Properties

Label 1089.2.a.w.1.2
Level $1089$
Weight $2$
Character 1089.1
Self dual yes
Analytic conductor $8.696$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.54336\) of defining polynomial
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54336 q^{2} +0.381966 q^{4} -1.54336 q^{5} -0.236068 q^{7} +2.49721 q^{8} +2.38197 q^{10} +4.23607 q^{13} +0.364338 q^{14} -4.61803 q^{16} -5.94827 q^{17} +4.61803 q^{19} -0.589512 q^{20} -7.49164 q^{23} -2.61803 q^{25} -6.53779 q^{26} -0.0901699 q^{28} +1.90770 q^{29} -2.38197 q^{31} +2.13287 q^{32} +9.18034 q^{34} +0.364338 q^{35} +6.23607 q^{37} -7.12730 q^{38} -3.85410 q^{40} +5.58394 q^{41} +10.7082 q^{43} +11.5623 q^{46} -0.953850 q^{47} -6.94427 q^{49} +4.04057 q^{50} +1.61803 q^{52} +9.03500 q^{53} -0.589512 q^{56} -2.94427 q^{58} +8.44549 q^{59} -4.32624 q^{61} +3.67624 q^{62} +5.94427 q^{64} -6.53779 q^{65} +3.85410 q^{67} -2.27204 q^{68} -0.562306 q^{70} +7.71681 q^{71} +6.47214 q^{73} -9.62451 q^{74} +1.76393 q^{76} +0.527864 q^{79} +7.12730 q^{80} -8.61803 q^{82} +4.40491 q^{83} +9.18034 q^{85} -16.5266 q^{86} +16.7518 q^{89} -1.00000 q^{91} -2.86155 q^{92} +1.47214 q^{94} -7.12730 q^{95} -12.7984 q^{97} +10.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} + 8 q^{7} + 14 q^{10} + 8 q^{13} - 14 q^{16} + 14 q^{19} - 6 q^{25} + 22 q^{28} - 14 q^{31} - 8 q^{34} + 16 q^{37} - 2 q^{40} + 16 q^{43} + 6 q^{46} + 8 q^{49} + 2 q^{52} + 24 q^{58} + 14 q^{61}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54336 −1.09132 −0.545661 0.838006i \(-0.683721\pi\)
−0.545661 + 0.838006i \(0.683721\pi\)
\(3\) 0 0
\(4\) 0.381966 0.190983
\(5\) −1.54336 −0.690212 −0.345106 0.938564i \(-0.612157\pi\)
−0.345106 + 0.938564i \(0.612157\pi\)
\(6\) 0 0
\(7\) −0.236068 −0.0892253 −0.0446127 0.999004i \(-0.514205\pi\)
−0.0446127 + 0.999004i \(0.514205\pi\)
\(8\) 2.49721 0.882898
\(9\) 0 0
\(10\) 2.38197 0.753244
\(11\) 0 0
\(12\) 0 0
\(13\) 4.23607 1.17487 0.587437 0.809270i \(-0.300137\pi\)
0.587437 + 0.809270i \(0.300137\pi\)
\(14\) 0.364338 0.0973735
\(15\) 0 0
\(16\) −4.61803 −1.15451
\(17\) −5.94827 −1.44267 −0.721334 0.692587i \(-0.756471\pi\)
−0.721334 + 0.692587i \(0.756471\pi\)
\(18\) 0 0
\(19\) 4.61803 1.05945 0.529725 0.848170i \(-0.322295\pi\)
0.529725 + 0.848170i \(0.322295\pi\)
\(20\) −0.589512 −0.131819
\(21\) 0 0
\(22\) 0 0
\(23\) −7.49164 −1.56211 −0.781057 0.624460i \(-0.785319\pi\)
−0.781057 + 0.624460i \(0.785319\pi\)
\(24\) 0 0
\(25\) −2.61803 −0.523607
\(26\) −6.53779 −1.28217
\(27\) 0 0
\(28\) −0.0901699 −0.0170405
\(29\) 1.90770 0.354251 0.177126 0.984188i \(-0.443320\pi\)
0.177126 + 0.984188i \(0.443320\pi\)
\(30\) 0 0
\(31\) −2.38197 −0.427814 −0.213907 0.976854i \(-0.568619\pi\)
−0.213907 + 0.976854i \(0.568619\pi\)
\(32\) 2.13287 0.377042
\(33\) 0 0
\(34\) 9.18034 1.57442
\(35\) 0.364338 0.0615844
\(36\) 0 0
\(37\) 6.23607 1.02520 0.512602 0.858627i \(-0.328682\pi\)
0.512602 + 0.858627i \(0.328682\pi\)
\(38\) −7.12730 −1.15620
\(39\) 0 0
\(40\) −3.85410 −0.609387
\(41\) 5.58394 0.872064 0.436032 0.899931i \(-0.356383\pi\)
0.436032 + 0.899931i \(0.356383\pi\)
\(42\) 0 0
\(43\) 10.7082 1.63299 0.816493 0.577355i \(-0.195915\pi\)
0.816493 + 0.577355i \(0.195915\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 11.5623 1.70477
\(47\) −0.953850 −0.139133 −0.0695667 0.997577i \(-0.522162\pi\)
−0.0695667 + 0.997577i \(0.522162\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 4.04057 0.571423
\(51\) 0 0
\(52\) 1.61803 0.224381
\(53\) 9.03500 1.24105 0.620526 0.784186i \(-0.286919\pi\)
0.620526 + 0.784186i \(0.286919\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.589512 −0.0787768
\(57\) 0 0
\(58\) −2.94427 −0.386602
\(59\) 8.44549 1.09951 0.549754 0.835326i \(-0.314721\pi\)
0.549754 + 0.835326i \(0.314721\pi\)
\(60\) 0 0
\(61\) −4.32624 −0.553918 −0.276959 0.960882i \(-0.589327\pi\)
−0.276959 + 0.960882i \(0.589327\pi\)
\(62\) 3.67624 0.466882
\(63\) 0 0
\(64\) 5.94427 0.743034
\(65\) −6.53779 −0.810913
\(66\) 0 0
\(67\) 3.85410 0.470853 0.235427 0.971892i \(-0.424351\pi\)
0.235427 + 0.971892i \(0.424351\pi\)
\(68\) −2.27204 −0.275525
\(69\) 0 0
\(70\) −0.562306 −0.0672084
\(71\) 7.71681 0.915817 0.457908 0.888999i \(-0.348599\pi\)
0.457908 + 0.888999i \(0.348599\pi\)
\(72\) 0 0
\(73\) 6.47214 0.757506 0.378753 0.925498i \(-0.376353\pi\)
0.378753 + 0.925498i \(0.376353\pi\)
\(74\) −9.62451 −1.11883
\(75\) 0 0
\(76\) 1.76393 0.202337
\(77\) 0 0
\(78\) 0 0
