Properties

Label 1089.2.a.t.1.2
Level $1089$
Weight $2$
Character 1089.1
Self dual yes
Analytic conductor $8.696$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61803 q^{2} +4.85410 q^{4} +0.618034 q^{5} -1.00000 q^{7} +7.47214 q^{8} +1.61803 q^{10} +0.236068 q^{13} -2.61803 q^{14} +9.85410 q^{16} +1.14590 q^{17} +5.85410 q^{19} +3.00000 q^{20} -0.236068 q^{23} -4.61803 q^{25} +0.618034 q^{26} -4.85410 q^{28} +6.00000 q^{29} -6.09017 q^{31} +10.8541 q^{32} +3.00000 q^{34} -0.618034 q^{35} -6.23607 q^{37} +15.3262 q^{38} +4.61803 q^{40} -0.236068 q^{41} -6.70820 q^{43} -0.618034 q^{46} +10.0902 q^{47} -6.00000 q^{49} -12.0902 q^{50} +1.14590 q^{52} +0.381966 q^{53} -7.47214 q^{56} +15.7082 q^{58} -7.38197 q^{59} -11.5623 q^{61} -15.9443 q^{62} +8.70820 q^{64} +0.145898 q^{65} +1.85410 q^{67} +5.56231 q^{68} -1.61803 q^{70} -10.3262 q^{71} -5.70820 q^{73} -16.3262 q^{74} +28.4164 q^{76} +11.0000 q^{79} +6.09017 q^{80} -0.618034 q^{82} -1.47214 q^{83} +0.708204 q^{85} -17.5623 q^{86} +8.23607 q^{89} -0.236068 q^{91} -1.14590 q^{92} +26.4164 q^{94} +3.61803 q^{95} +7.85410 q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 3 q^{4} - q^{5} - 2 q^{7} + 6 q^{8} + q^{10} - 4 q^{13} - 3 q^{14} + 13 q^{16} + 9 q^{17} + 5 q^{19} + 6 q^{20} + 4 q^{23} - 7 q^{25} - q^{26} - 3 q^{28} + 12 q^{29} - q^{31} + 15 q^{32}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61803 1.85123 0.925615 0.378467i \(-0.123549\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 0 0
\(4\) 4.85410 2.42705
\(5\) 0.618034 0.276393 0.138197 0.990405i \(-0.455869\pi\)
0.138197 + 0.990405i \(0.455869\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 7.47214 2.64180
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) 0 0
\(12\) 0 0
\(13\) 0.236068 0.0654735 0.0327367 0.999464i \(-0.489578\pi\)
0.0327367 + 0.999464i \(0.489578\pi\)
\(14\) −2.61803 −0.699699
\(15\) 0 0
\(16\) 9.85410 2.46353
\(17\) 1.14590 0.277921 0.138961 0.990298i \(-0.455624\pi\)
0.138961 + 0.990298i \(0.455624\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) 0 0
\(23\) −0.236068 −0.0492236 −0.0246118 0.999697i \(-0.507835\pi\)
−0.0246118 + 0.999697i \(0.507835\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0.618034 0.121206
\(27\) 0 0
\(28\) −4.85410 −0.917339
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −6.09017 −1.09383 −0.546913 0.837189i \(-0.684197\pi\)
−0.546913 + 0.837189i \(0.684197\pi\)
\(32\) 10.8541 1.91875
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −0.618034 −0.104467
\(36\) 0 0
\(37\) −6.23607 −1.02520 −0.512602 0.858627i \(-0.671318\pi\)
−0.512602 + 0.858627i \(0.671318\pi\)
\(38\) 15.3262 2.48624
\(39\) 0 0
\(40\) 4.61803 0.730175
\(41\) −0.236068 −0.0368676 −0.0184338 0.999830i \(-0.505868\pi\)
−0.0184338 + 0.999830i \(0.505868\pi\)
\(42\) 0 0
\(43\) −6.70820 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.618034 −0.0911241
\(47\) 10.0902 1.47180 0.735901 0.677089i \(-0.236759\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) −12.0902 −1.70981
\(51\) 0 0
\(52\) 1.14590 0.158907
\(53\) 0.381966 0.0524671 0.0262335 0.999656i \(-0.491649\pi\)
0.0262335 + 0.999656i \(0.491649\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.47214 −0.998506
\(57\) 0 0
\(58\) 15.7082 2.06259
\(59\) −7.38197 −0.961050 −0.480525 0.876981i \(-0.659554\pi\)
−0.480525 + 0.876981i \(0.659554\pi\)
\(60\) 0 0
\(61\) −11.5623 −1.48040 −0.740201 0.672386i \(-0.765270\pi\)
−0.740201 + 0.672386i \(0.765270\pi\)
\(62\) −15.9443 −2.02492
\(63\) 0 0
\(64\) 8.70820 1.08853
\(65\) 0.145898 0.0180964
\(66\) 0 0
\(67\) 1.85410 0.226515 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(68\) 5.56231 0.674529
\(69\) 0 0
\(70\) −1.61803 −0.193392
\(71\) −10.3262 −1.22550 −0.612749 0.790277i \(-0.709937\pi\)
−0.612749 + 0.790277i \(0.709937\pi\)
