Properties

Label 1089.2.e.d.727.2
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.2
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.d.364.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 + 0.330792i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(0.927051 + 1.60570i) q^{4} +(0.618034 + 1.07047i) q^{5} -0.661585i q^{6} +(-0.500000 + 0.866025i) q^{7} -1.47214 q^{8} +(1.50000 - 2.59808i) q^{9} -0.472136 q^{10} +(-2.78115 - 1.60570i) q^{12} +(-3.23607 - 5.60503i) q^{13} +(-0.190983 - 0.330792i) q^{14} +(-1.85410 - 1.07047i) q^{15} +(-1.57295 + 2.72443i) q^{16} -4.85410 q^{17} +(0.572949 + 0.992377i) q^{18} -1.00000 q^{19} +(-1.14590 + 1.98475i) q^{20} -1.73205i q^{21} +(-2.30902 - 3.99933i) q^{23} +(2.20820 - 1.27491i) q^{24} +(1.73607 - 3.00696i) q^{25} +2.47214 q^{26} +5.19615i q^{27} -1.85410 q^{28} +(-2.42705 + 4.20378i) q^{29} +(0.708204 - 0.408882i) q^{30} +(-0.309017 - 0.535233i) q^{31} +(-2.07295 - 3.59045i) q^{32} +(0.927051 - 1.60570i) q^{34} -1.23607 q^{35} +5.56231 q^{36} -5.09017 q^{37} +(0.190983 - 0.330792i) q^{38} +(9.70820 + 5.60503i) q^{39} +(-0.909830 - 1.57587i) q^{40} +(-1.26393 - 2.18919i) q^{41} +(0.572949 + 0.330792i) q^{42} +(0.927051 - 1.60570i) q^{43} +3.70820 q^{45} +1.76393 q^{46} +(-5.97214 + 10.3440i) q^{47} -5.44886i q^{48} +(3.00000 + 5.19615i) q^{49} +(0.663119 + 1.14856i) q^{50} +(7.28115 - 4.20378i) q^{51} +(6.00000 - 10.3923i) q^{52} +4.09017 q^{53} +(-1.71885 - 0.992377i) q^{54} +(0.736068 - 1.27491i) q^{56} +(1.50000 - 0.866025i) q^{57} +(-0.927051 - 1.60570i) q^{58} +(-0.809017 - 1.40126i) q^{59} -3.96951i q^{60} +(5.42705 - 9.39993i) q^{61} +0.236068 q^{62} +(1.50000 + 2.59808i) q^{63} -4.70820 q^{64} +(4.00000 - 6.92820i) q^{65} +(-3.00000 - 5.19615i) q^{67} +(-4.50000 - 7.79423i) q^{68} +(6.92705 + 3.99933i) q^{69} +(0.236068 - 0.408882i) q^{70} -2.90983 q^{71} +(-2.20820 + 3.82472i) q^{72} +0.145898 q^{73} +(0.972136 - 1.68379i) q^{74} +6.01392i q^{75} +(-0.927051 - 1.60570i) q^{76} +(-3.70820 + 2.14093i) q^{78} +(5.28115 - 9.14723i) q^{79} -3.88854 q^{80} +(-4.50000 - 7.79423i) q^{81} +0.965558 q^{82} +(-4.88197 + 8.45581i) q^{83} +(2.78115 - 1.60570i) q^{84} +(-3.00000 - 5.19615i) q^{85} +(0.354102 + 0.613323i) q^{86} -8.40755i q^{87} -6.76393 q^{89} +(-0.708204 + 1.22665i) q^{90} +6.47214 q^{91} +(4.28115 - 7.41517i) q^{92} +(0.927051 + 0.535233i) q^{93} +(-2.28115 - 3.95107i) q^{94} +(-0.618034 - 1.07047i) q^{95} +(6.21885 + 3.59045i) q^{96} +(-3.00000 + 5.19615i) q^{97} -2.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 6 q^{3} - 3 q^{4} - 2 q^{5} - 2 q^{7} + 12 q^{8} + 6 q^{9} + 16 q^{10} + 9 q^{12} - 4 q^{13} - 3 q^{14} + 6 q^{15} - 13 q^{16} - 6 q^{17} + 9 q^{18} - 4 q^{19} - 18 q^{20} - 7 q^{23} - 18 q^{24}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 + 0.330792i −0.135045 + 0.233905i −0.925615 0.378467i \(-0.876451\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) 0.927051 + 1.60570i 0.463525 + 0.802850i
\(5\) 0.618034 + 1.07047i 0.276393 + 0.478727i 0.970486 0.241159i \(-0.0775275\pi\)
−0.694092 + 0.719886i \(0.744194\pi\)
\(6\) 0.661585i 0.270091i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) −1.47214 −0.520479
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) −0.472136 −0.149302
\(11\) 0 0
\(12\) −2.78115 1.60570i −0.802850 0.463525i
\(13\) −3.23607 5.60503i −0.897524 1.55456i −0.830650 0.556795i \(-0.812031\pi\)
−0.0668741 0.997761i \(-0.521303\pi\)
\(14\) −0.190983 0.330792i −0.0510424 0.0884080i
\(15\) −1.85410 1.07047i −0.478727 0.276393i
\(16\) −1.57295 + 2.72443i −0.393237 + 0.681107i
\(17\) −4.85410 −1.17729 −0.588646 0.808391i \(-0.700339\pi\)
−0.588646 + 0.808391i \(0.700339\pi\)
\(18\) 0.572949 + 0.992377i 0.135045 + 0.233905i
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) −1.14590 + 1.98475i −0.256231 + 0.443804i
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −2.30902 3.99933i −0.481463 0.833919i 0.518310 0.855193i \(-0.326561\pi\)
−0.999774 + 0.0212736i \(0.993228\pi\)
\(24\) 2.20820 1.27491i 0.450748 0.260239i
\(25\) 1.73607 3.00696i 0.347214 0.601392i
\(26\) 2.47214 0.484826
\(27\) 5.19615i 1.00000i
\(28\) −1.85410 −0.350392
\(29\) −2.42705 + 4.20378i −0.450692 + 0.780622i −0.998429 0.0560290i \(-0.982156\pi\)
0.547737 + 0.836651i \(0.315489\pi\)
\(30\) 0.708204 0.408882i 0.129300 0.0746512i
\(31\) −0.309017 0.535233i −0.0555011 0.0961307i 0.836940 0.547295i \(-0.184342\pi\)
−0.892441 + 0.451164i \(0.851009\pi\)
\(32\) −2.07295 3.59045i −0.366449 0.634708i
\(33\) 0 0
\(34\) 0.927051 1.60570i 0.158988 0.275375i
\(35\) −1.23607 −0.208934
\(36\) 5.56231 0.927051
\(37\) −5.09017 −0.836819 −0.418409 0.908259i \(-0.637412\pi\)
−0.418409 + 0.908259i \(0.637412\pi\)
\(38\) 0.190983 0.330792i 0.0309815 0.0536616i
\(39\) 9.70820 + 5.60503i 1.55456 + 0.897524i
\(40\) −0.909830 1.57587i −0.143857 0.249167i
\(41\) −1.26393 2.18919i −0.197393 0.341895i 0.750289 0.661110i \(-0.229914\pi\)
−0.947682 + 0.319215i \(0.896581\pi\)
\(42\) 0.572949 + 0.330792i 0.0884080 + 0.0510424i
\(43\) 0.927051 1.60570i 0.141374 0.244867i −0.786640 0.617412i \(-0.788181\pi\)
0.928014 + 0.372545i \(0.121515\pi\)
\(44\) 0 0
\(45\) 3.70820 0.552786
\(46\) 1.76393 0.260078
\(47\) −5.97214 + 10.3440i −0.871126 + 1.50883i −0.0102921 + 0.999947i \(0.503276\pi\)
−0.860834 + 0.508887i \(0.830057\pi\)
\(48\) 5.44886i 0.786475i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0.663119 + 1.14856i 0.0937792 + 0.162430i
\(51\) 7.28115 4.20378i 1.01957 0.588646i
\(52\) 6.00000 10.3923i 0.832050 1.44115i
\(53\) 4.09017 0.561828 0.280914 0.959733i \(-0.409362\pi\)
0.280914 + 0.959733i \(0.409362\pi\)
\(54\) −1.71885 0.992377i −0.233905 0.135045i
\(55\) 0 0
\(56\) 0.736068 1.27491i 0.0983612 0.170367i
\(57\) 1.50000 0.866025i 0.198680 0.114708i
\(58\) −0.927051 1.60570i −0.121728 0.210839i
\(59\) −0.809017 1.40126i −0.105325 0.182428i 0.808546 0.588433i \(-0.200255\pi\)
−0.913871 + 0.406005i \(0.866922\pi\)
\(60\) 3.96951i 0.512461i
\(61\) 5.42705 9.39993i 0.694863 1.20354i −0.275364 0.961340i \(-0.588798\pi\)
0.970227 0.242198i \(-0.0778682\pi\)
\(62\) 0.236068 0.0299807
\(63\) 1.50000 + 2.59808i 0.188982 + 0.327327i
\(64\) −4.70820 −0.588525
\(65\) 4.00000 6.92820i 0.496139 0.859338i
\(66\) 0 0
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) −4.50000 7.79423i −0.545705 0.945189i
\(69\) 6.92705 + 3.99933i 0.833919 + 0.481463i
\(70\) 0.236068 0.408882i 0.0282155 0.0488707i
\(71\) −2.90983 −0.345333 −0.172667 0.984980i \(-0.555238\pi\)
−0.172667 + 0.984980i \(0.555238\pi\)
\(72\) −2.20820 + 3.82472i −0.260239 + 0.450748i
\(73\) 0.145898 0.0170761 0.00853804 0.999964i \(-0.497282\pi\)
0.00853804 + 0.999964i \(0.497282\pi\)
\(74\) 0.972136 1.68379i 0.113009 0.195736i
\(75\) 6.01392i 0.694427i