\(79\) 0.527864 0.0593893 0.0296947 0.999559i \(-0.490547\pi\)
0.0296947 + 0.999559i \(0.490547\pi\)
\(80\) 7.12730 0.796856
\(81\) 0 0
\(82\) −8.61803 −0.951703
\(83\) 4.40491 0.483502 0.241751 0.970338i \(-0.422278\pi\)
0.241751 + 0.970338i \(0.422278\pi\)
\(84\) 0 0
\(85\) 9.18034 0.995748
\(86\) −16.5266 −1.78211
\(87\) 0 0
\(88\) 0 0
\(89\) 16.7518 1.77569 0.887844 0.460145i \(-0.152202\pi\)
0.887844 + 0.460145i \(0.152202\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) −2.86155 −0.298337
\(93\) 0 0
\(94\) 1.47214 0.151839
\(95\) −7.12730 −0.731245
\(96\) 0 0
\(97\) −12.7984 −1.29948 −0.649739 0.760157i \(-0.725122\pi\)
−0.649739 + 0.760157i \(0.725122\pi\)
\(98\) 10.7175 1.08263
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 10.5784 1.05259 0.526293 0.850303i \(-0.323581\pi\)
0.526293 + 0.850303i \(0.323581\pi\)
\(102\) 0 0
\(103\) 6.94427 0.684239 0.342120 0.939656i \(-0.388855\pi\)
0.342120 + 0.939656i \(0.388855\pi\)
\(104\) 10.5784 1.03729
\(105\) 0 0
\(106\) −13.9443 −1.35439
\(107\) −9.39934 −0.908668 −0.454334 0.890831i \(-0.650123\pi\)
−0.454334 + 0.890831i \(0.650123\pi\)
\(108\) 0 0
\(109\) 0.291796 0.0279490 0.0139745 0.999902i \(-0.495552\pi\)
0.0139745 + 0.999902i \(0.495552\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.09017 0.103011
\(113\) −11.3070 −1.06368 −0.531838 0.846846i \(-0.678499\pi\)
−0.531838 + 0.846846i \(0.678499\pi\)
\(114\) 0 0
\(115\) 11.5623 1.07819
\(116\) 0.728677 0.0676559
\(117\) 0 0
\(118\) −13.0344 −1.19992
\(119\) 1.40420 0.128723
\(120\) 0 0
\(121\) 0 0
\(122\) 6.67695 0.604503
\(123\) 0 0
\(124\) −0.909830 −0.0817052
\(125\) 11.7574 1.05161
\(126\) 0 0
\(127\) 7.23607 0.642097 0.321049 0.947063i \(-0.395965\pi\)
0.321049 + 0.947063i \(0.395965\pi\)
\(128\) −13.4399 −1.18793
\(129\) 0 0
\(130\) 10.0902 0.884966
\(131\) −12.1217 −1.05908 −0.529540 0.848285i \(-0.677635\pi\)
−0.529540 + 0.848285i \(0.677635\pi\)
\(132\) 0 0
\(133\) −1.09017 −0.0945297
\(134\) −5.94827 −0.513853
\(135\) 0 0
\(136\) −14.8541 −1.27373
\(137\) 10.5784 0.903770 0.451885 0.892076i \(-0.350752\pi\)
0.451885 + 0.892076i \(0.350752\pi\)
\(138\) 0 0
\(139\) 13.6180 1.15507 0.577533 0.816367i \(-0.304015\pi\)
0.577533 + 0.816367i \(0.304015\pi\)
\(140\) 0.139165 0.0117616
\(141\) 0 0
\(142\) −11.9098 −0.999451
\(143\) 0 0
\(144\) 0 0
\(145\) −2.94427 −0.244508
\(146\) −9.98885 −0.826683
\(147\) 0 0
\(148\) 2.38197 0.195796
\(149\) 13.6651 1.11949 0.559744 0.828666i \(-0.310900\pi\)
0.559744 + 0.828666i \(0.310900\pi\)
\(150\) 0 0
\(151\) 8.76393 0.713199 0.356599 0.934257i \(-0.383936\pi\)
0.356599 + 0.934257i \(0.383936\pi\)
\(152\) 11.5322 0.935386
\(153\) 0 0
\(154\) 0 0
\(155\) 3.67624 0.295282
\(156\) 0 0
\(157\) 10.6525 0.850160 0.425080 0.905156i \(-0.360246\pi\)
0.425080 + 0.905156i \(0.360246\pi\)
\(158\) −0.814685 −0.0648129
\(159\) 0 0
\(160\) −3.29180 −0.260239
\(161\) 1.76854 0.139380
\(162\) 0 0
\(163\) 3.61803 0.283386 0.141693 0.989911i \(-0.454745\pi\)
0.141693 + 0.989911i \(0.454745\pi\)
\(164\) 2.13287 0.166549
\(165\) 0 0
\(166\) −6.79837 −0.527656
\(167\) 7.71681 0.597145 0.298572 0.954387i \(-0.403490\pi\)
0.298572 + 0.954387i \(0.403490\pi\)
\(168\) 0 0
\(169\) 4.94427 0.380329
\(170\) −14.1686 −1.08668
\(171\) 0 0
\(172\) 4.09017 0.311873
\(173\) 2.72239 0.206979 0.103490 0.994631i \(-0.466999\pi\)
0.103490 + 0.994631i \(0.466999\pi\)
\(174\) 0 0
\(175\) 0.618034 0.0467190
\(176\) 0 0
\(177\) 0 0
\(178\) −25.8541 −1.93785
\(179\) 18.6595 1.39468 0.697339 0.716742i \(-0.254367\pi\)
0.697339 + 0.716742i \(0.254367\pi\)
\(180\) 0 0
\(181\) 7.76393 0.577089 0.288544 0.957467i \(-0.406829\pi\)
0.288544 + 0.957467i \(0.406829\pi\)
\(182\) 1.54336 0.114402
\(183\) 0 0
\(184\) −18.7082 −1.37919
\(185\) −9.62451 −0.707608
\(186\) 0 0
\(187\) 0 0
\(188\) −0.364338 −0.0265721
\(189\) 0 0
\(190\) 11.0000 0.798024
\(191\) −3.67624 −0.266003 −0.133002 0.991116i \(-0.542462\pi\)
−0.133002 + 0.991116i \(0.542462\pi\)
\(192\) 0 0
\(193\) −9.61803 −0.692321 −0.346161 0.938175i \(-0.612515\pi\)
−0.346161 + 0.938175i \(0.612515\pi\)
\(194\) 19.7525 1.41815
\(195\) 0 0
\(196\) −2.65248 −0.189463
\(197\) 12.1217 0.863637 0.431818 0.901961i \(-0.357872\pi\)
0.431818 + 0.901961i \(0.357872\pi\)
\(198\) 0 0
\(199\) −26.4164 −1.87261 −0.936305 0.351189i \(-0.885778\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(200\) −6.53779 −0.462291
\(201\) 0 0
\(202\) −16.3262 −1.14871
\(203\) −0.450347 −0.0316082