\(72\) 0 0
\(73\) −5.70820 −0.668095 −0.334047 0.942556i \(-0.608415\pi\)
−0.334047 + 0.942556i \(0.608415\pi\)
\(74\) −16.3262 −1.89789
\(75\) 0 0
\(76\) 28.4164 3.25959
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 6.09017 0.680902
\(81\) 0 0
\(82\) −0.618034 −0.0682504
\(83\) −1.47214 −0.161588 −0.0807940 0.996731i \(-0.525746\pi\)
−0.0807940 + 0.996731i \(0.525746\pi\)
\(84\) 0 0
\(85\) 0.708204 0.0768155
\(86\) −17.5623 −1.89379
\(87\) 0 0
\(88\) 0 0
\(89\) 8.23607 0.873021 0.436511 0.899699i \(-0.356214\pi\)
0.436511 + 0.899699i \(0.356214\pi\)
\(90\) 0 0
\(91\) −0.236068 −0.0247466
\(92\) −1.14590 −0.119468
\(93\) 0 0
\(94\) 26.4164 2.72464
\(95\) 3.61803 0.371202
\(96\) 0 0
\(97\) 7.85410 0.797463 0.398732 0.917068i \(-0.369451\pi\)
0.398732 + 0.917068i \(0.369451\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 10.2361 1.01853 0.509263 0.860611i \(-0.329918\pi\)
0.509263 + 0.860611i \(0.329918\pi\)
\(102\) 0 0
\(103\) −10.9443 −1.07837 −0.539186 0.842187i \(-0.681268\pi\)
−0.539186 + 0.842187i \(0.681268\pi\)
\(104\) 1.76393 0.172968
\(105\) 0 0
\(106\) 1.00000 0.0971286
\(107\) 11.4721 1.10905 0.554527 0.832166i \(-0.312899\pi\)
0.554527 + 0.832166i \(0.312899\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −9.85410 −0.931125
\(113\) −13.4721 −1.26735 −0.633676 0.773599i \(-0.718455\pi\)
−0.633676 + 0.773599i \(0.718455\pi\)
\(114\) 0 0
\(115\) −0.145898 −0.0136051
\(116\) 29.1246 2.70415
\(117\) 0 0
\(118\) −19.3262 −1.77912
\(119\) −1.14590 −0.105044
\(120\) 0 0
\(121\) 0 0
\(122\) −30.2705 −2.74056
\(123\) 0 0
\(124\) −29.5623 −2.65477
\(125\) −5.94427 −0.531672
\(126\) 0 0
\(127\) 7.70820 0.683992 0.341996 0.939701i \(-0.388897\pi\)
0.341996 + 0.939701i \(0.388897\pi\)
\(128\) 1.09017 0.0963583
\(129\) 0 0
\(130\) 0.381966 0.0335006
\(131\) 11.7984 1.03083 0.515414 0.856941i \(-0.327638\pi\)
0.515414 + 0.856941i \(0.327638\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) 4.85410 0.419331
\(135\) 0 0
\(136\) 8.56231 0.734212
\(137\) −9.76393 −0.834189 −0.417095 0.908863i \(-0.636952\pi\)
−0.417095 + 0.908863i \(0.636952\pi\)
\(138\) 0 0
\(139\) 14.5623 1.23516 0.617579 0.786509i \(-0.288113\pi\)
0.617579 + 0.786509i \(0.288113\pi\)
\(140\) −3.00000 −0.253546
\(141\) 0 0
\(142\) −27.0344 −2.26868
\(143\) 0 0
\(144\) 0 0
\(145\) 3.70820 0.307950
\(146\) −14.9443 −1.23680
\(147\) 0 0
\(148\) −30.2705 −2.48822
\(149\) 4.23607 0.347032 0.173516 0.984831i \(-0.444487\pi\)
0.173516 + 0.984831i \(0.444487\pi\)
\(150\) 0 0
\(151\) 1.05573 0.0859139 0.0429570 0.999077i \(-0.486322\pi\)
0.0429570 + 0.999077i \(0.486322\pi\)
\(152\) 43.7426 3.54800
\(153\) 0 0
\(154\) 0 0
\(155\) −3.76393 −0.302326
\(156\) 0 0
\(157\) 15.7082 1.25365 0.626826 0.779160i \(-0.284354\pi\)
0.626826 + 0.779160i \(0.284354\pi\)
\(158\) 28.7984 2.29108
\(159\) 0 0
\(160\) 6.70820 0.530330
\(161\) 0.236068 0.0186048
\(162\) 0 0
\(163\) −5.14590 −0.403058 −0.201529 0.979483i \(-0.564591\pi\)
−0.201529 + 0.979483i \(0.564591\pi\)
\(164\) −1.14590 −0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) −12.0344 −0.931253 −0.465627 0.884981i \(-0.654171\pi\)
−0.465627 + 0.884981i \(0.654171\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) 1.85410 0.142203
\(171\) 0 0
\(172\) −32.5623 −2.48285
\(173\) 18.0344 1.37113 0.685567 0.728010i \(-0.259555\pi\)
0.685567 + 0.728010i \(0.259555\pi\)
\(174\) 0 0
\(175\) 4.61803 0.349091
\(176\) 0 0
\(177\) 0 0
\(178\) 21.5623 1.61616
\(179\) 8.52786 0.637402 0.318701 0.947855i \(-0.396753\pi\)
0.318701 + 0.947855i \(0.396753\pi\)
\(180\) 0 0
\(181\) 2.52786 0.187895 0.0939473 0.995577i \(-0.470051\pi\)
0.0939473 + 0.995577i \(0.470051\pi\)
\(182\) −0.618034 −0.0458117
\(183\) 0 0
\(184\) −1.76393 −0.130039
\(185\) −3.85410 −0.283359
\(186\) 0 0
\(187\) 0 0