\(76\) −0.927051 1.60570i −0.106340 0.184186i
\(77\) 0 0
\(78\) −3.70820 + 2.14093i −0.419871 + 0.242413i
\(79\) 5.28115 9.14723i 0.594176 1.02914i −0.399486 0.916739i \(-0.630812\pi\)
0.993663 0.112404i \(-0.0358551\pi\)
\(80\) −3.88854 −0.434752
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0.965558 0.106628
\(83\) −4.88197 + 8.45581i −0.535865 + 0.928146i 0.463256 + 0.886225i \(0.346681\pi\)
−0.999121 + 0.0419213i \(0.986652\pi\)
\(84\) 2.78115 1.60570i 0.303449 0.175196i
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) 0.354102 + 0.613323i 0.0381838 + 0.0661363i
\(87\) 8.40755i 0.901384i
\(88\) 0 0
\(89\) −6.76393 −0.716975 −0.358488 0.933534i \(-0.616707\pi\)
−0.358488 + 0.933534i \(0.616707\pi\)
\(90\) −0.708204 + 1.22665i −0.0746512 + 0.129300i
\(91\) 6.47214 0.678464
\(92\) 4.28115 7.41517i 0.446341 0.773085i
\(93\) 0.927051 + 0.535233i 0.0961307 + 0.0555011i
\(94\) −2.28115 3.95107i −0.235283 0.407522i
\(95\) −0.618034 1.07047i −0.0634089 0.109828i
\(96\) 6.21885 + 3.59045i 0.634708 + 0.366449i
\(97\) −3.00000 + 5.19615i −0.304604 + 0.527589i −0.977173 0.212445i \(-0.931857\pi\)
0.672569 + 0.740034i \(0.265191\pi\)
\(98\) −2.29180 −0.231506
\(99\) 0 0
\(100\) 6.43769 0.643769
\(101\) −4.23607 + 7.33708i −0.421505 + 0.730067i −0.996087 0.0883795i \(-0.971831\pi\)
0.574582 + 0.818447i \(0.305165\pi\)
\(102\) 3.21140i 0.317976i
\(103\) 5.11803 + 8.86469i 0.504295 + 0.873464i 0.999988 + 0.00496641i \(0.00158086\pi\)
−0.495693 + 0.868498i \(0.665086\pi\)
\(104\) 4.76393 + 8.25137i 0.467142 + 0.809114i
\(105\) 1.85410 1.07047i 0.180942 0.104467i
\(106\) −0.781153 + 1.35300i −0.0758723 + 0.131415i
\(107\) −14.0344 −1.35676 −0.678380 0.734711i \(-0.737318\pi\)
−0.678380 + 0.734711i \(0.737318\pi\)
\(108\) −8.34346 + 4.81710i −0.802850 + 0.463525i
\(109\) −7.14590 −0.684453 −0.342226 0.939618i \(-0.611181\pi\)
−0.342226 + 0.939618i \(0.611181\pi\)
\(110\) 0 0
\(111\) 7.63525 4.40822i 0.724706 0.418409i
\(112\) −1.57295 2.72443i −0.148630 0.257434i
\(113\) −8.61803 14.9269i −0.810716 1.40420i −0.912363 0.409382i \(-0.865745\pi\)
0.101647 0.994821i \(-0.467589\pi\)
\(114\) 0.661585i 0.0619631i
\(115\) 2.85410 4.94345i 0.266146 0.460979i
\(116\) −9.00000 −0.835629
\(117\) −19.4164 −1.79505
\(118\) 0.618034 0.0568946
\(119\) 2.42705 4.20378i 0.222487 0.385359i
\(120\) 2.72949 + 1.57587i 0.249167 + 0.143857i
\(121\) 0 0
\(122\) 2.07295 + 3.59045i 0.187676 + 0.325064i
\(123\) 3.79180 + 2.18919i 0.341895 + 0.197393i
\(124\) 0.572949 0.992377i 0.0514523 0.0891181i
\(125\) 10.4721 0.936656
\(126\) −1.14590 −0.102085
\(127\) 10.5623 0.937253 0.468627 0.883396i \(-0.344749\pi\)
0.468627 + 0.883396i \(0.344749\pi\)
\(128\) 5.04508 8.73834i 0.445927 0.772368i
\(129\) 3.21140i 0.282748i
\(130\) 1.52786 + 2.64634i 0.134003 + 0.232099i
\(131\) 10.6180 + 18.3910i 0.927702 + 1.60683i 0.787157 + 0.616753i \(0.211552\pi\)
0.140545 + 0.990074i \(0.455115\pi\)
\(132\) 0 0
\(133\) 0.500000 0.866025i 0.0433555 0.0750939i
\(134\) 2.29180 0.197981
\(135\) −5.56231 + 3.21140i −0.478727 + 0.276393i
\(136\) 7.14590 0.612756
\(137\) 4.30902 7.46344i 0.368144 0.637644i −0.621131 0.783707i \(-0.713327\pi\)
0.989275 + 0.146062i \(0.0466600\pi\)
\(138\) −2.64590 + 1.52761i −0.225234 + 0.130039i
\(139\) 4.85410 + 8.40755i 0.411720 + 0.713119i 0.995078 0.0990957i \(-0.0315950\pi\)
−0.583358 + 0.812215i \(0.698262\pi\)
\(140\) −1.14590 1.98475i −0.0968461 0.167742i
\(141\) 20.6881i 1.74225i
\(142\) 0.555728 0.962549i 0.0466357 0.0807753i
\(143\) 0 0
\(144\) 4.71885 + 8.17328i 0.393237 + 0.681107i
\(145\) −6.00000 −0.498273
\(146\) −0.0278640 + 0.0482619i −0.00230604 + 0.00399419i
\(147\) −9.00000 5.19615i −0.742307 0.428571i
\(148\) −4.71885 8.17328i −0.387887 0.671840i
\(149\) −7.59017 13.1466i −0.621811 1.07701i −0.989148 0.146920i \(-0.953064\pi\)
0.367337 0.930088i \(-0.380269\pi\)
\(150\) −1.98936 1.14856i −0.162430 0.0937792i
\(151\) 2.16312 3.74663i 0.176032 0.304897i −0.764486 0.644641i \(-0.777007\pi\)
0.940518 + 0.339744i \(0.110340\pi\)
\(152\) 1.47214 0.119406
\(153\) −7.28115 + 12.6113i −0.588646 + 1.01957i
\(154\) 0 0
\(155\) 0.381966 0.661585i 0.0306802 0.0531397i
\(156\) 20.7846i 1.66410i
\(157\) −3.57295 6.18853i −0.285152 0.493898i 0.687494 0.726190i \(-0.258711\pi\)
−0.972646 + 0.232292i \(0.925378\pi\)
\(158\) 2.01722 + 3.49393i 0.160481 + 0.277962i
\(159\) −6.13525 + 3.54219i −0.486557 + 0.280914i
\(160\) 2.56231 4.43804i 0.202568 0.350858i
\(161\) 4.61803 0.363952
\(162\) 3.43769 0.270091
\(163\) 20.7082 1.62199 0.810996 0.585052i \(-0.198926\pi\)
0.810996 + 0.585052i \(0.198926\pi\)
\(164\) 2.34346 4.05899i 0.182993 0.316954i
\(165\) 0 0
\(166\) −1.86475 3.22983i −0.144732 0.250684i
\(167\) −2.88197 4.99171i −0.223013 0.386270i 0.732708 0.680543i \(-0.238256\pi\)
−0.955722 + 0.294273i \(0.904923\pi\)
\(168\) 2.54981i 0.196722i
\(169\) −14.4443 + 25.0182i −1.11110 + 1.92448i
\(170\) 2.29180 0.175773
\(171\) −1.50000 + 2.59808i −0.114708 + 0.198680i
\(172\) 3.43769 0.262122
\(173\) −11.5451 + 19.9967i −0.877757 + 1.52032i −0.0239595 + 0.999713i \(0.507627\pi\)
−0.853797 + 0.520606i \(0.825706\pi\)
\(174\) 2.78115 + 1.60570i 0.210839 + 0.121728i
\(175\) 1.73607 + 3.00696i 0.131234 + 0.227305i
\(176\) 0 0
\(177\) 2.42705 + 1.40126i 0.182428 + 0.105325i
\(178\) 1.29180 2.23746i 0.0968242 0.167704i
\(179\) −5.05573 −0.377883 −0.188941 0.981988i \(-0.560506\pi\)
−0.188941 + 0.981988i \(0.560506\pi\)
\(180\) 3.43769 + 5.95426i 0.256231 + 0.443804i
\(181\) −9.90983 −0.736592 −0.368296 0.929709i \(-0.620059\pi\)
−0.368296 + 0.929709i \(0.620059\pi\)
\(182\) −1.23607 + 2.14093i −0.0916235 + 0.158696i
\(183\) 18.7999i 1.38973i
\(184\) 3.39919 + 5.88756i 0.250591 + 0.434037i
\(185\) −3.14590 5.44886i −0.231291 0.400608i
\(186\) −0.354102 + 0.204441i −0.0259640 + 0.0149903i
\(187\) 0 0
\(188\) −22.1459 −1.61516
\(189\) −4.50000 2.59808i −0.327327 0.188982i
\(190\) 0.472136 0.0342523
\(191\) −2.97214 + 5.14789i −0.215056 + 0.372488i −0.953290 0.302057i \(-0.902327\pi\)
0.738234 + 0.674545i \(0.235660\pi\)
\(192\) 7.06231 4.07742i 0.509678 0.294263i
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) −1.14590 1.98475i −0.0822707 0.142497i
\(195\) 13.8564i 0.992278i
\(196\) −5.56231 + 9.63420i −0.397308 + 0.688157i
\(197\) −8.23607 −0.586796 −0.293398 0.955990i \(-0.594786\pi\)
−0.293398 + 0.955990i \(0.594786\pi\)
\(198\) 0 0
\(199\) −7.14590 −0.506559 −0.253280 0.967393i \(-0.581509\pi\)
−0.253280 + 0.967393i \(0.581509\pi\)
\(200\) −2.55573 + 4.42665i −0.180717 + 0.313011i
\(201\) 9.00000 + 5.19615i 0.634811 + 0.366508i
\(202\) −1.61803 2.80252i −0.113844 0.197184i
\(203\) −2.42705 4.20378i −0.170346 0.295047i
\(204\) 13.5000 + 7.79423i 0.945189 + 0.545705i
\(205\) 1.56231 2.70599i 0.109116 0.188995i
\(206\) −3.90983 −0.272411