\(204\) 0 0
\(205\) −8.61803 −0.601910
\(206\) −10.7175 −0.746725
\(207\) 0 0
\(208\) −19.5623 −1.35640
\(209\) 0 0
\(210\) 0 0
\(211\) −11.0344 −0.759642 −0.379821 0.925060i \(-0.624014\pi\)
−0.379821 + 0.925060i \(0.624014\pi\)
\(212\) 3.45106 0.237020
\(213\) 0 0
\(214\) 14.5066 0.991649
\(215\) −16.5266 −1.12711
\(216\) 0 0
\(217\) 0.562306 0.0381718
\(218\) −0.450347 −0.0305013
\(219\) 0 0
\(220\) 0 0
\(221\) −25.1973 −1.69495
\(222\) 0 0
\(223\) −19.1803 −1.28441 −0.642205 0.766533i \(-0.721980\pi\)
−0.642205 + 0.766533i \(0.721980\pi\)
\(224\) −0.503503 −0.0336417
\(225\) 0 0
\(226\) 17.4508 1.16081
\(227\) 9.39934 0.623856 0.311928 0.950106i \(-0.399025\pi\)
0.311928 + 0.950106i \(0.399025\pi\)
\(228\) 0 0
\(229\) −9.52786 −0.629619 −0.314809 0.949155i \(-0.601941\pi\)
−0.314809 + 0.949155i \(0.601941\pi\)
\(230\) −17.8448 −1.17665
\(231\) 0 0
\(232\) 4.76393 0.312767
\(233\) 4.17974 0.273824 0.136912 0.990583i \(-0.456282\pi\)
0.136912 + 0.990583i \(0.456282\pi\)
\(234\) 0 0
\(235\) 1.47214 0.0960316
\(236\) 3.22589 0.209987
\(237\) 0 0
\(238\) −2.16718 −0.140478
\(239\) 15.9371 1.03089 0.515443 0.856924i \(-0.327627\pi\)
0.515443 + 0.856924i \(0.327627\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.65248 −0.105789
\(245\) 10.7175 0.684718
\(246\) 0 0
\(247\) 19.5623 1.24472
\(248\) −5.94827 −0.377716
\(249\) 0 0
\(250\) −18.1459 −1.14765
\(251\) 14.7581 0.931523 0.465761 0.884910i \(-0.345780\pi\)
0.465761 + 0.884910i \(0.345780\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −11.1679 −0.700735
\(255\) 0 0
\(256\) 8.85410 0.553381
\(257\) −15.7980 −0.985450 −0.492725 0.870185i \(-0.663999\pi\)
−0.492725 + 0.870185i \(0.663999\pi\)
\(258\) 0 0
\(259\) −1.47214 −0.0914741
\(260\) −2.49721 −0.154871
\(261\) 0 0
\(262\) 18.7082 1.15580
\(263\) 4.63009 0.285503 0.142752 0.989759i \(-0.454405\pi\)
0.142752 + 0.989759i \(0.454405\pi\)
\(264\) 0 0
\(265\) −13.9443 −0.856590
\(266\) 1.68253 0.103162
\(267\) 0 0
\(268\) 1.47214 0.0899250
\(269\) −26.8798 −1.63889 −0.819446 0.573157i \(-0.805719\pi\)
−0.819446 + 0.573157i \(0.805719\pi\)
\(270\) 0 0
\(271\) 30.0344 1.82446 0.912231 0.409676i \(-0.134358\pi\)
0.912231 + 0.409676i \(0.134358\pi\)
\(272\) 27.4693 1.66557
\(273\) 0 0
\(274\) −16.3262 −0.986304
\(275\) 0 0
\(276\) 0 0
\(277\) −21.6180 −1.29890 −0.649451 0.760404i \(-0.725001\pi\)
−0.649451 + 0.760404i \(0.725001\pi\)
\(278\) −21.0176 −1.26055
\(279\) 0 0
\(280\) 0.909830 0.0543727
\(281\) −8.80982 −0.525550 −0.262775 0.964857i \(-0.584638\pi\)
−0.262775 + 0.964857i \(0.584638\pi\)
\(282\) 0 0
\(283\) −6.94427 −0.412794 −0.206397 0.978468i \(-0.566174\pi\)
−0.206397 + 0.978468i \(0.566174\pi\)
\(284\) 2.94756 0.174905
\(285\) 0 0
\(286\) 0 0
\(287\) −1.31819 −0.0778102
\(288\) 0 0
\(289\) 18.3820 1.08129
\(290\) 4.54408 0.266837
\(291\) 0 0
\(292\) 2.47214 0.144671
\(293\) −20.5672 −1.20155 −0.600775 0.799418i \(-0.705141\pi\)
−0.600775 + 0.799418i \(0.705141\pi\)
\(294\) 0 0
\(295\) −13.0344 −0.758895
\(296\) 15.5728 0.905150
\(297\) 0 0
\(298\) −21.0902 −1.22172
\(299\) −31.7351 −1.83529
\(300\) 0 0
\(301\) −2.52786 −0.145704
\(302\) −13.5259 −0.778329
\(303\) 0 0
\(304\) −21.3262 −1.22314
\(305\) 6.67695 0.382321
\(306\) 0 0
\(307\) 16.2705 0.928607 0.464304 0.885676i \(-0.346305\pi\)
0.464304 + 0.885676i \(0.346305\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5.67376 −0.322248
\(311\) −24.1043 −1.36683 −0.683414 0.730031i \(-0.739506\pi\)
−0.683414 + 0.730031i \(0.739506\pi\)
\(312\) 0 0
\(313\) 0.347524 0.0196432 0.00982161 0.999952i \(-0.496874\pi\)
0.00982161 + 0.999952i \(0.496874\pi\)
\(314\) −16.4406 −0.927798
\(315\) 0 0
\(316\) 0.201626 0.0113424
\(317\) −10.5784 −0.594140 −0.297070 0.954856i \(-0.596009\pi\)
−0.297070 + 0.954856i \(0.596009\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −9.17416 −0.512851
\(321\) 0 0
\(322\) −2.72949 −0.152109
\(323\) −27.4693 −1.52843
\(324\) 0 0
\(325\) −11.0902 −0.615172
\(326\) −5.58394 −0.309266
\(327\) 0 0
\(328\) 13.9443 0.769944
\(329\) 0.225173 0.0124142
\(330\) 0 0
\(331\) 20.7082 1.13823 0.569113 0.822259i \(-0.307287\pi\)
0.569113 + 0.822259i \(0.307287\pi\)
\(332\) 1.68253 0.0923407
\(333\) 0 0
\(334\) −11.9098 −0.651677
\(335\) −5.94827 −0.324989
\(336\) 0 0
\(337\) −4.65248 −0.253437 −0.126718 0.991939i \(-0.540444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(338\) −7.63080 −0.415061
\(339\) 0 0
\(340\) 3.50658 0.190171
\(341\) 0 0