\(188\) 48.9787 3.57214
\(189\) 0 0
\(190\) 9.47214 0.687181
\(191\) 0.819660 0.0593085 0.0296543 0.999560i \(-0.490559\pi\)
0.0296543 + 0.999560i \(0.490559\pi\)
\(192\) 0 0
\(193\) −3.14590 −0.226447 −0.113223 0.993570i \(-0.536118\pi\)
−0.113223 + 0.993570i \(0.536118\pi\)
\(194\) 20.5623 1.47629
\(195\) 0 0
\(196\) −29.1246 −2.08033
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −34.5066 −2.43998
\(201\) 0 0
\(202\) 26.7984 1.88553
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −0.145898 −0.0101900
\(206\) −28.6525 −1.99631
\(207\) 0 0
\(208\) 2.32624 0.161296
\(209\) 0 0
\(210\) 0 0
\(211\) 3.61803 0.249076 0.124538 0.992215i \(-0.460255\pi\)
0.124538 + 0.992215i \(0.460255\pi\)
\(212\) 1.85410 0.127340
\(213\) 0 0
\(214\) 30.0344 2.05311
\(215\) −4.14590 −0.282748
\(216\) 0 0
\(217\) 6.09017 0.413428
\(218\) −31.4164 −2.12779
\(219\) 0 0
\(220\) 0 0
\(221\) 0.270510 0.0181965
\(222\) 0 0
\(223\) 7.18034 0.480831 0.240416 0.970670i \(-0.422716\pi\)
0.240416 + 0.970670i \(0.422716\pi\)
\(224\) −10.8541 −0.725220
\(225\) 0 0
\(226\) −35.2705 −2.34616
\(227\) −13.1803 −0.874810 −0.437405 0.899265i \(-0.644102\pi\)
−0.437405 + 0.899265i \(0.644102\pi\)
\(228\) 0 0
\(229\) 0.472136 0.0311996 0.0155998 0.999878i \(-0.495034\pi\)
0.0155998 + 0.999878i \(0.495034\pi\)
\(230\) −0.381966 −0.0251861
\(231\) 0 0
\(232\) 44.8328 2.94342
\(233\) 4.14590 0.271607 0.135803 0.990736i \(-0.456638\pi\)
0.135803 + 0.990736i \(0.456638\pi\)
\(234\) 0 0
\(235\) 6.23607 0.406796
\(236\) −35.8328 −2.33252
\(237\) 0 0
\(238\) −3.00000 −0.194461
\(239\) −0.381966 −0.0247073 −0.0123537 0.999924i \(-0.503932\pi\)
−0.0123537 + 0.999924i \(0.503932\pi\)
\(240\) 0 0
\(241\) 8.29180 0.534122 0.267061 0.963680i \(-0.413948\pi\)
0.267061 + 0.963680i \(0.413948\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −56.1246 −3.59301
\(245\) −3.70820 −0.236908
\(246\) 0 0
\(247\) 1.38197 0.0879324
\(248\) −45.5066 −2.88967
\(249\) 0 0
\(250\) −15.5623 −0.984247
\(251\) 21.9787 1.38728 0.693642 0.720320i \(-0.256005\pi\)
0.693642 + 0.720320i \(0.256005\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 20.1803 1.26623
\(255\) 0 0
\(256\) −14.5623 −0.910144
\(257\) −29.7426 −1.85530 −0.927648 0.373457i \(-0.878172\pi\)
−0.927648 + 0.373457i \(0.878172\pi\)
\(258\) 0 0
\(259\) 6.23607 0.387490
\(260\) 0.708204 0.0439209
\(261\) 0 0
\(262\) 30.8885 1.90830
\(263\) 15.2705 0.941620 0.470810 0.882235i \(-0.343962\pi\)
0.470810 + 0.882235i \(0.343962\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) −15.3262 −0.939712
\(267\) 0 0
\(268\) 9.00000 0.549762
\(269\) 25.4164 1.54967 0.774833 0.632166i \(-0.217834\pi\)
0.774833 + 0.632166i \(0.217834\pi\)
\(270\) 0 0
\(271\) 18.6180 1.13097 0.565483 0.824760i \(-0.308690\pi\)
0.565483 + 0.824760i \(0.308690\pi\)
\(272\) 11.2918 0.684666
\(273\) 0 0
\(274\) −25.5623 −1.54428
\(275\) 0 0
\(276\) 0 0
\(277\) −29.2148 −1.75535 −0.877673 0.479260i \(-0.840905\pi\)
−0.877673 + 0.479260i \(0.840905\pi\)
\(278\) 38.1246 2.28656
\(279\) 0 0
\(280\) −4.61803 −0.275980
\(281\) −24.7639 −1.47729 −0.738646 0.674093i \(-0.764535\pi\)
−0.738646 + 0.674093i \(0.764535\pi\)
\(282\) 0 0
\(283\) −5.70820 −0.339318 −0.169659 0.985503i \(-0.554267\pi\)
−0.169659 + 0.985503i \(0.554267\pi\)
\(284\) −50.1246 −2.97435
\(285\) 0 0
\(286\) 0 0
\(287\) 0.236068 0.0139347
\(288\) 0 0
\(289\) −15.6869 −0.922760
\(290\) 9.70820 0.570085
\(291\) 0 0
\(292\) −27.7082 −1.62150
\(293\) 21.6525 1.26495 0.632476 0.774580i \(-0.282039\pi\)
0.632476 + 0.774580i \(0.282039\pi\)
\(294\) 0 0
\(295\) −4.56231 −0.265628
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0557281 −0.00322284
\(300\) 0 0
\(301\) 6.70820 0.386654
\(302\) 2.76393 0.159046
\(303\) 0 0
\(304\) 57.6869 3.30857
\(305\) −7.14590 −0.409173
\(306\) 0 0