\(207\) −13.8541 −0.962927
\(208\) 20.3607 1.41176
\(209\) 0 0
\(210\) 0.817763i 0.0564310i
\(211\) 10.2361 + 17.7294i 0.704680 + 1.22054i 0.966807 + 0.255508i \(0.0822428\pi\)
−0.262127 + 0.965033i \(0.584424\pi\)
\(212\) 3.79180 + 6.56758i 0.260422 + 0.451063i
\(213\) 4.36475 2.51999i 0.299067 0.172667i
\(214\) 2.68034 4.64248i 0.183224 0.317354i
\(215\) 2.29180 0.156299
\(216\) 7.64944i 0.520479i
\(217\) 0.618034 0.0419549
\(218\) 1.36475 2.36381i 0.0924322 0.160097i
\(219\) −0.218847 + 0.126351i −0.0147883 + 0.00853804i
\(220\) 0 0
\(221\) 15.7082 + 27.2074i 1.05665 + 1.83017i
\(222\) 3.36758i 0.226017i
\(223\) 7.75329 13.4291i 0.519199 0.899278i −0.480552 0.876966i \(-0.659564\pi\)
0.999751 0.0223124i \(-0.00710285\pi\)
\(224\) 4.14590 0.277009
\(225\) −5.20820 9.02087i −0.347214 0.601392i
\(226\) 6.58359 0.437934
\(227\) −8.30902 + 14.3916i −0.551489 + 0.955207i 0.446679 + 0.894694i \(0.352607\pi\)
−0.998167 + 0.0605122i \(0.980727\pi\)
\(228\) 2.78115 + 1.60570i 0.184186 + 0.106340i
\(229\) −5.09017 8.81643i −0.336368 0.582606i 0.647379 0.762168i \(-0.275865\pi\)
−0.983747 + 0.179562i \(0.942532\pi\)
\(230\) 1.09017 + 1.88823i 0.0718837 + 0.124506i
\(231\) 0 0
\(232\) 3.57295 6.18853i 0.234576 0.406297i
\(233\) 11.1246 0.728798 0.364399 0.931243i \(-0.381275\pi\)
0.364399 + 0.931243i \(0.381275\pi\)
\(234\) 3.70820 6.42280i 0.242413 0.419871i
\(235\) −14.7639 −0.963093
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) 18.2945i 1.18835i
\(238\) 0.927051 + 1.60570i 0.0600918 + 0.104082i
\(239\) 5.23607 + 9.06914i 0.338693 + 0.586634i 0.984187 0.177132i \(-0.0566818\pi\)
−0.645494 + 0.763765i \(0.723349\pi\)
\(240\) 5.83282 3.36758i 0.376507 0.217376i
\(241\) −13.4164 + 23.2379i −0.864227 + 1.49688i 0.00358606 + 0.999994i \(0.498859\pi\)
−0.867813 + 0.496891i \(0.834475\pi\)
\(242\) 0 0
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 20.1246 1.28835
\(245\) −3.70820 + 6.42280i −0.236908 + 0.410337i
\(246\) −1.44834 + 0.836198i −0.0923426 + 0.0533140i
\(247\) 3.23607 + 5.60503i 0.205906 + 0.356640i
\(248\) 0.454915 + 0.787936i 0.0288871 + 0.0500340i
\(249\) 16.9116i 1.07173i
\(250\) −2.00000 + 3.46410i −0.126491 + 0.219089i
\(251\) 20.5623 1.29788 0.648941 0.760839i \(-0.275212\pi\)
0.648941 + 0.760839i \(0.275212\pi\)
\(252\) −2.78115 + 4.81710i −0.175196 + 0.303449i
\(253\) 0 0
\(254\) −2.01722 + 3.49393i −0.126572 + 0.219229i
\(255\) 9.00000 + 5.19615i 0.563602 + 0.325396i
\(256\) −2.78115 4.81710i −0.173822 0.301069i
\(257\) 7.45492 + 12.9123i 0.465025 + 0.805447i 0.999203 0.0399255i \(-0.0127121\pi\)
−0.534178 + 0.845372i \(0.679379\pi\)
\(258\) −1.06231 0.613323i −0.0661363 0.0381838i
\(259\) 2.54508 4.40822i 0.158144 0.273913i
\(260\) 14.8328 0.919892
\(261\) 7.28115 + 12.6113i 0.450692 + 0.780622i
\(262\) −8.11146 −0.501127
\(263\) −6.35410 + 11.0056i −0.391811 + 0.678636i −0.992688 0.120705i \(-0.961485\pi\)
0.600878 + 0.799341i \(0.294818\pi\)
\(264\) 0 0
\(265\) 2.52786 + 4.37839i 0.155285 + 0.268962i
\(266\) 0.190983 + 0.330792i 0.0117099 + 0.0202822i
\(267\) 10.1459 5.85774i 0.620919 0.358488i
\(268\) 5.56231 9.63420i 0.339772 0.588502i
\(269\) −21.2705 −1.29689 −0.648443 0.761263i \(-0.724579\pi\)
−0.648443 + 0.761263i \(0.724579\pi\)
\(270\) 2.45329i 0.149302i
\(271\) −10.7639 −0.653862 −0.326931 0.945048i \(-0.606015\pi\)
−0.326931 + 0.945048i \(0.606015\pi\)
\(272\) 7.63525 13.2246i 0.462955 0.801862i
\(273\) −9.70820 + 5.60503i −0.587567 + 0.339232i
\(274\) 1.64590 + 2.85078i 0.0994323 + 0.172222i
\(275\) 0 0
\(276\) 14.8303i 0.892682i
\(277\) −9.61803 + 16.6589i −0.577892 + 1.00094i 0.417829 + 0.908526i \(0.362791\pi\)
−0.995721 + 0.0924121i \(0.970542\pi\)
\(278\) −3.70820 −0.222403
\(279\) −1.85410 −0.111002
\(280\) 1.81966 0.108745
\(281\) −4.66312 + 8.07676i −0.278178 + 0.481819i −0.970932 0.239355i \(-0.923064\pi\)
0.692754 + 0.721174i \(0.256397\pi\)
\(282\) 6.84346 + 3.95107i 0.407522 + 0.235283i
\(283\) −8.50000 14.7224i −0.505273 0.875158i −0.999981 0.00609896i \(-0.998059\pi\)
0.494709 0.869059i \(-0.335275\pi\)
\(284\) −2.69756 4.67231i −0.160071 0.277251i
\(285\) 1.85410 + 1.07047i 0.109828 + 0.0634089i
\(286\) 0 0
\(287\) 2.52786 0.149215
\(288\) −12.4377 −0.732898
\(289\) 6.56231 0.386018
\(290\) 1.14590 1.98475i 0.0672894 0.116549i
\(291\) 10.3923i 0.609208i
\(292\) 0.135255 + 0.234268i 0.00791520 + 0.0137095i
\(293\) −14.5902 25.2709i −0.852367 1.47634i −0.879067 0.476699i \(-0.841833\pi\)
0.0266997 0.999644i \(-0.491500\pi\)
\(294\) 3.43769 1.98475i 0.200490 0.115753i
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) 7.49342 0.435546
\(297\) 0 0
\(298\) 5.79837 0.335891
\(299\) −14.9443 + 25.8842i −0.864250 + 1.49692i
\(300\) −9.65654 + 5.57521i −0.557521 + 0.321885i
\(301\) 0.927051 + 1.60570i 0.0534343 + 0.0925510i
\(302\) 0.826238 + 1.43109i 0.0475446 + 0.0823497i
\(303\) 14.6742i 0.843009i
\(304\) 1.57295 2.72443i 0.0902148 0.156257i
\(305\) 13.4164 0.768221
\(306\) −2.78115 4.81710i −0.158988 0.275375i
\(307\) −7.85410 −0.448257 −0.224129 0.974560i \(-0.571954\pi\)
−0.224129 + 0.974560i \(0.571954\pi\)
\(308\) 0 0
\(309\) −15.3541 8.86469i −0.873464 0.504295i
\(310\) 0.145898 + 0.252703i 0.00828645 + 0.0143526i
\(311\) −7.59017 13.1466i −0.430399 0.745473i 0.566509 0.824056i \(-0.308294\pi\)
−0.996908 + 0.0785828i \(0.974960\pi\)
\(312\) −14.2918 8.25137i −0.809114 0.467142i
\(313\) −1.73607 + 3.00696i −0.0981284 + 0.169963i −0.910910 0.412605i \(-0.864619\pi\)
0.812782 + 0.582569i \(0.197952\pi\)
\(314\) 2.72949 0.154034
\(315\) −1.85410 + 3.21140i −0.104467 + 0.180942i
\(316\) 19.5836 1.10166
\(317\) −10.4721 + 18.1383i −0.588174 + 1.01875i 0.406298 + 0.913741i \(0.366820\pi\)
−0.994472 + 0.105006i \(0.966514\pi\)
\(318\) 2.70599i 0.151745i
\(319\) 0 0
\(320\) −2.90983 5.03997i −0.162664 0.281743i
\(321\) 21.0517 12.1542i 1.17499 0.678380i
\(322\) −0.881966 + 1.52761i −0.0491500 + 0.0851304i
\(323\) 4.85410 0.270089
\(324\) 8.34346 14.4513i 0.463525 0.802850i
\(325\) −22.4721 −1.24653
\(326\) −3.95492 + 6.85011i −0.219042 + 0.379393i
\(327\) 10.7188 6.18853i 0.592754 0.342226i
\(328\) 1.86068 + 3.22279i 0.102739 + 0.177949i
\(329\) −5.97214 10.3440i −0.329255 0.570286i
\(330\) 0 0
\(331\) −7.20820 + 12.4850i −0.396199 + 0.686236i −0.993253 0.115964i \(-0.963004\pi\)
0.597055 + 0.802201i \(0.296338\pi\)
\(332\) −18.1033 −0.993549
\(333\) −7.63525 + 13.2246i −0.418409 + 0.724706i
\(334\) 2.20163 0.120468
\(335\) 3.70820 6.42280i 0.202601 0.350915i
\(336\) 4.71885 + 2.72443i 0.257434 + 0.148630i
\(337\) −5.73607 9.93516i −0.312464 0.541203i 0.666432 0.745566i \(-0.267821\pi\)
−0.978895 + 0.204364i \(0.934488\pi\)
\(338\) −5.51722 9.55611i −0.300097 0.519784i
\(339\) 25.8541 + 14.9269i 1.40420 + 0.810716i
\(340\) 5.56231 9.63420i 0.301658 0.522488i