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) 26.7407 1.44176
\(345\) 0 0
\(346\) −4.20163 −0.225881
\(347\) 2.63638 0.141528 0.0707641 0.997493i \(-0.477456\pi\)
0.0707641 + 0.997493i \(0.477456\pi\)
\(348\) 0 0
\(349\) 13.1803 0.705527 0.352764 0.935712i \(-0.385242\pi\)
0.352764 + 0.935712i \(0.385242\pi\)
\(350\) −0.953850 −0.0509854
\(351\) 0 0
\(352\) 0 0
\(353\) −3.53707 −0.188259 −0.0941296 0.995560i \(-0.530007\pi\)
−0.0941296 + 0.995560i \(0.530007\pi\)
\(354\) 0 0
\(355\) −11.9098 −0.632108
\(356\) 6.39862 0.339126
\(357\) 0 0
\(358\) −28.7984 −1.52204
\(359\) 26.1511 1.38020 0.690102 0.723712i \(-0.257566\pi\)
0.690102 + 0.723712i \(0.257566\pi\)
\(360\) 0 0
\(361\) 2.32624 0.122434
\(362\) −11.9826 −0.629789
\(363\) 0 0
\(364\) −0.381966 −0.0200205
\(365\) −9.98885 −0.522840
\(366\) 0 0
\(367\) −6.03444 −0.314995 −0.157498 0.987519i \(-0.550343\pi\)
−0.157498 + 0.987519i \(0.550343\pi\)
\(368\) 34.5966 1.80347
\(369\) 0 0
\(370\) 14.8541 0.772228
\(371\) −2.13287 −0.110733
\(372\) 0 0
\(373\) −12.4164 −0.642897 −0.321449 0.946927i \(-0.604170\pi\)
−0.321449 + 0.946927i \(0.604170\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.38197 −0.122841
\(377\) 8.08115 0.416200
\(378\) 0 0
\(379\) 1.76393 0.0906071 0.0453036 0.998973i \(-0.485574\pi\)
0.0453036 + 0.998973i \(0.485574\pi\)
\(380\) −2.72239 −0.139655
\(381\) 0 0
\(382\) 5.67376 0.290295
\(383\) −14.1154 −0.721265 −0.360632 0.932708i \(-0.617439\pi\)
−0.360632 + 0.932708i \(0.617439\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.8441 0.755545
\(387\) 0 0
\(388\) −4.88854 −0.248178
\(389\) 19.4742 0.987381 0.493690 0.869638i \(-0.335648\pi\)
0.493690 + 0.869638i \(0.335648\pi\)
\(390\) 0 0
\(391\) 44.5623 2.25361
\(392\) −17.3413 −0.875869
\(393\) 0 0
\(394\) −18.7082 −0.942506
\(395\) −0.814685 −0.0409913
\(396\) 0 0
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) 40.7701 2.04362
\(399\) 0 0
\(400\) 12.0902 0.604508
\(401\) −3.31190 −0.165388 −0.0826941 0.996575i \(-0.526352\pi\)
−0.0826941 + 0.996575i \(0.526352\pi\)
\(402\) 0 0
\(403\) −10.0902 −0.502627
\(404\) 4.04057 0.201026
\(405\) 0 0
\(406\) 0.695048 0.0344947
\(407\) 0 0
\(408\) 0 0
\(409\) 22.9443 1.13452 0.567261 0.823538i \(-0.308003\pi\)
0.567261 + 0.823538i \(0.308003\pi\)
\(410\) 13.3007 0.656877
\(411\) 0 0
\(412\) 2.65248 0.130678
\(413\) −1.99371 −0.0981040
\(414\) 0 0
\(415\) −6.79837 −0.333719
\(416\) 9.03500 0.442977
\(417\) 0 0
\(418\) 0 0
\(419\) 16.0763 0.785378 0.392689 0.919671i \(-0.371545\pi\)
0.392689 + 0.919671i \(0.371545\pi\)
\(420\) 0 0
\(421\) 22.2148 1.08268 0.541341 0.840803i \(-0.317917\pi\)
0.541341 + 0.840803i \(0.317917\pi\)
\(422\) 17.0301 0.829014
\(423\) 0 0
\(424\) 22.5623 1.09572
\(425\) 15.5728 0.755391
\(426\) 0 0
\(427\) 1.02129 0.0494235
\(428\) −3.59023 −0.173540
\(429\) 0 0
\(430\) 25.5066 1.23004
\(431\) −5.49793 −0.264826 −0.132413 0.991195i \(-0.542272\pi\)
−0.132413 + 0.991195i \(0.542272\pi\)
\(432\) 0 0
\(433\) 28.6525 1.37695 0.688475 0.725260i \(-0.258280\pi\)
0.688475 + 0.725260i \(0.258280\pi\)
\(434\) −0.867842 −0.0416577
\(435\) 0 0
\(436\) 0.111456 0.00533778
\(437\) −34.5966 −1.65498
\(438\) 0 0
\(439\) 25.0000 1.19318 0.596592 0.802544i \(-0.296521\pi\)
0.596592 + 0.802544i \(0.296521\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 38.8885 1.84974
\(443\) −18.7987 −0.893152 −0.446576 0.894746i \(-0.647357\pi\)
−0.446576 + 0.894746i \(0.647357\pi\)
\(444\) 0 0
\(445\) −25.8541 −1.22560
\(446\) 29.6022 1.40171
\(447\) 0 0
\(448\) −1.40325 −0.0662974
\(449\) 0.450347 0.0212532 0.0106266 0.999944i \(-0.496617\pi\)
0.0106266 + 0.999944i \(0.496617\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −4.31890 −0.203144
\(453\) 0 0
\(454\) −14.5066 −0.680827
\(455\) 1.54336 0.0723539
\(456\) 0 0
\(457\) −23.9098 −1.11845 −0.559227 0.829014i \(-0.688902\pi\)
−0.559227 + 0.829014i \(0.688902\pi\)
\(458\) 14.7049 0.687117
\(459\) 0 0
\(460\) 4.41641 0.205916
\(461\) 19.6134 0.913485 0.456743 0.889599i \(-0.349016\pi\)
0.456743 + 0.889599i \(0.349016\pi\)
\(462\) 0 0
\(463\) −1.43769 −0.0668153 −0.0334077 0.999442i \(-0.510636\pi\)
−0.0334077 + 0.999442i \(0.510636\pi\)
\(464\) −8.80982 −0.408986
\(465\) 0 0
\(466\) −6.45085 −0.298830
\(467\) 4.85526 0.224675 0.112337 0.993670i \(-0.464166\pi\)
0.112337 + 0.993670i \(0.464166\pi\)
\(468\) 0 0
\(469\) −0.909830 −0.0420120
\(470\) −2.27204 −0.104801
\(471\) 0 0
\(472\) 21.0902 0.970754
