19350 −0.107046
\(891\) 0 0
\(892\) 28.7508 0.962647
\(893\) −5.97214 + 10.3440i −0.199850 + 0.346150i
\(894\) −8.69756 + 5.02154i −0.290890 + 0.167945i
\(895\) −3.12461 5.41199i −0.104444 0.180903i
\(896\) 5.04508 + 8.73834i 0.168544 + 0.291928i
\(897\) 51.7685i 1.72850i
\(898\) 1.42705 2.47172i 0.0476213 0.0824825i
\(899\) −3.00000 −0.100056
\(900\) 9.65654 16.7256i 0.321885 0.557521i
\(901\) 19.8541 0.661436
\(902\) 0 0
\(903\) −2.78115 1.60570i −0.0925510 0.0534343i
\(904\) −12.6869 21.9744i −0.421961 0.730857i
\(905\) −6.12461 10.6081i −0.203589 0.352626i
\(906\) −2.47871 1.43109i −0.0823497 0.0475446i
\(907\) 7.29180 12.6298i 0.242120 0.419364i −0.719198 0.694805i \(-0.755491\pi\)
0.961318 + 0.275441i \(0.0888239\pi\)
\(908\) 30.8115 1.02252
\(909\) −12.7082 22.0113i −0.421505 0.730067i
\(910\) 3.05573 0.101296
\(911\) 9.59017 16.6107i 0.317737 0.550336i −0.662279 0.749257i \(-0.730411\pi\)
0.980015 + 0.198922i \(0.0637439\pi\)
\(912\) 5.44886i 0.180430i
\(913\) 0 0
\(914\) −0.190983 0.330792i −0.00631716 0.0109416i
\(915\) 20.1246 11.6190i 0.665299 0.384111i
\(916\) 9.43769 16.3466i 0.311830 0.540106i
\(917\) −21.2361 −0.701277
\(918\) 8.34346 + 4.81710i 0.275375 + 0.158988i
\(919\) −26.8673 −0.886269 −0.443135 0.896455i \(-0.646134\pi\)
−0.443135 + 0.896455i \(0.646134\pi\)
\(920\) 4.20163 7.27743i 0.138524 0.239930i
\(921\) −11.7812 + 6.80185i −0.388202 + 0.224129i
\(922\) −3.08359 5.34094i −0.101553 0.175894i
\(923\) −9.41641 16.3097i −0.309945 0.536840i
\(924\) 0 0
\(925\) −8.83688 + 15.3059i −0.290555 + 0.503256i
\(926\) −6.49342 −0.213387
\(927\) 30.7082 1.00859
\(928\) 20.1246 0.660623
\(929\) 24.1353 41.8035i 0.791852 1.37153i −0.132967 0.991120i \(-0.542450\pi\)
0.924819 0.380407i \(-0.124216\pi\)
\(930\) 0.437694 + 0.252703i 0.0143526 + 0.00828645i
\(931\) 3.00000 + 5.19615i 0.0983210 + 0.170297i
\(932\) −10.3131 17.8628i −0.337816 0.585115i
\(933\) 22.7705 + 13.1466i 0.745473 + 0.430399i
\(934\) −0.145898 + 0.252703i −0.00477393 + 0.00826869i
\(935\) 0 0
\(936\) 28.5836 0.934284
\(937\) −23.0344 −0.752502 −0.376251 0.926518i \(-0.622787\pi\)
−0.376251 + 0.926518i \(0.622787\pi\)
\(938\) −1.14590 + 1.98475i −0.0374149 + 0.0648045i
\(939\) 6.01392i 0.196257i
\(940\) −13.6869 23.7064i −0.446418 0.773219i
\(941\) −13.5795 23.5204i −0.442680 0.766744i 0.555207 0.831712i \(-0.312639\pi\)
−0.997887 + 0.0649678i \(0.979306\pi\)
\(942\) 4.09424 2.36381i 0.133397 0.0770170i
\(943\) 5.83688 10.1098i 0.190075 0.329220i
\(944\) 5.09017 0.165671
\(945\) 6.42280i 0.208934i
\(946\) 0 0
\(947\) −18.3541 + 31.7902i −0.596428 + 1.03304i 0.396915 + 0.917855i \(0.370081\pi\)
−0.993344 + 0.115189i \(0.963253\pi\)
\(948\) 29.3754 16.9599i 0.954068 0.550832i
\(949\) −0.472136 0.817763i −0.0153262 0.0265457i
\(950\) −0.663119 1.14856i −0.0215144 0.0372641i
\(951\) 36.2765i 1.17635i
\(952\) 3.57295 6.18853i 0.115800 0.200571i
\(953\) −9.49342 −0.307522 −0.153761 0.988108i \(-0.549139\pi\)
−0.153761 + 0.988108i \(0.549139\pi\)
\(954\) −2.34346 4.05899i −0.0758723 0.131415i
\(955\) −7.34752 −0.237760
\(956\) 9.70820 16.8151i 0.313986 0.543839i
\(957\) 0 0
\(958\) −2.24671 3.89142i −0.0725879 0.125726i
\(959\) −4.30902 7.46344i −0.139145 0.241007i
\(960\) 8.72949 + 5.03997i 0.281743 + 0.162664i