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −9.85410 −0.559675
\(311\) −11.6525 −0.660751 −0.330376 0.943850i \(-0.607175\pi\)
−0.330376 + 0.943850i \(0.607175\pi\)
\(312\) 0 0
\(313\) −2.52786 −0.142883 −0.0714417 0.997445i \(-0.522760\pi\)
−0.0714417 + 0.997445i \(0.522760\pi\)
\(314\) 41.1246 2.32080
\(315\) 0 0
\(316\) 53.3951 3.00371
\(317\) 6.81966 0.383030 0.191515 0.981490i \(-0.438660\pi\)
0.191515 + 0.981490i \(0.438660\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 5.38197 0.300861
\(321\) 0 0
\(322\) 0.618034 0.0344417
\(323\) 6.70820 0.373254
\(324\) 0 0
\(325\) −1.09017 −0.0604717
\(326\) −13.4721 −0.746153
\(327\) 0 0
\(328\) −1.76393 −0.0973969
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) −7.14590 −0.392182
\(333\) 0 0
\(334\) −31.5066 −1.72396
\(335\) 1.14590 0.0626071
\(336\) 0 0
\(337\) −18.1803 −0.990346 −0.495173 0.868794i \(-0.664895\pi\)
−0.495173 + 0.868794i \(0.664895\pi\)
\(338\) −33.8885 −1.84329
\(339\) 0 0
\(340\) 3.43769 0.186435
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −50.1246 −2.70254
\(345\) 0 0
\(346\) 47.2148 2.53828
\(347\) 1.52786 0.0820200 0.0410100 0.999159i \(-0.486942\pi\)
0.0410100 + 0.999159i \(0.486942\pi\)
\(348\) 0 0
\(349\) 12.7082 0.680255 0.340127 0.940379i \(-0.389530\pi\)
0.340127 + 0.940379i \(0.389530\pi\)
\(350\) 12.0902 0.646247
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) −6.38197 −0.338720
\(356\) 39.9787 2.11887
\(357\) 0 0
\(358\) 22.3262 1.17998
\(359\) 9.70820 0.512379 0.256190 0.966627i \(-0.417533\pi\)
0.256190 + 0.966627i \(0.417533\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 6.61803 0.347836
\(363\) 0 0
\(364\) −1.14590 −0.0600614
\(365\) −3.52786 −0.184657
\(366\) 0 0
\(367\) 22.1459 1.15601 0.578003 0.816034i \(-0.303832\pi\)
0.578003 + 0.816034i \(0.303832\pi\)
\(368\) −2.32624 −0.121264
\(369\) 0 0
\(370\) −10.0902 −0.524563
\(371\) −0.381966 −0.0198307
\(372\) 0 0
\(373\) 0.888544 0.0460071 0.0230035 0.999735i \(-0.492677\pi\)
0.0230035 + 0.999735i \(0.492677\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 75.3951 3.88821
\(377\) 1.41641 0.0729487
\(378\) 0 0
\(379\) −24.8885 −1.27844 −0.639219 0.769024i \(-0.720742\pi\)
−0.639219 + 0.769024i \(0.720742\pi\)
\(380\) 17.5623 0.900927
\(381\) 0 0
\(382\) 2.14590 0.109794
\(383\) 12.7082 0.649359 0.324679 0.945824i \(-0.394744\pi\)
0.324679 + 0.945824i \(0.394744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8.23607 −0.419205
\(387\) 0 0
\(388\) 38.1246 1.93548
\(389\) 36.7426 1.86293 0.931463 0.363836i \(-0.118533\pi\)
0.931463 + 0.363836i \(0.118533\pi\)
\(390\) 0 0
\(391\) −0.270510 −0.0136803
\(392\) −44.8328 −2.26440
\(393\) 0 0
\(394\) −34.1246 −1.71917
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 17.5623 0.880319
\(399\) 0 0
\(400\) −45.5066 −2.27533
\(401\) 31.6869 1.58237 0.791185 0.611577i \(-0.209465\pi\)
0.791185 + 0.611577i \(0.209465\pi\)
\(402\) 0 0
\(403\) −1.43769 −0.0716166
\(404\) 49.6869 2.47202
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) 0 0
\(408\) 0 0
\(409\) −6.47214 −0.320027 −0.160013 0.987115i \(-0.551154\pi\)
−0.160013 + 0.987115i \(0.551154\pi\)
\(410\) −0.381966 −0.0188640
\(411\) 0 0
\(412\) −53.1246 −2.61726
\(413\) 7.38197 0.363243
\(414\) 0 0
\(415\) −0.909830 −0.0446618
\(416\) 2.56231 0.125627
\(417\) 0 0
\(418\) 0 0
\(419\) −31.4508 −1.53647 −0.768237 0.640165i \(-0.778866\pi\)
−0.768237 + 0.640165i \(0.778866\pi\)
\(420\) 0 0
\(421\) 10.5066 0.512059 0.256030 0.966669i \(-0.417586\pi\)
0.256030 + 0.966669i \(0.417586\pi\)
\(422\) 9.47214 0.461096
\(423\) 0 0
\(424\) 2.85410 0.138607
\(425\) −5.29180 −0.256690
\(426\) 0 0
\(427\) 11.5623 0.559539
\(428\) 55.6869 2.69173
\(429\) 0 0
\(430\) −10.8541 −0.523431
\(431\) 5.90983 0.284666 0.142333 0.989819i \(-0.454540\pi\)