\(341\) 0 0
\(342\) −0.572949 0.992377i −0.0309815 0.0536616i
\(343\) −13.0000 −0.701934
\(344\) −1.36475 + 2.36381i −0.0735821 + 0.127448i
\(345\) 9.88690i 0.532293i
\(346\) −4.40983 7.63805i −0.237074 0.410624i
\(347\) −4.44427 7.69770i −0.238581 0.413234i 0.721726 0.692179i \(-0.243349\pi\)
−0.960307 + 0.278944i \(0.910016\pi\)
\(348\) 13.5000 7.79423i 0.723676 0.417815i
\(349\) −2.07295 + 3.59045i −0.110962 + 0.192193i −0.916159 0.400816i \(-0.868727\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(350\) −1.32624 −0.0708904
\(351\) 29.1246 16.8151i 1.55456 0.897524i
\(352\) 0 0
\(353\) 8.20820 14.2170i 0.436879 0.756696i −0.560568 0.828108i \(-0.689417\pi\)
0.997447 + 0.0714123i \(0.0227506\pi\)
\(354\) −0.927051 + 0.535233i −0.0492722 + 0.0284473i
\(355\) −1.79837 3.11487i −0.0954478 0.165320i
\(356\) −6.27051 10.8608i −0.332336 0.575623i
\(357\) 8.40755i 0.444975i
\(358\) 0.965558 1.67240i 0.0510313 0.0883889i
\(359\) 22.8541 1.20619 0.603097 0.797668i \(-0.293933\pi\)
0.603097 + 0.797668i \(0.293933\pi\)
\(360\) −5.45898 −0.287714
\(361\) −18.0000 −0.947368
\(362\) 1.89261 3.27810i 0.0994733 0.172293i
\(363\) 0 0
\(364\) 6.00000 + 10.3923i 0.314485 + 0.544705i
\(365\) 0.0901699 + 0.156179i 0.00471971 + 0.00817478i
\(366\) −6.21885 3.59045i −0.325064 0.187676i
\(367\) 6.35410 11.0056i 0.331681 0.574489i −0.651160 0.758940i \(-0.725717\pi\)
0.982842 + 0.184451i \(0.0590508\pi\)
\(368\) 14.5279 0.757317
\(369\) −7.58359 −0.394786
\(370\) 2.40325 0.124939
\(371\) −2.04508 + 3.54219i −0.106176 + 0.183901i
\(372\) 1.98475i 0.102905i
\(373\) −2.82624 4.89519i −0.146337 0.253463i 0.783534 0.621349i \(-0.213415\pi\)
−0.929871 + 0.367886i \(0.880082\pi\)
\(374\) 0 0
\(375\) −15.7082 + 9.06914i −0.811168 + 0.468328i
\(376\) 8.79180 15.2278i 0.453402 0.785316i
\(377\) 31.4164 1.61803
\(378\) 1.71885 0.992377i 0.0884080 0.0510424i
\(379\) 15.7984 0.811508 0.405754 0.913982i \(-0.367009\pi\)
0.405754 + 0.913982i \(0.367009\pi\)
\(380\) 1.14590 1.98475i 0.0587833 0.101816i
\(381\) −15.8435 + 9.14723i −0.811685 + 0.468627i
\(382\) −1.13525 1.96632i −0.0580847 0.100606i
\(383\) −9.92705 17.1942i −0.507249 0.878580i −0.999965 0.00839030i \(-0.997329\pi\)
0.492716 0.870190i \(-0.336004\pi\)
\(384\) 17.4767i 0.891853i
\(385\) 0 0
\(386\) 4.20163 0.213857
\(387\) −2.78115 4.81710i −0.141374 0.244867i
\(388\) −11.1246 −0.564767
\(389\) 11.3262 19.6176i 0.574263 0.994653i −0.421858 0.906662i \(-0.638622\pi\)
0.996121 0.0879910i \(-0.0280447\pi\)
\(390\) −4.58359 2.64634i −0.232099 0.134003i
\(391\) 11.2082 + 19.4132i 0.566823 + 0.981767i
\(392\) −4.41641 7.64944i −0.223062 0.386355i
\(393\) −31.8541 18.3910i −1.60683 0.927702i
\(394\) 1.57295 2.72443i 0.0792440 0.137255i
\(395\) 13.0557 0.656905
\(396\) 0 0
\(397\) −2.12461 −0.106631 −0.0533156 0.998578i \(-0.516979\pi\)
−0.0533156 + 0.998578i \(0.516979\pi\)
\(398\) 1.36475 2.36381i 0.0684085 0.118487i
\(399\) 1.73205i 0.0867110i
\(400\) 5.46149 + 9.45958i 0.273075 + 0.472979i
\(401\) −7.28115 12.6113i −0.363603 0.629780i 0.624948 0.780667i \(-0.285120\pi\)
−0.988551 + 0.150887i \(0.951787\pi\)
\(402\) −3.43769 + 1.98475i −0.171457 + 0.0989905i
\(403\) −2.00000 + 3.46410i −0.0996271 + 0.172559i
\(404\) −15.7082 −0.781512
\(405\) 5.56231 9.63420i 0.276393 0.478727i
\(406\) 1.85410 0.0920175
\(407\) 0 0
\(408\) −10.7188 + 6.18853i −0.530662 + 0.306378i
\(409\) −16.8713 29.2220i −0.834233 1.44493i −0.894653 0.446761i \(-0.852577\pi\)
0.0604200 0.998173i \(-0.480756\pi\)
\(410\) 0.596748 + 1.03360i 0.0294713 + 0.0510457i
\(411\) 14.9269i 0.736288i
\(412\) −9.48936 + 16.4360i −0.467507 + 0.809746i
\(413\) 1.61803 0.0796182
\(414\) 2.64590 4.58283i 0.130039 0.225234i
\(415\) −12.0689 −0.592438
\(416\) −13.4164 + 23.2379i −0.657794 + 1.13933i
\(417\) −14.5623 8.40755i −0.713119 0.411720i
\(418\) 0 0
\(419\) −4.04508 7.00629i −0.197615 0.342280i 0.750139 0.661280i \(-0.229986\pi\)
−0.947755 + 0.319000i \(0.896653\pi\)
\(420\) 3.43769 + 1.98475i 0.167742 + 0.0968461i
\(421\) −5.11803 + 8.86469i −0.249438 + 0.432039i −0.963370 0.268176i \(-0.913579\pi\)
0.713932 + 0.700215i \(0.246912\pi\)
\(422\) −7.81966 −0.380655
\(423\) 17.9164 + 31.0321i 0.871126 + 1.50883i
\(424\) −6.02129 −0.292420
\(425\) −8.42705 + 14.5961i −0.408772 + 0.708014i
\(426\) 1.92510i 0.0932713i
\(427\) 5.42705 + 9.39993i 0.262633 + 0.454894i
\(428\) −13.0106 22.5351i −0.628893 1.08927i
\(429\) 0 0
\(430\) −0.437694 + 0.758108i −0.0211075 + 0.0365592i
\(431\) 34.0689 1.64104 0.820520 0.571618i \(-0.193684\pi\)
0.820520 + 0.571618i \(0.193684\pi\)
\(432\) −14.1565 8.17328i −0.681107 0.393237i
\(433\) 14.7426 0.708486 0.354243 0.935153i \(-0.384739\pi\)
0.354243 + 0.935153i \(0.384739\pi\)
\(434\) −0.118034 + 0.204441i −0.00566581 + 0.00981348i
\(435\) 9.00000 5.19615i 0.431517 0.249136i
\(436\) −6.62461 11.4742i −0.317261 0.549513i
\(437\) 2.30902 + 3.99933i 0.110455 + 0.191314i
\(438\) 0.0965239i 0.00461209i
\(439\) −0.354102 + 0.613323i −0.0169004 + 0.0292723i −0.874352 0.485292i \(-0.838713\pi\)
0.857452 + 0.514565i \(0.172046\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) −12.0000 −0.570782
\(443\) 0.618034 1.07047i 0.0293637 0.0508594i −0.850970 0.525214i \(-0.823985\pi\)
0.880334 + 0.474355i \(0.157319\pi\)
\(444\) 14.1565 + 8.17328i 0.671840 + 0.387887i
\(445\) −4.18034 7.24056i −0.198167 0.343236i
\(446\) 2.96149 + 5.12946i 0.140231 + 0.242887i
\(447\) 22.7705 + 13.1466i 1.07701 + 0.621811i
\(448\) 2.35410 4.07742i 0.111221 0.192640i
\(449\) 7.47214 0.352632 0.176316 0.984334i \(-0.443582\pi\)
0.176316 + 0.984334i \(0.443582\pi\)
\(450\) 3.97871 0.187558
\(451\) 0 0
\(452\) 15.9787 27.6759i 0.751575 1.30177i
\(453\) 7.49326i 0.352064i
\(454\) −3.17376 5.49712i −0.148952 0.257992i
\(455\) 4.00000 + 6.92820i 0.187523 + 0.324799i
\(456\) −2.20820 + 1.27491i −0.103409 + 0.0597030i
\(457\) −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i \(-0.840779\pi\)
0.854094 + 0.520119i \(0.174112\pi\)
\(458\) 3.88854 0.181700
\(459\) 25.2227i 1.17729i
\(460\) 10.5836 0.493463
\(461\) −8.07295 + 13.9828i −0.375995 + 0.651242i −0.990475 0.137690i \(-0.956032\pi\)
0.614481 + 0.788932i \(0.289366\pi\)
\(462\) 0 0
\(463\) −8.50000 14.7224i −0.395029 0.684209i 0.598076 0.801439i \(-0.295932\pi\)
−0.993105 + 0.117230i \(0.962599\pi\)
\(464\) −7.63525 13.2246i −0.354458 0.613939i
\(465\) 1.32317i 0.0613605i
\(466\) −2.12461 + 3.67994i −0.0984207 + 0.170470i
\(467\) −0.763932 −0.0353506 −0.0176753 0.999844i \(-0.505627\pi\)
−0.0176753 + 0.999844i \(0.505627\pi\)
\(468\) −18.0000 31.1769i −0.832050 1.44115i
\(469\) 6.00000 0.277054
\(470\) 2.81966 4.88379i 0.130061 0.225273i
\(471\) 10.7188 + 6.18853i 0.493898 + 0.285152i
\(472\) 1.19098 + 2.06284i 0.0548194 + 0.0949500i
\(473\) 0 0