\(473\) 0 0
\(474\) 0 0
\(475\) −12.0902 −0.554735
\(476\) 0.536356 0.0245838
\(477\) 0 0
\(478\) −24.5967 −1.12503
\(479\) 36.8155 1.68214 0.841072 0.540923i \(-0.181925\pi\)
0.841072 + 0.540923i \(0.181925\pi\)
\(480\) 0 0
\(481\) 26.4164 1.20448
\(482\) 21.6071 0.984175
\(483\) 0 0
\(484\) 0 0
\(485\) 19.7525 0.896916
\(486\) 0 0
\(487\) −16.8885 −0.765293 −0.382646 0.923895i \(-0.624987\pi\)
−0.382646 + 0.923895i \(0.624987\pi\)
\(488\) −10.8035 −0.489053
\(489\) 0 0
\(490\) −16.5410 −0.747247
\(491\) −30.9204 −1.39542 −0.697709 0.716381i \(-0.745797\pi\)
−0.697709 + 0.716381i \(0.745797\pi\)
\(492\) 0 0
\(493\) −11.3475 −0.511067
\(494\) −30.1917 −1.35839
\(495\) 0 0
\(496\) 11.0000 0.493915
\(497\) −1.82169 −0.0817140
\(498\) 0 0
\(499\) −9.74265 −0.436141 −0.218070 0.975933i \(-0.569976\pi\)
−0.218070 + 0.975933i \(0.569976\pi\)
\(500\) 4.49092 0.200840
\(501\) 0 0
\(502\) −22.7771 −1.01659
\(503\) −11.1679 −0.497951 −0.248975 0.968510i \(-0.580094\pi\)
−0.248975 + 0.968510i \(0.580094\pi\)
\(504\) 0 0
\(505\) −16.3262 −0.726508
\(506\) 0 0
\(507\) 0 0
\(508\) 2.76393 0.122630
\(509\) 8.30632 0.368171 0.184086 0.982910i \(-0.441068\pi\)
0.184086 + 0.982910i \(0.441068\pi\)
\(510\) 0 0
\(511\) −1.52786 −0.0675887
\(512\) 13.2147 0.584014
\(513\) 0 0
\(514\) 24.3820 1.07544
\(515\) −10.7175 −0.472271
\(516\) 0 0
\(517\) 0 0
\(518\) 2.27204 0.0998276
\(519\) 0 0
\(520\) −16.3262 −0.715953
\(521\) −5.44477 −0.238540 −0.119270 0.992862i \(-0.538055\pi\)
−0.119270 + 0.992862i \(0.538055\pi\)
\(522\) 0 0
\(523\) −18.4508 −0.806799 −0.403400 0.915024i \(-0.632172\pi\)
−0.403400 + 0.915024i \(0.632172\pi\)
\(524\) −4.63009 −0.202266
\(525\) 0 0
\(526\) −7.14590 −0.311576
\(527\) 14.1686 0.617193
\(528\) 0 0
\(529\) 33.1246 1.44020
\(530\) 21.5211 0.934815
\(531\) 0 0
\(532\) −0.416408 −0.0180536
\(533\) 23.6539 1.02457
\(534\) 0 0
\(535\) 14.5066 0.627174
\(536\) 9.62451 0.415716
\(537\) 0 0
\(538\) 41.4853 1.78856
\(539\) 0 0
\(540\) 0 0
\(541\) 39.6312 1.70388 0.851939 0.523641i \(-0.175427\pi\)
0.851939 + 0.523641i \(0.175427\pi\)
\(542\) −46.3540 −1.99108
\(543\) 0 0
\(544\) −12.6869 −0.543947
\(545\) −0.450347 −0.0192907
\(546\) 0 0
\(547\) 9.03444 0.386285 0.193142 0.981171i \(-0.438132\pi\)
0.193142 + 0.981171i \(0.438132\pi\)
\(548\) 4.04057 0.172605
\(549\) 0 0
\(550\) 0 0
\(551\) 8.80982 0.375311
\(552\) 0 0
\(553\) −0.124612 −0.00529903
\(554\) 33.3645 1.41752
\(555\) 0 0
\(556\) 5.20163 0.220598
\(557\) −17.7057 −0.750213 −0.375106 0.926982i \(-0.622394\pi\)
−0.375106 + 0.926982i \(0.622394\pi\)
\(558\) 0 0
\(559\) 45.3607 1.91855
\(560\) −1.68253 −0.0710997
\(561\) 0 0
\(562\) 13.5967 0.573544
\(563\) 40.5449 1.70876 0.854382 0.519645i \(-0.173936\pi\)
0.854382 + 0.519645i \(0.173936\pi\)
\(564\) 0 0
\(565\) 17.4508 0.734163
\(566\) 10.7175 0.450491
\(567\) 0 0
\(568\) 19.2705 0.808573
\(569\) −29.6882 −1.24459 −0.622297 0.782781i \(-0.713801\pi\)
−0.622297 + 0.782781i \(0.713801\pi\)
\(570\) 0 0
\(571\) 34.9787 1.46381 0.731907 0.681405i \(-0.238631\pi\)
0.731907 + 0.681405i \(0.238631\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 2.03444 0.0849160
\(575\) 19.6134 0.817934
\(576\) 0 0
\(577\) −32.6525 −1.35934 −0.679670 0.733518i \(-0.737877\pi\)
−0.679670 + 0.733518i \(0.737877\pi\)
\(578\) −28.3700 −1.18004
\(579\) 0 0
\(580\) −1.12461 −0.0466970
\(581\) −1.03986 −0.0431406
\(582\) 0 0
\(583\) 0 0
\(584\) 16.1623 0.668801
\(585\) 0 0
\(586\) 31.7426 1.31128
\(587\) 9.12101 0.376464 0.188232 0.982125i \(-0.439724\pi\)
0.188232 + 0.982125i \(0.439724\pi\)
\(588\) 0 0
\(589\) −11.0000 −0.453247
\(590\) 20.1169 0.828198
\(591\) 0 0
\(592\) −28.7984 −1.18361
\(593\) 1.09301 0.0448847 0.0224424 0.999748i \(-0.492856\pi\)
0.0224424 + 0.999748i \(0.492856\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 5.21960 0.213803
\(597\) 0 0
\(598\) 48.9787 2.00289
\(599\) 12.3469 0.504480 0.252240 0.967665i \(-0.418833\pi\)
0.252240 + 0.967665i \(0.418833\pi\)
\(600\) 0 0
\(601\) −35.3607 −1.44239 −0.721196 0.692731i \(-0.756407\pi\)
−0.721196 + 0.692731i \(0.756407\pi\)
\(602\) 3.90141 0.159010
\(603\) 0 0
\(604\) 3.34752 0.136209
\(605\) 0 0
\(606\) 0 0
\(607\) 26.3820 1.07081 0.535405 0.844595i \(-0.320159\pi\)
0.535405 + 0.844595i \(0.320159\pi\)
\(608\) 9.84968 0.399457
\(609\) 0 0
\(610\) −10.3050 −0.417235
\(611\) −4.04057 −0.163464
\(612\) 0 0
\(613\) −42.9443 −1.73450 −0.867251 0.497870i \(-0.834115\pi\)