0.142333 + 0.989819i \(0.454540\pi\)
\(432\) 0 0
\(433\) 35.3050 1.69665 0.848324 0.529478i \(-0.177612\pi\)
0.848324 + 0.529478i \(0.177612\pi\)
\(434\) 15.9443 0.765350
\(435\) 0 0
\(436\) −58.2492 −2.78963
\(437\) −1.38197 −0.0661084
\(438\) 0 0
\(439\) 23.2918 1.11166 0.555828 0.831297i \(-0.312401\pi\)
0.555828 + 0.831297i \(0.312401\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.708204 0.0336858
\(443\) 31.5967 1.50121 0.750603 0.660753i \(-0.229763\pi\)
0.750603 + 0.660753i \(0.229763\pi\)
\(444\) 0 0
\(445\) 5.09017 0.241297
\(446\) 18.7984 0.890129
\(447\) 0 0
\(448\) −8.70820 −0.411424
\(449\) 9.05573 0.427366 0.213683 0.976903i \(-0.431454\pi\)
0.213683 + 0.976903i \(0.431454\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −65.3951 −3.07593
\(453\) 0 0
\(454\) −34.5066 −1.61947
\(455\) −0.145898 −0.00683981
\(456\) 0 0
\(457\) 23.9787 1.12168 0.560838 0.827925i \(-0.310479\pi\)
0.560838 + 0.827925i \(0.310479\pi\)
\(458\) 1.23607 0.0577577
\(459\) 0 0
\(460\) −0.708204 −0.0330202
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) 1.72949 0.0803762 0.0401881 0.999192i \(-0.487204\pi\)
0.0401881 + 0.999192i \(0.487204\pi\)
\(464\) 59.1246 2.74479
\(465\) 0 0
\(466\) 10.8541 0.502807
\(467\) −20.8885 −0.966607 −0.483303 0.875453i \(-0.660563\pi\)
−0.483303 + 0.875453i \(0.660563\pi\)
\(468\) 0 0
\(469\) −1.85410 −0.0856145
\(470\) 16.3262 0.753073
\(471\) 0 0
\(472\) −55.1591 −2.53890
\(473\) 0 0
\(474\) 0 0
\(475\) −27.0344 −1.24043
\(476\) −5.56231 −0.254948
\(477\) 0 0
\(478\) −1.00000 −0.0457389
\(479\) 28.3820 1.29681 0.648403 0.761298i \(-0.275437\pi\)
0.648403 + 0.761298i \(0.275437\pi\)
\(480\) 0 0
\(481\) −1.47214 −0.0671236
\(482\) 21.7082 0.988782
\(483\) 0 0
\(484\) 0 0
\(485\) 4.85410 0.220413
\(486\) 0 0
\(487\) −12.7082 −0.575864 −0.287932 0.957651i \(-0.592968\pi\)
−0.287932 + 0.957651i \(0.592968\pi\)
\(488\) −86.3951 −3.91092
\(489\) 0 0
\(490\) −9.70820 −0.438572
\(491\) 17.9098 0.808259 0.404130 0.914702i \(-0.367574\pi\)
0.404130 + 0.914702i \(0.367574\pi\)
\(492\) 0 0
\(493\) 6.87539 0.309652
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 10.3262 0.463195
\(498\) 0 0
\(499\) −18.1459 −0.812322 −0.406161 0.913802i \(-0.633133\pi\)
−0.406161 + 0.913802i \(0.633133\pi\)
\(500\) −28.8541 −1.29039
\(501\) 0 0
\(502\) 57.5410 2.56818
\(503\) −8.65248 −0.385795 −0.192897 0.981219i \(-0.561788\pi\)
−0.192897 + 0.981219i \(0.561788\pi\)
\(504\) 0 0
\(505\) 6.32624 0.281514
\(506\) 0 0
\(507\) 0 0
\(508\) 37.4164 1.66008
\(509\) −38.7426 −1.71724 −0.858619 0.512615i \(-0.828677\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(510\) 0 0
\(511\) 5.70820 0.252516
\(512\) −40.3050 −1.78124
\(513\) 0 0
\(514\) −77.8673 −3.43458
\(515\) −6.76393 −0.298054
\(516\) 0 0
\(517\) 0 0
\(518\) 16.3262 0.717334
\(519\) 0 0
\(520\) 1.09017 0.0478071
\(521\) −8.94427 −0.391856 −0.195928 0.980618i \(-0.562772\pi\)
−0.195928 + 0.980618i \(0.562772\pi\)
\(522\) 0 0
\(523\) 18.2705 0.798914 0.399457 0.916752i \(-0.369199\pi\)
0.399457 + 0.916752i \(0.369199\pi\)
\(524\) 57.2705 2.50187
\(525\) 0 0
\(526\) 39.9787 1.74315
\(527\) −6.97871 −0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0.618034 0.0268457
\(531\) 0 0
\(532\) −28.4164 −1.23201
\(533\) −0.0557281 −0.00241385
\(534\) 0 0
\(535\) 7.09017 0.306535
\(536\) 13.8541 0.598406
\(537\) 0 0
\(538\) 66.5410 2.86879
\(539\) 0 0
\(540\) 0 0
\(541\) −7.49342 −0.322167 −0.161084 0.986941i \(-0.551499\pi\)
−0.161084 + 0.986941i \(0.551499\pi\)
\(542\) 48.7426 2.09368
\(543\) 0 0
\(544\) 12.4377 0.533262
\(545\) −7.41641 −0.317684
\(546\) 0 0
\(547\) −30.7426 −1.31446 −0.657230 0.753690i \(-0.728272\pi\)
−0.657230 + 0.753690i \(0.728272\pi\)
\(548\) −47.3951 −2.02462
\(549\) 0 0
\(550\) 0 0
\(551\) 35.1246 1.49636
\(552\) 0 0