\(474\) −6.05166 3.49393i −0.277962 0.160481i
\(475\) −1.73607 + 3.00696i −0.0796563 + 0.137969i
\(476\) 9.00000 0.412514
\(477\) 6.13525 10.6266i 0.280914 0.486557i
\(478\) −4.00000 −0.182956
\(479\) −5.88197 + 10.1879i −0.268754 + 0.465495i −0.968540 0.248857i \(-0.919945\pi\)
0.699786 + 0.714352i \(0.253278\pi\)
\(480\) 8.87609i 0.405136i
\(481\) 16.4721 + 28.5306i 0.751065 + 1.30088i
\(482\) −5.12461 8.87609i −0.233420 0.404295i
\(483\) −6.92705 + 3.99933i −0.315192 + 0.181976i
\(484\) 0 0
\(485\) −7.41641 −0.336762
\(486\) −5.15654 + 2.97713i −0.233905 + 0.135045i
\(487\) −12.9787 −0.588122 −0.294061 0.955787i \(-0.595007\pi\)
−0.294061 + 0.955787i \(0.595007\pi\)
\(488\) −7.98936 + 13.8380i −0.361661 + 0.626416i
\(489\) −31.0623 + 17.9338i −1.40469 + 0.810996i
\(490\) −1.41641 2.45329i −0.0639868 0.110828i
\(491\) 3.66312 + 6.34471i 0.165314 + 0.286333i 0.936767 0.349954i \(-0.113803\pi\)
−0.771453 + 0.636287i \(0.780469\pi\)
\(492\) 8.11798i 0.365987i
\(493\) 11.7812 20.4056i 0.530596 0.919020i
\(494\) −2.47214 −0.111227
\(495\) 0 0
\(496\) 1.94427 0.0873004
\(497\) 1.45492 2.51999i 0.0652619 0.113037i
\(498\) 5.59424 + 3.22983i 0.250684 + 0.144732i
\(499\) −19.2082 33.2696i −0.859877 1.48935i −0.872045 0.489425i \(-0.837207\pi\)
0.0121680 0.999926i \(-0.496127\pi\)
\(500\) 9.70820 + 16.8151i 0.434164 + 0.751994i
\(501\) 8.64590 + 4.99171i 0.386270 + 0.223013i
\(502\) −3.92705 + 6.80185i −0.175273 + 0.303582i
\(503\) 9.52786 0.424826 0.212413 0.977180i \(-0.431868\pi\)
0.212413 + 0.977180i \(0.431868\pi\)
\(504\) −2.20820 3.82472i −0.0983612 0.170367i
\(505\) −10.4721 −0.466004
\(506\) 0 0
\(507\) 50.0364i 2.22220i
\(508\) 9.79180 + 16.9599i 0.434441 + 0.752473i
\(509\) 13.5902 + 23.5389i 0.602374 + 1.04334i 0.992461 + 0.122564i \(0.0391116\pi\)
−0.390087 + 0.920778i \(0.627555\pi\)
\(510\) −3.43769 + 1.98475i −0.152224 + 0.0878864i
\(511\) −0.0729490 + 0.126351i −0.00322707 + 0.00558946i
\(512\) 22.3050 0.985749
\(513\) 5.19615i 0.229416i
\(514\) −5.69505 −0.251198
\(515\) −6.32624 + 10.9574i −0.278767 + 0.482839i
\(516\) −5.15654 + 2.97713i −0.227004 + 0.131061i
\(517\) 0 0
\(518\) 0.972136 + 1.68379i 0.0427132 + 0.0739814i
\(519\) 39.9933i 1.75551i
\(520\) −5.88854 + 10.1993i −0.258230 + 0.447267i
\(521\) −40.3607 −1.76823 −0.884117 0.467266i \(-0.845239\pi\)
−0.884117 + 0.467266i \(0.845239\pi\)
\(522\) −5.56231 −0.243456
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −19.6869 + 34.0987i −0.860027 + 1.48961i
\(525\) −5.20820 3.00696i −0.227305 0.131234i
\(526\) −2.42705 4.20378i −0.105824 0.183293i
\(527\) 1.50000 + 2.59808i 0.0653410 + 0.113174i
\(528\) 0 0
\(529\) 0.836881 1.44952i 0.0363861 0.0630226i
\(530\) −1.93112 −0.0838823
\(531\) −4.85410 −0.210650
\(532\) 1.85410 0.0803855
\(533\) −8.18034 + 14.1688i −0.354330 + 0.613717i
\(534\) 4.47491i 0.193648i
\(535\) −8.67376 15.0234i −0.374999 0.649518i
\(536\) 4.41641 + 7.64944i 0.190760 + 0.330406i
\(537\) 7.58359 4.37839i 0.327256 0.188941i
\(538\) 4.06231 7.03612i 0.175138 0.303349i
\(539\) 0 0
\(540\) −10.3131 5.95426i −0.443804 0.256231i
\(541\) 11.9098 0.512044 0.256022 0.966671i \(-0.417588\pi\)
0.256022 + 0.966671i \(0.417588\pi\)
\(542\) 2.05573 3.56063i 0.0883011 0.152942i
\(543\) 14.8647 8.58216i 0.637907 0.368296i
\(544\) 10.0623 + 17.4284i 0.431418 + 0.747238i
\(545\) −4.41641 7.64944i −0.189178 0.327666i
\(546\) 4.28187i 0.183247i
\(547\) −16.1631 + 27.9953i −0.691085 + 1.19699i 0.280398 + 0.959884i \(0.409534\pi\)
−0.971483 + 0.237111i \(0.923800\pi\)
\(548\) 15.9787 0.682577
\(549\) −16.2812 28.1998i −0.694863 1.20354i
\(550\) 0 0
\(551\) 2.42705 4.20378i 0.103396 0.179087i
\(552\) −10.1976 5.88756i −0.434037 0.250591i
\(553\) 5.28115 + 9.14723i 0.224577 + 0.388980i
\(554\) −3.67376 6.36314i −0.156083 0.270344i
\(555\) 9.43769 + 5.44886i 0.400608 + 0.231291i
\(556\) −9.00000 + 15.5885i −0.381685 + 0.661098i
\(557\) 0.652476 0.0276463 0.0138231 0.999904i \(-0.495600\pi\)
0.0138231 + 0.999904i \(0.495600\pi\)
\(558\) 0.354102 0.613323i 0.0149903 0.0259640i
\(559\) −12.0000 −0.507546
\(560\) 1.94427 3.36758i 0.0821605 0.142306i
\(561\) 0 0
\(562\) −1.78115 3.08505i −0.0751334 0.130135i
\(563\) −10.1525 17.5846i −0.427876 0.741103i 0.568808 0.822470i \(-0.307405\pi\)
−0.996684 + 0.0813674i \(0.974071\pi\)
\(564\) 33.2188 19.1789i 1.39877 0.807578i
\(565\) 10.6525 18.4506i 0.448153 0.776224i
\(566\) 6.49342 0.272939
\(567\) 9.00000 0.377964
\(568\) 4.28367 0.179739
\(569\) 19.3992 33.6004i 0.813256 1.40860i −0.0973171 0.995253i \(-0.531026\pi\)
0.910573 0.413348i \(-0.135641\pi\)
\(570\) −0.708204 + 0.408882i −0.0296634 + 0.0171262i
\(571\) −9.26393 16.0456i −0.387683 0.671488i 0.604454 0.796640i \(-0.293391\pi\)
−0.992138 + 0.125153i \(0.960058\pi\)
\(572\) 0 0
\(573\) 10.2958i 0.430112i
\(574\) −0.482779 + 0.836198i −0.0201508 + 0.0349022i
\(575\) −16.0344 −0.668682
\(576\) −7.06231 + 12.2323i −0.294263 + 0.509678i
\(577\) 35.4164 1.47440 0.737202 0.675672i \(-0.236147\pi\)
0.737202 + 0.675672i \(0.236147\pi\)
\(578\) −1.25329 + 2.17076i −0.0521299 + 0.0902917i
\(579\) 16.5000 + 9.52628i 0.685717 + 0.395899i
\(580\) −5.56231 9.63420i −0.230962 0.400038i
\(581\) −4.88197 8.45581i −0.202538 0.350806i
\(582\) 3.43769 + 1.98475i 0.142497 + 0.0822707i
\(583\) 0 0
\(584\) −0.214782 −0.00888773
\(585\) −12.0000 20.7846i −0.496139 0.859338i
\(586\) 11.1459 0.460433
\(587\) −6.70820 + 11.6190i −0.276877 + 0.479565i −0.970607 0.240670i \(-0.922633\pi\)
0.693730 + 0.720235i \(0.255966\pi\)
\(588\) 19.2684i 0.794615i
\(589\) 0.309017 + 0.535233i 0.0127328 + 0.0220539i
\(590\) 0.381966 + 0.661585i 0.0157253 + 0.0272370i
\(591\) 12.3541 7.13264i 0.508180 0.293398i
\(592\) 8.00658 13.8678i 0.329068 0.569963i
\(593\) 10.9443 0.449427 0.224714 0.974425i \(-0.427855\pi\)
0.224714 + 0.974425i \(0.427855\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) 14.0729 24.3751i 0.576450 0.998441i
\(597\) 10.7188 6.18853i 0.438693 0.253280i
\(598\) −5.70820 9.88690i −0.233426 0.404305i
\(599\) 6.68034 + 11.5707i 0.272951 + 0.472765i 0.969616 0.244631i \(-0.0786669\pi\)
−0.696665 + 0.717397i \(0.745334\pi\)
\(600\) 8.85330i 0.361435i
\(601\) −8.73607 + 15.1313i −0.356352 + 0.617219i −0.987348 0.158566i \(-0.949313\pi\)
0.630997 + 0.775786i \(0.282646\pi\)
\(602\) −0.708204 −0.0288642
\(603\) −18.0000 −0.733017
\(604\) 8.02129 0.326382
\(605\) 0 0
\(606\) 4.85410 + 2.80252i 0.197184 + 0.113844i
\(607\) −1.79180 3.10348i −0.0727268 0.125966i 0.827369 0.561659i \(-0.189837\pi\)
−0.900095 + 0.435693i \(0.856503\pi\)
\(608\) 2.07295 + 3.59045i 0.0840692 + 0.145612i
\(609\) 7.28115 + 4.20378i 0.295047 + 0.170346i
\(610\) −2.56231 + 4.43804i −0.103745 + 0.179691i
\(611\) 77.3050 3.12742
\(612\) −27.0000 −1.09141
\(613\) −19.8541 −0.801900 −0.400950 0.916100i \(-0.631320\pi\)