−0.867251 + 0.497870i \(0.834115\pi\)
\(614\) −25.1113 −1.01341
\(615\) 0 0
\(616\) 0 0
\(617\) 1.76854 0.0711986 0.0355993 0.999366i \(-0.488666\pi\)
0.0355993 + 0.999366i \(0.488666\pi\)
\(618\) 0 0
\(619\) −28.8885 −1.16113 −0.580564 0.814214i \(-0.697168\pi\)
−0.580564 + 0.814214i \(0.697168\pi\)
\(620\) 1.40420 0.0563939
\(621\) 0 0
\(622\) 37.2016 1.49165
\(623\) −3.95457 −0.158436
\(624\) 0 0
\(625\) −5.05573 −0.202229
\(626\) −0.536356 −0.0214371
\(627\) 0 0
\(628\) 4.06888 0.162366
\(629\) −37.0938 −1.47903
\(630\) 0 0
\(631\) −19.6180 −0.780982 −0.390491 0.920607i \(-0.627695\pi\)
−0.390491 + 0.920607i \(0.627695\pi\)
\(632\) 1.31819 0.0524347
\(633\) 0 0
\(634\) 16.3262 0.648398
\(635\) −11.1679 −0.443183
\(636\) 0 0
\(637\) −29.4164 −1.16552
\(638\) 0 0
\(639\) 0 0
\(640\) 20.7426 0.819925
\(641\) 12.2609 0.484276 0.242138 0.970242i \(-0.422151\pi\)
0.242138 + 0.970242i \(0.422151\pi\)
\(642\) 0 0
\(643\) 28.1591 1.11048 0.555242 0.831689i \(-0.312626\pi\)
0.555242 + 0.831689i \(0.312626\pi\)
\(644\) 0.675520 0.0266192
\(645\) 0 0
\(646\) 42.3951 1.66801
\(647\) −39.4519 −1.55101 −0.775507 0.631339i \(-0.782506\pi\)
−0.775507 + 0.631339i \(0.782506\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 17.1161 0.671350
\(651\) 0 0
\(652\) 1.38197 0.0541220
\(653\) −41.8099 −1.63615 −0.818075 0.575112i \(-0.804958\pi\)
−0.818075 + 0.575112i \(0.804958\pi\)
\(654\) 0 0
\(655\) 18.7082 0.730990
\(656\) −25.7868 −1.00681
\(657\) 0 0
\(658\) −0.347524 −0.0135479
\(659\) 3.53707 0.137785 0.0688924 0.997624i \(-0.478053\pi\)
0.0688924 + 0.997624i \(0.478053\pi\)
\(660\) 0 0
\(661\) 22.5623 0.877572 0.438786 0.898592i \(-0.355409\pi\)
0.438786 + 0.898592i \(0.355409\pi\)
\(662\) −31.9603 −1.24217
\(663\) 0 0
\(664\) 11.0000 0.426883
\(665\) 1.68253 0.0652456
\(666\) 0 0
\(667\) −14.2918 −0.553381
\(668\) 2.94756 0.114044
\(669\) 0 0
\(670\) 9.18034 0.354667
\(671\) 0 0
\(672\) 0 0
\(673\) −13.7639 −0.530561 −0.265280 0.964171i \(-0.585464\pi\)
−0.265280 + 0.964171i \(0.585464\pi\)
\(674\) 7.18045 0.276581
\(675\) 0 0
\(676\) 1.88854 0.0726363
\(677\) 6.17345 0.237265 0.118632 0.992938i \(-0.462149\pi\)
0.118632 + 0.992938i \(0.462149\pi\)
\(678\) 0 0
\(679\) 3.02129 0.115946
\(680\) 22.9253 0.879143
\(681\) 0 0
\(682\) 0 0
\(683\) −31.7351 −1.21431 −0.607155 0.794584i \(-0.707689\pi\)
−0.607155 + 0.794584i \(0.707689\pi\)
\(684\) 0 0
\(685\) −16.3262 −0.623793
\(686\) −5.08043 −0.193972
\(687\) 0 0
\(688\) −49.4508 −1.88530
\(689\) 38.2729 1.45808
\(690\) 0 0
\(691\) −12.3607 −0.470222 −0.235111 0.971968i \(-0.575545\pi\)
−0.235111 + 0.971968i \(0.575545\pi\)
\(692\) 1.03986 0.0395295
\(693\) 0 0
\(694\) −4.06888 −0.154453
\(695\) −21.0176 −0.797241
\(696\) 0 0
\(697\) −33.2148 −1.25810
\(698\) −20.3420 −0.769957
\(699\) 0 0
\(700\) 0.236068 0.00892253
\(701\) 38.4120 1.45080 0.725401 0.688326i \(-0.241654\pi\)
0.725401 + 0.688326i \(0.241654\pi\)
\(702\) 0 0
\(703\) 28.7984 1.08615
\(704\) 0 0
\(705\) 0 0
\(706\) 5.45898 0.205451
\(707\) −2.49721 −0.0939173
\(708\) 0 0
\(709\) −39.7984 −1.49466 −0.747330 0.664453i \(-0.768664\pi\)
−0.747330 + 0.664453i \(0.768664\pi\)
\(710\) 18.3812 0.689833
\(711\) 0 0
\(712\) 41.8328 1.56775
\(713\) 17.8448 0.668294
\(714\) 0 0
\(715\) 0 0
\(716\) 7.12730 0.266360
\(717\) 0 0
\(718\) −40.3607 −1.50625
\(719\) 35.5505 1.32581 0.662905 0.748704i \(-0.269323\pi\)
0.662905 + 0.748704i \(0.269323\pi\)
\(720\) 0 0
\(721\) −1.63932 −0.0610515
\(722\) −3.59023 −0.133614
\(723\) 0 0
\(724\) 2.96556 0.110214
\(725\) −4.99442 −0.185488
\(726\) 0 0
\(727\) −0.562306 −0.0208548 −0.0104274 0.999946i \(-0.503319\pi\)
−0.0104274 + 0.999946i \(0.503319\pi\)
\(728\) −2.49721 −0.0925528
\(729\) 0 0
\(730\) 15.4164 0.570587
\(731\) −63.6953 −2.35586
\(732\) 0 0
\(733\) −16.6525 −0.615073 −0.307537 0.951536i \(-0.599505\pi\)
−0.307537 + 0.951536i \(0.599505\pi\)
\(734\) 9.31333 0.343761
\(735\) 0 0
\(736\) −15.9787 −0.588983
\(737\) 0 0
\(738\) 0 0
\(739\) −13.7639 −0.506314 −0.253157 0.967425i \(-0.581469\pi\)
−0.253157 + 0.967425i \(0.581469\pi\)
\(740\) −3.67624 −0.135141
\(741\) 0 0
\(742\) 3.29180 0.120846
\(743\) −44.0820 −1.61721 −0.808605 0.588351i \(-0.799777\pi\)
−0.808605 + 0.588351i \(0.799777\pi\)
\(744\) 0 0
\(745\) −21.0902 −0.772684
\(746\) 19.1630 0.701608
\(747\) 0 0
\(748\) 0 0
\(749\) 2.21888 0.0810762
\(750\) 0 0
\(751\) 36.5066 1.33214 0.666072 0.745887i \(-0.267974\pi\)
0.666072 + 0.745887i \(0.267974\pi\)