\(553\) −11.0000 −0.467768
\(554\) −76.4853 −3.24955
\(555\) 0 0
\(556\) 70.6869 2.99779
\(557\) −37.6312 −1.59448 −0.797242 0.603659i \(-0.793709\pi\)
−0.797242 + 0.603659i \(0.793709\pi\)
\(558\) 0 0
\(559\) −1.58359 −0.0669788
\(560\) −6.09017 −0.257357
\(561\) 0 0
\(562\) −64.8328 −2.73481
\(563\) −40.5967 −1.71095 −0.855474 0.517845i \(-0.826734\pi\)
−0.855474 + 0.517845i \(0.826734\pi\)
\(564\) 0 0
\(565\) −8.32624 −0.350287
\(566\) −14.9443 −0.628155
\(567\) 0 0
\(568\) −77.1591 −3.23752
\(569\) −34.1803 −1.43291 −0.716457 0.697631i \(-0.754237\pi\)
−0.716457 + 0.697631i \(0.754237\pi\)
\(570\) 0 0
\(571\) −9.09017 −0.380412 −0.190206 0.981744i \(-0.560916\pi\)
−0.190206 + 0.981744i \(0.560916\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.618034 0.0257962
\(575\) 1.09017 0.0454632
\(576\) 0 0
\(577\) 31.7082 1.32003 0.660015 0.751253i \(-0.270550\pi\)
0.660015 + 0.751253i \(0.270550\pi\)
\(578\) −41.0689 −1.70824
\(579\) 0 0
\(580\) 18.0000 0.747409
\(581\) 1.47214 0.0610745
\(582\) 0 0
\(583\) 0 0
\(584\) −42.6525 −1.76497
\(585\) 0 0
\(586\) 56.6869 2.34171
\(587\) 2.12461 0.0876921 0.0438461 0.999038i \(-0.486039\pi\)
0.0438461 + 0.999038i \(0.486039\pi\)
\(588\) 0 0
\(589\) −35.6525 −1.46903
\(590\) −11.9443 −0.491738
\(591\) 0 0
\(592\) −61.4508 −2.52561
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 20.5623 0.842265
\(597\) 0 0
\(598\) −0.145898 −0.00596621
\(599\) −12.6525 −0.516966 −0.258483 0.966016i \(-0.583223\pi\)
−0.258483 + 0.966016i \(0.583223\pi\)
\(600\) 0 0
\(601\) −6.88854 −0.280990 −0.140495 0.990081i \(-0.544869\pi\)
−0.140495 + 0.990081i \(0.544869\pi\)
\(602\) 17.5623 0.715786
\(603\) 0 0
\(604\) 5.12461 0.208517
\(605\) 0 0
\(606\) 0 0
\(607\) −16.5623 −0.672243 −0.336122 0.941819i \(-0.609115\pi\)
−0.336122 + 0.941819i \(0.609115\pi\)
\(608\) 63.5410 2.57693
\(609\) 0 0
\(610\) −18.7082 −0.757473
\(611\) 2.38197 0.0963640
\(612\) 0 0
\(613\) −14.2918 −0.577240 −0.288620 0.957444i \(-0.593196\pi\)
−0.288620 + 0.957444i \(0.593196\pi\)
\(614\) 73.2492 2.95610
\(615\) 0 0
\(616\) 0 0
\(617\) −11.1803 −0.450104 −0.225052 0.974347i \(-0.572255\pi\)
−0.225052 + 0.974347i \(0.572255\pi\)
\(618\) 0 0
\(619\) 24.1246 0.969650 0.484825 0.874611i \(-0.338883\pi\)
0.484825 + 0.874611i \(0.338883\pi\)
\(620\) −18.2705 −0.733761
\(621\) 0 0
\(622\) −30.5066 −1.22320
\(623\) −8.23607 −0.329971
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) −6.61803 −0.264510
\(627\) 0 0
\(628\) 76.2492 3.04268
\(629\) −7.14590 −0.284926
\(630\) 0 0
\(631\) 19.2148 0.764928 0.382464 0.923970i \(-0.375076\pi\)
0.382464 + 0.923970i \(0.375076\pi\)
\(632\) 82.1935 3.26948
\(633\) 0 0
\(634\) 17.8541 0.709077
\(635\) 4.76393 0.189051
\(636\) 0 0
\(637\) −1.41641 −0.0561201
\(638\) 0 0
\(639\) 0 0
\(640\) 0.673762 0.0266328
\(641\) 25.0902 0.991002 0.495501 0.868607i \(-0.334984\pi\)
0.495501 + 0.868607i \(0.334984\pi\)
\(642\) 0 0
\(643\) 20.8541 0.822406 0.411203 0.911544i \(-0.365109\pi\)
0.411203 + 0.911544i \(0.365109\pi\)
\(644\) 1.14590 0.0451547
\(645\) 0 0
\(646\) 17.5623 0.690980
\(647\) −45.0344 −1.77049 −0.885243 0.465128i \(-0.846008\pi\)
−0.885243 + 0.465128i \(0.846008\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −2.85410 −0.111947
\(651\) 0 0
\(652\) −24.9787 −0.978242
\(653\) 5.61803 0.219851 0.109925 0.993940i \(-0.464939\pi\)
0.109925 + 0.993940i \(0.464939\pi\)
\(654\) 0 0
\(655\) 7.29180 0.284914
\(656\) −2.32624 −0.0908243
\(657\) 0 0
\(658\) −26.4164 −1.02982
\(659\) 41.1246 1.60199 0.800994 0.598673i \(-0.204305\pi\)
0.800994 + 0.598673i \(0.204305\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 43.7426 1.70011
\(663\) 0 0
\(664\) −11.0000 −0.426883
\(665\) −3.61803 −0.140301
\(666\) 0 0
\(667\) −1.41641 −0.0548435
\(668\) −58.4164 −2.26020
\(669\) 0 0