−0.400950 + 0.916100i \(0.631320\pi\)
\(614\) 1.50000 2.59808i 0.0605351 0.104850i
\(615\) 5.41199i 0.218232i
\(616\) 0 0
\(617\) 13.5795 + 23.5204i 0.546691 + 0.946897i 0.998498 + 0.0547813i \(0.0174462\pi\)
−0.451807 + 0.892116i \(0.649221\pi\)
\(618\) 5.86475 3.38601i 0.235915 0.136205i
\(619\) −13.7812 + 23.8697i −0.553911 + 0.959403i 0.444076 + 0.895989i \(0.353532\pi\)
−0.997987 + 0.0634134i \(0.979801\pi\)
\(620\) 1.41641 0.0568843
\(621\) 20.7812 11.9980i 0.833919 0.481463i
\(622\) 5.79837 0.232494
\(623\) 3.38197 5.85774i 0.135496 0.234685i
\(624\) −30.5410 + 17.6329i −1.22262 + 0.705880i
\(625\) −2.20820 3.82472i −0.0883282 0.152989i
\(626\) −0.663119 1.14856i −0.0265036 0.0459055i
\(627\) 0 0
\(628\) 6.62461 11.4742i 0.264351 0.457869i
\(629\) 24.7082 0.985181
\(630\) −0.708204 1.22665i −0.0282155 0.0488707i
\(631\) −10.8885 −0.433466 −0.216733 0.976231i \(-0.569540\pi\)
−0.216733 + 0.976231i \(0.569540\pi\)
\(632\) −7.77458 + 13.4660i −0.309256 + 0.535647i
\(633\) −30.7082 17.7294i −1.22054 0.704680i
\(634\) −4.00000 6.92820i −0.158860 0.275154i
\(635\) 6.52786 + 11.3066i 0.259050 + 0.448688i
\(636\) −11.3754 6.56758i −0.451063 0.260422i
\(637\) 19.4164 33.6302i 0.769306 1.33248i
\(638\) 0 0
\(639\) −4.36475 + 7.55996i −0.172667 + 0.299067i
\(640\) 12.4721 0.493004
\(641\) 10.2254 17.7110i 0.403880 0.699541i −0.590310 0.807176i \(-0.700995\pi\)
0.994190 + 0.107636i \(0.0343280\pi\)
\(642\) 9.28497i 0.366449i
\(643\) 3.42705 + 5.93583i 0.135150 + 0.234086i 0.925655 0.378370i \(-0.123515\pi\)
−0.790505 + 0.612456i \(0.790182\pi\)
\(644\) 4.28115 + 7.41517i 0.168701 + 0.292199i
\(645\) −3.43769 + 1.98475i −0.135359 + 0.0781496i
\(646\) −0.927051 + 1.60570i −0.0364743 + 0.0631754i
\(647\) −4.18034 −0.164346 −0.0821731 0.996618i \(-0.526186\pi\)
−0.0821731 + 0.996618i \(0.526186\pi\)
\(648\) 6.62461 + 11.4742i 0.260239 + 0.450748i
\(649\) 0 0
\(650\) 4.29180 7.43361i 0.168338 0.291570i
\(651\) −0.927051 + 0.535233i −0.0363340 + 0.0209774i
\(652\) 19.1976 + 33.2512i 0.751835 + 1.30222i
\(653\) 0.680340 + 1.17838i 0.0266238 + 0.0461137i 0.879030 0.476766i \(-0.158191\pi\)
−0.852407 + 0.522880i \(0.824858\pi\)
\(654\) 4.72762i 0.184864i
\(655\) −13.1246 + 22.7325i −0.512821 + 0.888232i
\(656\) 7.95240 0.310489
\(657\) 0.218847 0.379054i 0.00853804 0.0147883i
\(658\) 4.56231 0.177857
\(659\) 4.98936 8.64182i 0.194358 0.336637i −0.752332 0.658784i \(-0.771071\pi\)
0.946690 + 0.322147i \(0.104404\pi\)
\(660\) 0 0
\(661\) 2.14590 + 3.71680i 0.0834658 + 0.144567i 0.904736 0.425972i \(-0.140068\pi\)
−0.821271 + 0.570539i \(0.806734\pi\)
\(662\) −2.75329 4.76884i −0.107010 0.185346i
\(663\) −47.1246 27.2074i −1.83017 1.05665i
\(664\) 7.18692 12.4481i 0.278906 0.483080i
\(665\) 1.23607 0.0479327
\(666\) −2.91641 5.05137i −0.113009 0.195736i
\(667\) 22.4164 0.867967
\(668\) 5.34346 9.25514i 0.206745 0.358092i
\(669\) 26.8582i 1.03840i
\(670\) 1.41641 + 2.45329i 0.0547206 + 0.0947789i
\(671\) 0 0
\(672\) −6.21885 + 3.59045i −0.239897 + 0.138505i
\(673\) −14.7812 + 25.6017i −0.569772 + 0.986873i 0.426817 + 0.904338i \(0.359635\pi\)
−0.996588 + 0.0825351i \(0.973698\pi\)
\(674\) 4.38197 0.168787
\(675\) 15.6246 + 9.02087i 0.601392 + 0.347214i
\(676\) −53.5623 −2.06009
\(677\) 3.02786 5.24441i 0.116370 0.201559i −0.801956 0.597383i \(-0.796207\pi\)
0.918327 + 0.395823i \(0.129541\pi\)
\(678\) −9.87539 + 5.70156i −0.379262 + 0.218967i
\(679\) −3.00000 5.19615i −0.115129 0.199410i
\(680\) 4.41641 + 7.64944i 0.169362 + 0.293343i
\(681\) 28.7833i 1.10298i
\(682\) 0 0
\(683\) −5.52786 −0.211518 −0.105759 0.994392i \(-0.533727\pi\)
−0.105759 + 0.994392i \(0.533727\pi\)
\(684\) −5.56231 −0.212680
\(685\) 10.6525 0.407010
\(686\) 2.48278 4.30030i 0.0947929 0.164186i
\(687\) 15.2705 + 8.81643i 0.582606 + 0.336368i
\(688\) 2.91641 + 5.05137i 0.111187 + 0.192582i
\(689\) −13.2361 22.9255i −0.504254 0.873394i
\(690\) −3.27051 1.88823i −0.124506 0.0718837i
\(691\) −7.29837 + 12.6412i −0.277643 + 0.480892i −0.970799 0.239896i \(-0.922887\pi\)
0.693155 + 0.720788i \(0.256220\pi\)
\(692\) −42.8115 −1.62745
\(693\) 0 0
\(694\) 3.39512 0.128877
\(695\) −6.00000 + 10.3923i −0.227593 + 0.394203i
\(696\) 12.3771i 0.469151i
\(697\) 6.13525 + 10.6266i 0.232389 + 0.402510i
\(698\) −0.791796 1.37143i −0.0299699 0.0519094i
\(699\) −16.6869 + 9.63420i −0.631157 + 0.364399i
\(700\) −3.21885 + 5.57521i −0.121661 + 0.210723i
\(701\) 47.7214 1.80241 0.901205 0.433392i \(-0.142683\pi\)
0.901205 + 0.433392i \(0.142683\pi\)
\(702\) 12.8456i 0.484826i
\(703\) 5.09017 0.191979
\(704\) 0 0
\(705\) 22.1459 12.7859i 0.834063 0.481546i
\(706\) 3.13525 + 5.43042i 0.117997 + 0.204377i
\(707\) −4.23607 7.33708i −0.159314 0.275939i
\(708\) 5.19615i 0.195283i
\(709\) 12.8820 22.3122i 0.483792 0.837953i −0.516034 0.856568i \(-0.672592\pi\)
0.999827 + 0.0186149i \(0.00592565\pi\)
\(710\) 1.37384 0.0515591
\(711\) −15.8435 27.4417i −0.594176 1.02914i
\(712\) 9.95743 0.373170
\(713\) −1.42705 + 2.47172i −0.0534435 + 0.0925668i
\(714\) −2.78115 1.60570i −0.104082 0.0600918i
\(715\) 0 0
\(716\) −4.68692 8.11798i −0.175158 0.303383i
\(717\) −15.7082 9.06914i −0.586634 0.338693i
\(718\) −4.36475 + 7.55996i −0.162891 + 0.282135i
\(719\) −19.5967 −0.730835 −0.365418 0.930844i \(-0.619074\pi\)
−0.365418 + 0.930844i \(0.619074\pi\)
\(720\) −5.83282 + 10.1027i −0.217376 + 0.376507i
\(721\) −10.2361 −0.381211
\(722\) 3.43769 5.95426i 0.127938 0.221595i
\(723\) 46.4758i 1.72845i
\(724\) −9.18692 15.9122i −0.341429 0.591373i
\(725\) 8.42705 + 14.5961i 0.312973 + 0.542085i
\(726\) 0 0
\(727\) −9.41641 + 16.3097i −0.349235 + 0.604893i −0.986114 0.166071i \(-0.946892\pi\)
0.636879 + 0.770964i \(0.280225\pi\)
\(728\) −9.52786 −0.353126
\(729\) −27.0000 −1.00000
\(730\) −0.0688837 −0.00254950
\(731\) −4.50000 + 7.79423i −0.166439 + 0.288280i
\(732\) −30.1869 + 17.4284i −1.11574 + 0.644173i
\(733\) 24.2361 + 41.9781i 0.895180 + 1.55050i 0.833582 + 0.552395i \(0.186286\pi\)
0.0615974 + 0.998101i \(0.480381\pi\)
\(734\) 2.42705 + 4.20378i 0.0895841 + 0.155164i
\(735\) 12.8456i 0.473817i
\(736\) −9.57295 + 16.5808i −0.352864 + 0.611178i
\(737\) 0 0
\(738\) 1.44834 2.50859i 0.0533140 0.0923426i
\(739\) −42.5410 −1.56490 −0.782448 0.622715i \(-0.786029\pi\)
−0.782448 + 0.622715i \(0.786029\pi\)
\(740\) 5.83282 10.1027i 0.214419 0.371384i
\(741\) −9.70820 5.60503i −0.356640 0.205906i
\(742\) −0.781153 1.35300i −0.0286770 0.0496701i
\(743\) −21.1803 36.6854i −0.777031 1.34586i −0.933646 0.358198i \(-0.883391\pi\)
0.156614 0.987660i \(-0.449942\pi\)
\(744\) −1.36475 0.787936i −0.0500340 0.0288871i
\(745\) 9.38197 16.2500i 0.343729 0.595355i
\(746\) 2.15905 0.0790486
\(747\) 14.6459 + 25.3674i 0.535865 + 0.928146i
\(748\) 0 0
\(749\) 7.01722 12.1542i 0.256404 0.444104i