\(752\) 4.40491 0.160631
\(753\) 0 0
\(754\) −12.4721 −0.454208
\(755\) −13.5259 −0.492259
\(756\) 0 0
\(757\) −5.11146 −0.185779 −0.0928895 0.995676i \(-0.529610\pi\)
−0.0928895 + 0.995676i \(0.529610\pi\)
\(758\) −2.72239 −0.0988815
\(759\) 0 0
\(760\) −17.7984 −0.645615
\(761\) 7.04129 0.255247 0.127623 0.991823i \(-0.459265\pi\)
0.127623 + 0.991823i \(0.459265\pi\)
\(762\) 0 0
\(763\) −0.0688837 −0.00249376
\(764\) −1.40420 −0.0508021
\(765\) 0 0
\(766\) 21.7852 0.787132
\(767\) 35.7757 1.29178
\(768\) 0 0
\(769\) −11.2705 −0.406425 −0.203212 0.979135i \(-0.565138\pi\)
−0.203212 + 0.979135i \(0.565138\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.67376 −0.132222
\(773\) −48.3477 −1.73895 −0.869473 0.493980i \(-0.835542\pi\)
−0.869473 + 0.493980i \(0.835542\pi\)
\(774\) 0 0
\(775\) 6.23607 0.224006
\(776\) −31.9603 −1.14731
\(777\) 0 0
\(778\) −30.0557 −1.07755
\(779\) 25.7868 0.923908
\(780\) 0 0
\(781\) 0 0
\(782\) −68.7758 −2.45942
\(783\) 0 0
\(784\) 32.0689 1.14532
\(785\) −16.4406 −0.586791
\(786\) 0 0
\(787\) 43.7771 1.56048 0.780242 0.625477i \(-0.215096\pi\)
0.780242 + 0.625477i \(0.215096\pi\)
\(788\) 4.63009 0.164940
\(789\) 0 0
\(790\) 1.25735 0.0447347
\(791\) 2.66923 0.0949069
\(792\) 0 0
\(793\) −18.3262 −0.650784
\(794\) 3.72939 0.132351
\(795\) 0 0
\(796\) −10.0902 −0.357637
\(797\) 3.08672 0.109337 0.0546687 0.998505i \(-0.482590\pi\)
0.0546687 + 0.998505i \(0.482590\pi\)
\(798\) 0 0
\(799\) 5.67376 0.200723
\(800\) −5.58394 −0.197422
\(801\) 0 0
\(802\) 5.11146 0.180492
\(803\) 0 0
\(804\) 0 0
\(805\) −2.72949 −0.0962019
\(806\) 15.5728 0.548528
\(807\) 0 0
\(808\) 26.4164 0.929326
\(809\) 25.7868 0.906616 0.453308 0.891354i \(-0.350244\pi\)
0.453308 + 0.891354i \(0.350244\pi\)
\(810\) 0 0
\(811\) −7.21478 −0.253345 −0.126673 0.991945i \(-0.540430\pi\)
−0.126673 + 0.991945i \(0.540430\pi\)
\(812\) −0.172017 −0.00603662
\(813\) 0 0
\(814\) 0 0
\(815\) −5.58394 −0.195597
\(816\) 0 0
\(817\) 49.4508 1.73007
\(818\) −35.4113 −1.23813
\(819\) 0 0
\(820\) −3.29180 −0.114955
\(821\) 30.1057 1.05070 0.525348 0.850887i \(-0.323935\pi\)
0.525348 + 0.850887i \(0.323935\pi\)
\(822\) 0 0
\(823\) 54.8885 1.91329 0.956647 0.291249i \(-0.0940709\pi\)
0.956647 + 0.291249i \(0.0940709\pi\)
\(824\) 17.3413 0.604113
\(825\) 0 0
\(826\) 3.07701 0.107063
\(827\) 33.0533 1.14937 0.574687 0.818373i \(-0.305124\pi\)
0.574687 + 0.818373i \(0.305124\pi\)
\(828\) 0 0
\(829\) −9.03444 −0.313779 −0.156890 0.987616i \(-0.550147\pi\)
−0.156890 + 0.987616i \(0.550147\pi\)
\(830\) 10.4924 0.364195
\(831\) 0 0
\(832\) 25.1803 0.872971
\(833\) 41.3064 1.43118
\(834\) 0 0
\(835\) −11.9098 −0.412157
\(836\) 0 0
\(837\) 0 0
\(838\) −24.8115 −0.857100
\(839\) 48.6261 1.67876 0.839379 0.543547i \(-0.182919\pi\)
0.839379 + 0.543547i \(0.182919\pi\)
\(840\) 0 0
\(841\) −25.3607 −0.874506
\(842\) −34.2854 −1.18155
\(843\) 0 0
\(844\) −4.21478 −0.145079
\(845\) −7.63080 −0.262508
\(846\) 0 0
\(847\) 0 0
\(848\) −41.7239 −1.43281
\(849\) 0 0
\(850\) −24.0344 −0.824375
\(851\) −46.7184 −1.60148
\(852\) 0 0
\(853\) −21.1803 −0.725201 −0.362601 0.931945i \(-0.618111\pi\)
−0.362601 + 0.931945i \(0.618111\pi\)
\(854\) −1.57621 −0.0539369
\(855\) 0 0
\(856\) −23.4721 −0.802261
\(857\) −40.9953 −1.40037 −0.700186 0.713961i \(-0.746899\pi\)
−0.700186 + 0.713961i \(0.746899\pi\)
\(858\) 0 0
\(859\) 15.5836 0.531705 0.265853 0.964014i \(-0.414347\pi\)
0.265853 + 0.964014i \(0.414347\pi\)
\(860\) −6.31261 −0.215258
\(861\) 0 0
\(862\) 8.48529 0.289010
\(863\) −24.6938 −0.840586 −0.420293 0.907388i \(-0.638073\pi\)
−0.420293 + 0.907388i \(0.638073\pi\)
\(864\) 0 0
\(865\) −4.20163 −0.142860
\(866\) −44.2211 −1.50270
\(867\) 0 0
\(868\) 0.214782 0.00729017
\(869\) 0 0
\(870\) 0 0
\(871\) 16.3262 0.553193
\(872\) 0.728677 0.0246761
\(873\) 0 0
\(874\) 53.3951 1.80612
\(875\) −2.77554 −0.0938304
\(876\) 0 0
\(877\) −2.52786 −0.0853599 −0.0426800 0.999089i \(-0.513590\pi\)
−0.0426800 + 0.999089i \(0.513590\pi\)
\(878\) −38.5840 −1.30215
\(879\) 0 0
\(880\) 0 0
\(881\) −47.8114 −1.61081 −0.805403 0.592728i \(-0.798051\pi\)
−0.805403 + 0.592728i \(0.798051\pi\)
\(882\) 0 0
\(883\) −49.8885 −1.67888 −0.839442 0.543450i \(-0.817118\pi\)
−0.839442 + 0.543450i \(0.817118\pi\)
\(884\) −9.62451 −0.323707
\(885\) 0 0
\(886\) 29.0132 0.974716
\(887\) 16.4735 0.553125 0.276563 0.960996i \(-0.410805\pi\)
0.276563 + 0.960996i \(0.410805\pi\)
\(888\) 0 0
\(889\) −1.70820 −0.0572913