\(670\) 3.00000 0.115900
\(671\) 0 0
\(672\) 0 0
\(673\) 35.8328 1.38125 0.690627 0.723211i \(-0.257335\pi\)
0.690627 + 0.723211i \(0.257335\pi\)
\(674\) −47.5967 −1.83336
\(675\) 0 0
\(676\) −62.8328 −2.41665
\(677\) −13.5279 −0.519918 −0.259959 0.965620i \(-0.583709\pi\)
−0.259959 + 0.965620i \(0.583709\pi\)
\(678\) 0 0
\(679\) −7.85410 −0.301413
\(680\) 5.29180 0.202931
\(681\) 0 0
\(682\) 0 0
\(683\) −9.06888 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(684\) 0 0
\(685\) −6.03444 −0.230564
\(686\) 34.0344 1.29944
\(687\) 0 0
\(688\) −66.1033 −2.52017
\(689\) 0.0901699 0.00343520
\(690\) 0 0
\(691\) 1.34752 0.0512622 0.0256311 0.999671i \(-0.491840\pi\)
0.0256311 + 0.999671i \(0.491840\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) −0.270510 −0.0102463
\(698\) 33.2705 1.25931
\(699\) 0 0
\(700\) 22.4164 0.847261
\(701\) 34.7984 1.31432 0.657158 0.753753i \(-0.271758\pi\)
0.657158 + 0.753753i \(0.271758\pi\)
\(702\) 0 0
\(703\) −36.5066 −1.37687
\(704\) 0 0
\(705\) 0 0
\(706\) 31.4164 1.18237
\(707\) −10.2361 −0.384967
\(708\) 0 0
\(709\) 11.2148 0.421180 0.210590 0.977574i \(-0.432462\pi\)
0.210590 + 0.977574i \(0.432462\pi\)
\(710\) −16.7082 −0.627048
\(711\) 0 0
\(712\) 61.5410 2.30635
\(713\) 1.43769 0.0538421
\(714\) 0 0
\(715\) 0 0
\(716\) 41.3951 1.54701
\(717\) 0 0
\(718\) 25.4164 0.948532
\(719\) 38.4853 1.43526 0.717630 0.696425i \(-0.245227\pi\)
0.717630 + 0.696425i \(0.245227\pi\)
\(720\) 0 0
\(721\) 10.9443 0.407586
\(722\) 39.9787 1.48785
\(723\) 0 0
\(724\) 12.2705 0.456030
\(725\) −27.7082 −1.02906
\(726\) 0 0
\(727\) −9.14590 −0.339203 −0.169601 0.985513i \(-0.554248\pi\)
−0.169601 + 0.985513i \(0.554248\pi\)
\(728\) −1.76393 −0.0653757
\(729\) 0 0
\(730\) −9.23607 −0.341842
\(731\) −7.68692 −0.284311
\(732\) 0 0
\(733\) −0.403252 −0.0148945 −0.00744723 0.999972i \(-0.502371\pi\)
−0.00744723 + 0.999972i \(0.502371\pi\)
\(734\) 57.9787 2.14003
\(735\) 0 0
\(736\) −2.56231 −0.0944478
\(737\) 0 0
\(738\) 0 0
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) −18.7082 −0.687727
\(741\) 0 0
\(742\) −1.00000 −0.0367112
\(743\) 42.8885 1.57343 0.786714 0.617318i \(-0.211781\pi\)
0.786714 + 0.617318i \(0.211781\pi\)
\(744\) 0 0
\(745\) 2.61803 0.0959173
\(746\) 2.32624 0.0851696
\(747\) 0 0
\(748\) 0 0
\(749\) −11.4721 −0.419183
\(750\) 0 0
\(751\) 16.1459 0.589172 0.294586 0.955625i \(-0.404818\pi\)
0.294586 + 0.955625i \(0.404818\pi\)
\(752\) 99.4296 3.62582
\(753\) 0 0
\(754\) 3.70820 0.135045
\(755\) 0.652476 0.0237460
\(756\) 0 0
\(757\) 5.00000 0.181728 0.0908640 0.995863i \(-0.471037\pi\)
0.0908640 + 0.995863i \(0.471037\pi\)
\(758\) −65.1591 −2.36668
\(759\) 0 0
\(760\) 27.0344 0.980642
\(761\) −29.2918 −1.06183 −0.530913 0.847426i \(-0.678151\pi\)
−0.530913 + 0.847426i \(0.678151\pi\)
\(762\) 0 0
\(763\) 12.0000 0.434429
\(764\) 3.97871 0.143945
\(765\) 0 0
\(766\) 33.2705 1.20211
\(767\) −1.74265 −0.0629233
\(768\) 0 0
\(769\) −34.5066 −1.24434 −0.622170 0.782883i \(-0.713749\pi\)
−0.622170 + 0.782883i \(0.713749\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −15.2705 −0.549598
\(773\) −27.1803 −0.977609 −0.488804 0.872393i \(-0.662567\pi\)
−0.488804 + 0.872393i \(0.662567\pi\)
\(774\) 0 0
\(775\) 28.1246 1.01027
\(776\) 58.6869 2.10674
\(777\) 0 0
\(778\) 96.1935 3.44870
\(779\) −1.38197 −0.0495141
\(780\) 0 0
\(781\) 0 0
\(782\) −0.708204 −0.0253253
\(783\) 0 0
\(784\) −59.1246 −2.11159
\(785\) 9.70820 0.346501
\(786\) 0 0
\(787\) −9.70820 −0.346060 −0.173030 0.984917i \(-0.555356\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(788\) −63.2705 −2.25392
\(789\) 0 0
\(790\) 17.7984 0.633238
\(791\) 13.4721 0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −48.9787 −1.73819
\(795\) 0 0
\(796\) 32.5623 1.15414
\(797\) −18.5410 −0.656757 −0.328378 0.944546i \(-0.606502\pi\)