\(961\) 15.3090 26.5160i 0.493839 0.855355i
\(962\) −12.5836 −0.405711
\(963\) 21.0517 36.4625i 0.678380 1.17499i
\(964\) 49.7508 1.60236
\(965\) −6.79837 + 11.7751i −0.218847 + 0.379055i
\(966\) 3.05522i 0.0983001i
\(967\) −26.2426 45.4536i −0.843907 1.46169i −0.886567 0.462599i \(-0.846917\pi\)
0.0426608 0.999090i \(-0.486417\pi\)
\(968\) 0 0
\(969\) −7.28115 + 4.20378i −0.233904 + 0.135045i
\(970\) −1.41641 + 2.45329i −0.0454781 + 0.0787704i
\(971\) 9.27051 0.297505 0.148752 0.988874i \(-0.452474\pi\)
0.148752 + 0.988874i \(0.452474\pi\)
\(972\) 28.9026i 0.927051i
\(973\) −9.70820 −0.311231
\(974\) −2.47871 + 4.29326i −0.0794231 + 0.137565i
\(975\) −33.7082 + 19.4614i −1.07953 + 0.623265i
\(976\) −17.0729 29.5712i −0.546492 0.946552i
\(977\) −7.88197 13.6520i −0.252166 0.436765i 0.711956 0.702224i \(-0.247810\pi\)
−0.964122 + 0.265459i \(0.914476\pi\)
\(978\) 13.7002i 0.438085i
\(979\) 0 0
\(980\) −13.7508 −0.439252
\(981\) 10.7188 18.5656i 0.342226 0.592754i
\(982\) −2.79837 −0.0892997
\(983\) −4.62868 + 8.01710i −0.147632 + 0.255706i −0.930352 0.366668i \(-0.880498\pi\)
0.782720 + 0.622374i \(0.213832\pi\)
\(984\) −5.58204 3.22279i −0.177949 0.102739i
\(985\) 5.09017 + 8.81643i 0.162186 + 0.280915i
\(986\) −4.50000 7.79423i −0.143309 0.248219i
\(987\) −17.9164 10.3440i −0.570286 0.329255i
\(988\) −6.00000 + 10.3923i −0.190885 + 0.330623i
\(989\) 8.56231 0.272265
\(990\) 0 0
\(991\) 20.5967 0.654277 0.327139 0.944976i \(-0.393916\pi\)
0.327139 + 0.944976i \(0.393916\pi\)
\(992\) 1.28115 2.21902i 0.0406766 0.0704540i
\(993\) 24.9700i 0.792397i
\(994\) 0.555728 + 0.962549i 0.0176266 + 0.0305302i
\(995\) −4.41641 7.64944i −0.140010 0.242504i
\(996\) −27.1550 + 15.6779i −0.860439 + 0.496775i
\(997\) −3.69098 + 6.39297i −0.116895 + 0.202467i −0.918536 0.395338i \(-0.870627\pi\)
0.801641 + 0.597806i \(0.203961\pi\)
\(998\) −14.6738 −0.464490
\(999\) 26.4493i 0.836819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.g.727.1 4
9.2 odd 6 9801.2.a.bb.1.1 2
9.4 even 3 inner 1089.2.e.g.364.1 4
9.7 even 3 9801.2.a.n.1.2 2
11.3 even 5 99.2.m.a.97.1 yes 8
11.4 even 5 99.2.m.a.16.1 8
11.10 odd 2 1089.2.e.d.727.2 4
33.14 odd 10 297.2.n.a.262.1 8
33.26 odd 10 297.2.n.a.181.1 8
99.4 even 15 99.2.m.a.49.1 yes 8
99.14 odd 30 297.2.n.a.64.1 8
99.25 even 15 891.2.f.b.163.1 4
99.43 odd 6 9801.2.a.bc.1.1 2
99.47 odd 30 891.2.f.a.163.1 4
99.58 even 15 99.2.m.a.31.1 yes 8
99.59 odd 30 297.2.n.a.280.1 8
99.65 even 6 9801.2.a.m.1.2 2
99.70 even 15 891.2.f.b.82.1 4
99.76 odd 6 1089.2.e.d.364.2 4
99.92 odd 30 891.2.f.a.82.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.a.16.1 8 11.4 even 5
99.2.m.a.31.1 yes 8 99.58 even 15
99.2.m.a.49.1 yes 8 99.4 even 15
99.2.m.a.97.1 yes 8 11.3 even 5
297.2.n.a.64.1 8 99.14 odd 30
297.2.n.a.181.1 8 33.26 odd 10
297.2.n.a.262.1 8 33.14 odd 10
297.2.n.a.280.1 8 99.59 odd 30
891.2.f.a.82.1 4 99.92 odd 30
891.2.f.a.163.1 4 99.47 odd 30
891.2.f.b.82.1 4 99.70 even 15
891.2.f.b.163.1 4 99.25 even 15
1089.2.e.d.364.2 4 99.76 odd 6
1089.2.e.d.727.2 4 11.10 odd 2
1089.2.e.g.364.1 4 9.4 even 3 inner
1089.2.e.g.727.1 4 1.1 even 1 trivial
9801.2.a.m.1.2 2 99.65 even 6
9801.2.a.n.1.2 2 9.7 even 3
9801.2.a.bb.1.1 2 9.2 odd 6
9801.2.a.bc.1.1 2 99.43 odd 6