\(890\) 39.9022 1.33753
\(891\) 0 0
\(892\) −7.32624 −0.245301
\(893\) −4.40491 −0.147405
\(894\) 0 0
\(895\) −28.7984 −0.962623
\(896\) 3.17273 0.105994
\(897\) 0 0
\(898\) −0.695048 −0.0231941
\(899\) −4.54408 −0.151553
\(900\) 0 0
\(901\) −53.7426 −1.79043
\(902\) 0 0
\(903\) 0 0
\(904\) −28.2361 −0.939118
\(905\) −11.9826 −0.398314
\(906\) 0 0
\(907\) 46.8673 1.55620 0.778101 0.628139i \(-0.216183\pi\)
0.778101 + 0.628139i \(0.216183\pi\)
\(908\) 3.59023 0.119146
\(909\) 0 0
\(910\) −2.38197 −0.0789614
\(911\) 37.9085 1.25597 0.627983 0.778227i \(-0.283881\pi\)
0.627983 + 0.778227i \(0.283881\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 36.9015 1.22059
\(915\) 0 0
\(916\) −3.63932 −0.120247
\(917\) 2.86155 0.0944967
\(918\) 0 0
\(919\) 2.81966 0.0930120 0.0465060 0.998918i \(-0.485191\pi\)
0.0465060 + 0.998918i \(0.485191\pi\)
\(920\) 28.8735 0.951932
\(921\) 0 0
\(922\) −30.2705 −0.996906
\(923\) 32.6889 1.07597
\(924\) 0 0
\(925\) −16.3262 −0.536803
\(926\) 2.21888 0.0729170
\(927\) 0 0
\(928\) 4.06888 0.133568
\(929\) −0.867842 −0.0284730 −0.0142365 0.999899i \(-0.504532\pi\)
−0.0142365 + 0.999899i \(0.504532\pi\)
\(930\) 0 0
\(931\) −32.0689 −1.05102
\(932\) 1.59652 0.0522957
\(933\) 0 0
\(934\) −7.49342 −0.245192
\(935\) 0 0
\(936\) 0 0
\(937\) −33.1803 −1.08395 −0.541977 0.840393i \(-0.682324\pi\)
−0.541977 + 0.840393i \(0.682324\pi\)
\(938\) 1.40420 0.0458487
\(939\) 0 0
\(940\) 0.562306 0.0183404
\(941\) −45.1750 −1.47266 −0.736331 0.676621i \(-0.763443\pi\)
−0.736331 + 0.676621i \(0.763443\pi\)
\(942\) 0 0
\(943\) −41.8328 −1.36226
\(944\) −39.0015 −1.26939
\(945\) 0 0
\(946\) 0 0
\(947\) 25.3365 0.823324 0.411662 0.911337i \(-0.364948\pi\)
0.411662 + 0.911337i \(0.364948\pi\)
\(948\) 0 0
\(949\) 27.4164 0.889974
\(950\) 18.6595 0.605394
\(951\) 0 0
\(952\) 3.50658 0.113649
\(953\) −46.5792 −1.50885 −0.754424 0.656387i \(-0.772084\pi\)
−0.754424 + 0.656387i \(0.772084\pi\)
\(954\) 0 0
\(955\) 5.67376 0.183599
\(956\) 6.08744 0.196882
\(957\) 0 0
\(958\) −56.8197 −1.83576
\(959\) −2.49721 −0.0806392
\(960\) 0 0
\(961\) −25.3262 −0.816975
\(962\) −40.7701 −1.31448
\(963\) 0 0
\(964\) −5.34752 −0.172232
\(965\) 14.8441 0.477849
\(966\) 0 0
\(967\) −42.6869 −1.37272 −0.686359 0.727263i \(-0.740792\pi\)
−0.686359 + 0.727263i \(0.740792\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −30.4853 −0.978824
\(971\) −13.0756 −0.419615 −0.209808 0.977743i \(-0.567284\pi\)
−0.209808 + 0.977743i \(0.567284\pi\)
\(972\) 0 0
\(973\) −3.21478 −0.103061
\(974\) 26.0651 0.835181
\(975\) 0 0
\(976\) 19.9787 0.639503
\(977\) 28.6484 0.916542 0.458271 0.888812i \(-0.348469\pi\)
0.458271 + 0.888812i \(0.348469\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 4.09373 0.130769
\(981\) 0 0
\(982\) 47.7214 1.52285
\(983\) 39.5050 1.26002 0.630008 0.776589i \(-0.283052\pi\)
0.630008 + 0.776589i \(0.283052\pi\)
\(984\) 0 0
\(985\) −18.7082 −0.596093
\(986\) 17.5133 0.557738
\(987\) 0 0
\(988\) 7.47214 0.237720
\(989\) −80.2220 −2.55091
\(990\) 0 0
\(991\) −24.7295 −0.785558 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(992\) −5.08043 −0.161304
\(993\) 0 0
\(994\) 2.81153 0.0891763
\(995\) 40.7701 1.29250
\(996\) 0 0
\(997\) 3.74265 0.118531 0.0592654 0.998242i \(-0.481124\pi\)
0.0592654 + 0.998242i \(0.481124\pi\)
\(998\) 15.0364 0.475970
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.a.w.1.2 4
3.2 odd 2 inner 1089.2.a.w.1.3 4
11.7 odd 10 99.2.f.c.82.2 yes 8
11.8 odd 10 99.2.f.c.64.2 yes 8
11.10 odd 2 1089.2.a.v.1.3 4
33.8 even 10 99.2.f.c.64.1 8
33.29 even 10 99.2.f.c.82.1 yes 8
33.32 even 2 1089.2.a.v.1.2 4
99.7 odd 30 891.2.n.e.676.2 16
99.29 even 30 891.2.n.e.676.1 16
99.40 odd 30 891.2.n.e.379.1 16
99.41 even 30 891.2.n.e.460.1 16
99.52 odd 30 891.2.n.e.757.1 16
99.74 even 30 891.2.n.e.757.2 16
99.85 odd 30 891.2.n.e.460.2 16
99.95 even 30 891.2.n.e.379.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.f.c.64.1 8 33.8 even 10
99.2.f.c.64.2 yes 8 11.8 odd 10
99.2.f.c.82.1 yes 8 33.29 even 10
99.2.f.c.82.2 yes 8 11.7 odd 10
891.2.n.e.379.1 16 99.40 odd 30
891.2.n.e.379.2 16 99.95 even 30
891.2.n.e.460.1 16 99.41 even 30
891.2.n.e.460.2 16 99.85 odd 30
891.2.n.e.676.1 16 99.29 even 30
891.2.n.e.676.2 16 99.7 odd 30
891.2.n.e.757.1 16 99.52 odd 30
891.2.n.e.757.2 16 99.74 even 30
1089.2.a.v.1.2 4 33.32 even 2
1089.2.a.v.1.3 4 11.10 odd 2
1089.2.a.w.1.2 4 1.1 even 1 trivial
1089.2.a.w.1.3 4 3.2 odd 2 inner