\(750\) 6.92820i 0.252982i
\(751\) 15.6246 + 27.0626i 0.570150 + 0.987529i 0.996550 + 0.0829943i \(0.0264483\pi\)
−0.426400 + 0.904535i \(0.640218\pi\)
\(752\) −18.7877 32.5413i −0.685118 1.18666i
\(753\) −30.8435 + 17.8075i −1.12400 + 0.648941i
\(754\) −6.00000 + 10.3923i −0.218507 + 0.378465i
\(755\) 5.34752 0.194616
\(756\) 9.63420i 0.350392i
\(757\) 11.0000 0.399802 0.199901 0.979816i \(-0.435938\pi\)
0.199901 + 0.979816i \(0.435938\pi\)
\(758\) −3.01722 + 5.22598i −0.109590 + 0.189816i
\(759\) 0 0
\(760\) 0.909830 + 1.57587i 0.0330030 + 0.0571629i
\(761\) 3.48936 + 6.04374i 0.126489 + 0.219086i 0.922314 0.386441i \(-0.126296\pi\)
−0.795825 + 0.605527i \(0.792962\pi\)
\(762\) 6.98786i 0.253143i
\(763\) 3.57295 6.18853i 0.129349 0.224040i
\(764\) −11.0213 −0.398736
\(765\) −18.0000 −0.650791
\(766\) 7.58359 0.274006
\(767\) −5.23607 + 9.06914i −0.189063 + 0.327468i
\(768\) 8.34346 + 4.81710i 0.301069 + 0.173822i
\(769\) −7.89919 13.6818i −0.284852 0.493378i 0.687721 0.725975i \(-0.258611\pi\)
−0.972573 + 0.232597i \(0.925278\pi\)
\(770\) 0 0
\(771\) −22.3647 12.9123i −0.805447 0.465025i
\(772\) 10.1976 17.6627i 0.367018 0.635694i
\(773\) 23.6525 0.850720 0.425360 0.905024i \(-0.360147\pi\)
0.425360 + 0.905024i \(0.360147\pi\)
\(774\) 2.12461 0.0763676
\(775\) −2.14590 −0.0770829
\(776\) 4.41641 7.64944i 0.158540 0.274599i
\(777\) 8.81643i 0.316288i
\(778\) 4.32624 + 7.49326i 0.155103 + 0.268647i
\(779\) 1.26393 + 2.18919i 0.0452851 + 0.0784360i
\(780\) −22.2492 + 12.8456i −0.796650 + 0.459946i
\(781\) 0 0
\(782\) −8.56231 −0.306187
\(783\) −21.8435 12.6113i −0.780622 0.450692i
\(784\) −18.8754 −0.674121
\(785\) 4.41641 7.64944i 0.157628 0.273020i
\(786\) 12.1672 7.02473i 0.433989 0.250564i
\(787\) 18.0000 + 31.1769i 0.641631 + 1.11134i 0.985069 + 0.172162i \(0.0550751\pi\)
−0.343438 + 0.939175i \(0.611592\pi\)
\(788\) −7.63525 13.2246i −0.271995 0.471109i
\(789\) 22.0113i 0.783621i
\(790\) −2.49342 + 4.31873i −0.0887120 + 0.153654i
\(791\) 17.2361 0.612844
\(792\) 0 0
\(793\) −70.2492 −2.49462
\(794\) 0.405765 0.702805i 0.0144001 0.0249416i
\(795\) −7.58359 4.37839i −0.268962 0.155285i
\(796\) −6.62461 11.4742i −0.234803 0.406691i
\(797\) −12.1353 21.0189i −0.429853 0.744527i 0.567007 0.823713i \(-0.308101\pi\)
−0.996860 + 0.0791861i \(0.974768\pi\)
\(798\) −0.572949 0.330792i −0.0202822 0.0117099i
\(799\) 28.9894 50.2110i 1.02557 1.77634i
\(800\) −14.3951 −0.508944
\(801\) −10.1459 + 17.5732i −0.358488 + 0.620919i
\(802\) 5.56231 0.196412
\(803\) 0 0
\(804\) 19.2684i 0.679544i
\(805\) 2.85410 + 4.94345i 0.100594 + 0.174234i
\(806\) −0.763932 1.32317i −0.0269084 0.0466066i
\(807\) 31.9058 18.4208i 1.12314 0.648443i
\(808\) 6.23607 10.8012i 0.219384 0.379984i
\(809\) 18.0902 0.636017 0.318008 0.948088i \(-0.396986\pi\)
0.318008 + 0.948088i \(0.396986\pi\)
\(810\) 2.12461 + 3.67994i 0.0746512 + 0.129300i
\(811\) −8.68692 −0.305039 −0.152519 0.988300i \(-0.548739\pi\)
−0.152519 + 0.988300i \(0.548739\pi\)
\(812\) 4.50000 7.79423i 0.157919 0.273524i
\(813\) 16.1459 9.32184i 0.566261 0.326931i
\(814\) 0 0
\(815\) 12.7984 + 22.1674i 0.448307 + 0.776491i
\(816\) 26.4493i 0.925911i
\(817\) −0.927051 + 1.60570i −0.0324334 + 0.0561763i
\(818\) 12.8885 0.450637
\(819\) 9.70820 16.8151i 0.339232 0.587567i
\(820\) 5.79335 0.202313
\(821\) 19.1074 33.0950i 0.666853 1.15502i −0.311927 0.950106i \(-0.600974\pi\)
0.978779 0.204916i \(-0.0656922\pi\)
\(822\) −4.93769 2.85078i −0.172222 0.0994323i
\(823\) 21.1459 + 36.6258i 0.737100 + 1.27669i 0.953796 + 0.300455i \(0.0971385\pi\)
−0.216696 + 0.976239i \(0.569528\pi\)
\(824\) −7.53444 13.0500i −0.262475 0.454620i
\(825\) 0 0
\(826\) −0.309017 + 0.535233i −0.0107521 + 0.0186231i
\(827\) 57.0344 1.98328 0.991641 0.129028i \(-0.0411858\pi\)
0.991641 + 0.129028i \(0.0411858\pi\)
\(828\) −12.8435 22.2455i −0.446341 0.773085i
\(829\) 43.5410 1.51224 0.756121 0.654432i \(-0.227092\pi\)
0.756121 + 0.654432i \(0.227092\pi\)
\(830\) 2.30495 3.99229i 0.0800060 0.138575i
\(831\) 33.3178i 1.15578i
\(832\) 15.2361 + 26.3896i 0.528216 + 0.914896i
\(833\) −14.5623 25.2227i −0.504554 0.873913i
\(834\) 5.56231 3.21140i 0.192607 0.111202i
\(835\) 3.56231 6.17009i 0.123279 0.213525i
\(836\) 0 0
\(837\) 2.78115 1.60570i 0.0961307 0.0555011i
\(838\) 3.09017 0.106748
\(839\) 8.64590 14.9751i 0.298490 0.516999i −0.677301 0.735706i \(-0.736851\pi\)
0.975791 + 0.218707i \(0.0701839\pi\)
\(840\) −2.72949 + 1.57587i −0.0941764 + 0.0543727i
\(841\) 2.71885 + 4.70918i 0.0937533 + 0.162386i
\(842\) −1.95492 3.38601i −0.0673708 0.116690i
\(843\) 16.1535i 0.556357i
\(844\) −18.9787 + 32.8721i −0.653274 + 1.13150i
\(845\) −35.7082 −1.22840
\(846\) −13.6869 −0.470566
\(847\) 0 0
\(848\) −6.43363 + 11.1434i −0.220932 + 0.382665i
\(849\) 25.5000 + 14.7224i 0.875158 + 0.505273i
\(850\) −3.21885 5.57521i −0.110406 0.191228i
\(851\) 11.7533 + 20.3573i 0.402898 + 0.697839i
\(852\) 8.09268 + 4.67231i 0.277251 + 0.160071i
\(853\) −17.7188 + 30.6899i −0.606682 + 1.05080i 0.385102 + 0.922874i \(0.374166\pi\)
−0.991783 + 0.127929i \(0.959167\pi\)
\(854\) −4.14590 −0.141870
\(855\) −3.70820 −0.126818
\(856\) 20.6606 0.706165
\(857\) 12.6803 21.9630i 0.433152 0.750242i −0.563991 0.825781i \(-0.690735\pi\)
0.997143 + 0.0755396i \(0.0240679\pi\)
\(858\) 0 0
\(859\) 16.2812 + 28.1998i 0.555506 + 0.962164i 0.997864 + 0.0653258i \(0.0208087\pi\)
−0.442358 + 0.896838i \(0.645858\pi\)
\(860\) 2.12461 + 3.67994i 0.0724487 + 0.125485i
\(861\) −3.79180 + 2.18919i −0.129224 + 0.0746075i
\(862\) −6.50658 + 11.2697i −0.221615 + 0.383848i
\(863\) 14.4508 0.491913 0.245956 0.969281i \(-0.420898\pi\)
0.245956 + 0.969281i \(0.420898\pi\)
\(864\) 18.6565 10.7714i 0.634708 0.366449i
\(865\) −28.5410 −0.970424
\(866\) −2.81559 + 4.87675i −0.0956778 + 0.165719i
\(867\) −9.84346 + 5.68312i −0.334301 + 0.193009i
\(868\) 0.572949 + 0.992377i 0.0194472 + 0.0336835i
\(869\) 0 0
\(870\) 3.96951i 0.134579i
\(871\) −19.4164 + 33.6302i −0.657900 + 1.13952i
\(872\) 10.5197 0.356243
\(873\) 9.00000 + 15.5885i 0.304604 + 0.527589i
\(874\) −1.76393 −0.0596659
\(875\) −5.23607 + 9.06914i −0.177011 + 0.306593i
\(876\) −0.405765 0.234268i −0.0137095 0.00791520i
\(877\) 5.79837 + 10.0431i 0.195797 + 0.339131i 0.947162 0.320757i \(-0.103937\pi\)
−0.751364 + 0.659888i \(0.770604\pi\)
\(878\) −0.135255 0.234268i −0.00456463 0.00790618i
\(879\) 43.7705 + 25.2709i 1.47634 + 0.852367i
\(880\) 0 0
\(881\) 1.81966 0.0613059 0.0306530 0.999530i \(-0.490241\pi\)
0.0306530 + 0.999530i \(0.490241\pi\)
\(882\) −3.43769 + 5.95426i −0.115753 + 0.200490i
\(883\) −35.6525 −1.19980 −0.599901 0.800074i \(-0.704793\pi\)
−0.599901 + 0.800074i \(0.704793\pi\)
\(884\) −29.1246 + 50.4453i −0.979567 + 1.69666i
\(885\) 3.46410i 0.116445i
\(886\) 0.236068 + 0.408882i 0.00793086 + 0.0137367i
\(887\) −2.01722 3.49393i −0.0677316 0.117315i 0.830171 0.557509i \(-0.188243\pi\)
−0.897902 + 0.440194i \(0.854910\pi\)
\(888\) −11.2401 + 6.48949i −0.377194 + 0.217773i
\(889\) −5.28115 + 9.14723i −0.177124 + 0.306788i
\(890\) 3.19350 0.107046
\(891\) 0 0
\(892\) 28.7508 0.962647
\(893\) 5.97214 10.3440i 0.199850 0.346150i
\(894\) −8.69756 + 5.02154i −0.290890 + 0.167945i
\(895\) −3.12461 5.41199i −0.104444 0.180903i
\(896\) 5.04508 + 8.73834i 0.168544 + 0.291928i
\(897\) 51.7685i 1.72850i
\(898\) −1.42705 + 2.47172i −0.0476213 + 0.0824825i
\(899\) 3.00000 0.100056
\(900\) 9.65654 16.7256i 0.321885 0.557521i
\(901\) −19.8541 −0.661436
\(902\) 0 0
\(903\) −2.78115 1.60570i −0.0925510 0.0534343i
\(904\) 12.6869 + 21.9744i 0.421961 + 0.730857i
\(905\) −6.12461 10.6081i −0.203589 0.352626i
\(906\) −2.47871 1.43109i −0.0823497 0.0475446i
\(907\) 7.29180 12.6298i 0.242120 0.419364i −0.719198 0.694805i \(-0.755491\pi\)
0.961318 + 0.275441i \(0.0888239\pi\)
\(908\) −30.8115 −1.02252
\(909\) 12.7082 + 22.0113i 0.421505 + 0.730067i
\(910\) −3.05573 −0.101296
\(911\) 9.59017 16.6107i 0.317737 0.550336i −0.662279 0.749257i \(-0.730411\pi\)
0.980015 + 0.198922i \(0.0637439\pi\)
\(912\) 5.44886i 0.180430i
\(913\) 0 0
\(914\) −0.190983 0.330792i −0.00631716 0.0109416i
\(915\) −20.1246 + 11.6190i −0.665299 + 0.384111i
\(916\) 9.43769 16.3466i 0.311830 0.540106i
\(917\) −21.2361 −0.701277
\(918\) 8.34346 + 4.81710i 0.275375 + 0.158988i
\(919\) 26.8673 0.886269 0.443135 0.896455i \(-0.353866\pi\)
0.443135 + 0.896455i \(0.353866\pi\)
\(920\) −4.20163 + 7.27743i −0.138524 + 0.239930i
\(921\) 11.7812 6.80185i 0.388202 0.224129i
\(922\) −3.08359 5.34094i −0.101553 0.175894i
\(923\) 9.41641 + 16.3097i 0.309945 + 0.536840i
\(924\) 0 0
\(925\) −8.83688 + 15.3059i −0.290555 + 0.503256i
\(926\) 6.49342 0.213387
\(927\) 30.7082 1.00859
\(928\) 20.1246 0.660623
\(929\) 24.1353 41.8035i 0.791852 1.37153i −0.132967 0.991120i \(-0.542450\pi\)
0.924819 0.380407i \(-0.124216\pi\)
\(930\) −0.437694 0.252703i −0.0143526 0.00828645i
\(931\) −3.00000 5.19615i −0.0983210 0.170297i
\(932\) 10.3131 + 17.8628i 0.337816 + 0.585115i
\(933\) 22.7705 + 13.1466i 0.745473 + 0.430399i
\(934\) 0.145898 0.252703i 0.00477393 0.00826869i
\(935\) 0 0
\(936\) 28.5836 0.934284
\(937\) 23.0344 0.752502 0.376251 0.926518i \(-0.377213\pi\)
0.376251 + 0.926518i \(0.377213\pi\)
\(938\) −1.14590 + 1.98475i −0.0374149 + 0.0648045i
\(939\) 6.01392i 0.196257i
\(940\) −13.6869 23.7064i −0.446418 0.773219i
\(941\) 13.5795 + 23.5204i 0.442680 + 0.766744i 0.997887 0.0649678i \(-0.0206945\pi\)
−0.555207 + 0.831712i \(0.687361\pi\)
\(942\) −4.09424 + 2.36381i −0.133397 + 0.0770170i
\(943\) −5.83688 + 10.1098i −0.190075 + 0.329220i
\(944\) 5.09017 0.165671
\(945\) 6.42280i 0.208934i
\(946\) 0 0
\(947\) −18.3541 + 31.7902i −0.596428 + 1.03304i 0.396915 + 0.917855i \(0.370081\pi\)
−0.993344 + 0.115189i \(0.963253\pi\)
\(948\) −29.3754 + 16.9599i −0.954068 + 0.550832i
\(949\) −0.472136 0.817763i −0.0153262 0.0265457i
\(950\) −0.663119 1.14856i −0.0215144 0.0372641i
\(951\) 36.2765i 1.17635i
\(952\) −3.57295 + 6.18853i −0.115800 + 0.200571i
\(953\) 9.49342 0.307522 0.153761 0.988108i \(-0.450861\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(954\) 2.34346 + 4.05899i 0.0758723 + 0.131415i
\(955\) −7.34752 −0.237760
\(956\) −9.70820 + 16.8151i −0.313986 + 0.543839i
\(957\) 0 0
\(958\) −2.24671 3.89142i −0.0725879 0.125726i
\(959\) 4.30902 + 7.46344i 0.139145 + 0.241007i
\(960\) 8.72949 + 5.03997i 0.281743 + 0.162664i
\(961\) 15.3090 26.5160i 0.493839 0.855355i
\(962\) −12.5836 −0.405711
\(963\) −21.0517 + 36.4625i −0.678380 + 1.17499i
\(964\) −49.7508 −1.60236
\(965\) 6.79837 11.7751i 0.218847 0.379055i
\(966\) 3.05522i 0.0983001i
\(967\) 26.2426 + 45.4536i 0.843907 + 1.46169i 0.886567 + 0.462599i \(0.153083\pi\)
−0.0426608 + 0.999090i \(0.513583\pi\)
\(968\) 0 0
\(969\) −7.28115 + 4.20378i −0.233904 + 0.135045i
\(970\) 1.41641 2.45329i 0.0454781 0.0787704i
\(971\) 9.27051 0.297505 0.148752 0.988874i \(-0.452474\pi\)
0.148752 + 0.988874i \(0.452474\pi\)
\(972\) 28.9026i 0.927051i
\(973\) −9.70820 −0.311231
\(974\) 2.47871 4.29326i 0.0794231 0.137565i
\(975\) 33.7082 19.4614i 1.07953 0.623265i
\(976\) 17.0729 + 29.5712i 0.546492 + 0.946552i
\(977\) −7.88197 13.6520i −0.252166 0.436765i 0.711956 0.702224i \(-0.247810\pi\)
−0.964122 + 0.265459i \(0.914476\pi\)
\(978\) 13.7002i 0.438085i
\(979\) 0 0
\(980\) −13.7508 −0.439252
\(981\) −10.7188 + 18.5656i −0.342226 + 0.592754i
\(982\) −2.79837 −0.0892997
\(983\) −4.62868 + 8.01710i −0.147632 + 0.255706i −0.930352 0.366668i \(-0.880498\pi\)
0.782720 + 0.622374i \(0.213832\pi\)
\(984\) −5.58204 3.22279i −0.177949 0.102739i
\(985\) −5.09017 8.81643i −0.162186 0.280915i
\(986\) 4.50000 + 7.79423i 0.143309 + 0.248219i
\(987\) 17.9164 + 10.3440i 0.570286 + 0.329255i
\(988\) −6.00000 + 10.3923i −0.190885 + 0.330623i
\(989\) −8.56231 −0.272265
\(990\) 0 0
\(991\) 20.5967 0.654277 0.327139 0.944976i \(-0.393916\pi\)
0.327139 + 0.944976i \(0.393916\pi\)
\(992\) −1.28115 + 2.21902i −0.0406766 + 0.0704540i
\(993\) 24.9700i 0.792397i
\(994\) 0.555728 + 0.962549i 0.0176266 + 0.0305302i
\(995\) −4.41641 7.64944i −0.140010 0.242504i
\(996\) 27.1550 15.6779i 0.860439 0.496775i
\(997\) 3.69098 6.39297i 0.116895 0.202467i −0.801641 0.597806i \(-0.796039\pi\)
0.918536 + 0.395338i \(0.129373\pi\)
\(998\) 14.6738 0.464490
\(999\) 26.4493i 0.836819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.d.727.2 4
9.2 odd 6 9801.2.a.m.1.2 2
9.4 even 3 inner 1089.2.e.d.364.2 4
9.7 even 3 9801.2.a.bc.1.1 2
11.7 odd 10 99.2.m.a.16.1 8
11.8 odd 10 99.2.m.a.97.1 yes 8
11.10 odd 2 1089.2.e.g.727.1 4
33.8 even 10 297.2.n.a.262.1 8
33.29 even 10 297.2.n.a.181.1 8
99.7 odd 30 891.2.f.b.82.1 4
99.29 even 30 891.2.f.a.82.1 4
99.40 odd 30 99.2.m.a.49.1 yes 8
99.41 even 30 297.2.n.a.64.1 8
99.43 odd 6 9801.2.a.n.1.2 2
99.52 odd 30 891.2.f.b.163.1 4
99.65 even 6 9801.2.a.bb.1.1 2
99.74 even 30 891.2.f.a.163.1 4
99.76 odd 6 1089.2.e.g.364.1 4
99.85 odd 30 99.2.m.a.31.1 yes 8
99.95 even 30 297.2.n.a.280.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.a.16.1 8 11.7 odd 10
99.2.m.a.31.1 yes 8 99.85 odd 30
99.2.m.a.49.1 yes 8 99.40 odd 30
99.2.m.a.97.1 yes 8 11.8 odd 10
297.2.n.a.64.1 8 99.41 even 30
297.2.n.a.181.1 8 33.29 even 10
297.2.n.a.262.1 8 33.8 even 10
297.2.n.a.280.1 8 99.95 even 30
891.2.f.a.82.1 4 99.29 even 30
891.2.f.a.163.1 4 99.74 even 30
891.2.f.b.82.1 4 99.7 odd 30
891.2.f.b.163.1 4 99.52 odd 30
1089.2.e.d.364.2 4 9.4 even 3 inner
1089.2.e.d.727.2 4 1.1 even 1 trivial
1089.2.e.g.364.1 4 99.76 odd 6
1089.2.e.g.727.1 4 11.10 odd 2
9801.2.a.m.1.2 2 9.2 odd 6
9801.2.a.n.1.2 2 99.43 odd 6
9801.2.a.bb.1.1 2 99.65 even 6
9801.2.a.bc.1.1 2 9.7 even 3