−0.328378 + 0.944546i \(0.606502\pi\)
\(798\) 0 0
\(799\) 11.5623 0.409045
\(800\) −50.1246 −1.77217
\(801\) 0 0
\(802\) 82.9574 2.92933
\(803\) 0 0
\(804\) 0 0
\(805\) 0.145898 0.00514223
\(806\) −3.76393 −0.132579
\(807\) 0 0
\(808\) 76.4853 2.69074
\(809\) −27.0902 −0.952440 −0.476220 0.879326i \(-0.657993\pi\)
−0.476220 + 0.879326i \(0.657993\pi\)
\(810\) 0 0
\(811\) 36.5623 1.28388 0.641938 0.766756i \(-0.278131\pi\)
0.641938 + 0.766756i \(0.278131\pi\)
\(812\) −29.1246 −1.02207
\(813\) 0 0
\(814\) 0 0
\(815\) −3.18034 −0.111402
\(816\) 0 0
\(817\) −39.2705 −1.37390
\(818\) −16.9443 −0.592443
\(819\) 0 0
\(820\) −0.708204 −0.0247316
\(821\) −40.5967 −1.41684 −0.708418 0.705793i \(-0.750591\pi\)
−0.708418 + 0.705793i \(0.750591\pi\)
\(822\) 0 0
\(823\) −27.8328 −0.970191 −0.485095 0.874461i \(-0.661215\pi\)
−0.485095 + 0.874461i \(0.661215\pi\)
\(824\) −81.7771 −2.84884
\(825\) 0 0
\(826\) 19.3262 0.672446
\(827\) 10.6525 0.370423 0.185211 0.982699i \(-0.440703\pi\)
0.185211 + 0.982699i \(0.440703\pi\)
\(828\) 0 0
\(829\) −31.3951 −1.09040 −0.545199 0.838307i \(-0.683546\pi\)
−0.545199 + 0.838307i \(0.683546\pi\)
\(830\) −2.38197 −0.0826792
\(831\) 0 0
\(832\) 2.05573 0.0712695
\(833\) −6.87539 −0.238218
\(834\) 0 0
\(835\) −7.43769 −0.257392
\(836\) 0 0
\(837\) 0 0
\(838\) −82.3394 −2.84437
\(839\) 17.8328 0.615657 0.307829 0.951442i \(-0.400398\pi\)
0.307829 + 0.951442i \(0.400398\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 27.5066 0.947939
\(843\) 0 0
\(844\) 17.5623 0.604519
\(845\) −8.00000 −0.275208
\(846\) 0 0
\(847\) 0 0
\(848\) 3.76393 0.129254
\(849\) 0 0
\(850\) −13.8541 −0.475192
\(851\) 1.47214 0.0504642
\(852\) 0 0
\(853\) −55.8328 −1.91168 −0.955840 0.293889i \(-0.905050\pi\)
−0.955840 + 0.293889i \(0.905050\pi\)
\(854\) 30.2705 1.03584
\(855\) 0 0
\(856\) 85.7214 2.92990
\(857\) −27.7639 −0.948398 −0.474199 0.880418i \(-0.657262\pi\)
−0.474199 + 0.880418i \(0.657262\pi\)
\(858\) 0 0
\(859\) −34.4164 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(860\) −20.1246 −0.686244
\(861\) 0 0
\(862\) 15.4721 0.526983
\(863\) −0.111456 −0.00379401 −0.00189701 0.999998i \(-0.500604\pi\)
−0.00189701 + 0.999998i \(0.500604\pi\)
\(864\) 0 0
\(865\) 11.1459 0.378972
\(866\) 92.4296 3.14088
\(867\) 0 0
\(868\) 29.5623 1.00341
\(869\) 0 0
\(870\) 0 0
\(871\) 0.437694 0.0148307
\(872\) −89.6656 −3.03646
\(873\) 0 0
\(874\) −3.61803 −0.122382
\(875\) 5.94427 0.200953
\(876\) 0 0
\(877\) −57.9443 −1.95664 −0.978320 0.207101i \(-0.933597\pi\)
−0.978320 + 0.207101i \(0.933597\pi\)
\(878\) 60.9787 2.05793
\(879\) 0 0
\(880\) 0 0
\(881\) −6.20163 −0.208938 −0.104469 0.994528i \(-0.533314\pi\)
−0.104469 + 0.994528i \(0.533314\pi\)
\(882\) 0 0
\(883\) 1.05573 0.0355281 0.0177640 0.999842i \(-0.494345\pi\)
0.0177640 + 0.999842i \(0.494345\pi\)
\(884\) 1.31308 0.0441637
\(885\) 0 0
\(886\) 82.7214 2.77908
\(887\) 54.4853 1.82944 0.914719 0.404092i \(-0.132412\pi\)
0.914719 + 0.404092i \(0.132412\pi\)
\(888\) 0 0
\(889\) −7.70820 −0.258525
\(890\) 13.3262 0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 59.0689 1.97666
\(894\) 0 0
\(895\) 5.27051 0.176174
\(896\) −1.09017 −0.0364200
\(897\) 0 0
\(898\) 23.7082 0.791153
\(899\) −36.5410 −1.21871
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 0 0
\(903\) 0 0
\(904\) −100.666 −3.34809
\(905\) 1.56231 0.0519328
\(906\) 0 0
\(907\) −42.3951 −1.40771 −0.703853 0.710345i \(-0.748539\pi\)
−0.703853 + 0.710345i \(0.748539\pi\)
\(908\) −63.9787 −2.12321
\(909\) 0 0
\(910\) −0.381966 −0.0126620
\(911\) −38.5967 −1.27877 −0.639384 0.768888i \(-0.720810\pi\)
−0.639384 + 0.768888i \(0.720810\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 62.7771 2.07648
\(915\) 0 0
\(916\) 2.29180 0.0757231
\(917\) −11.7984 −0.389617
\(918\) 0 0
\(919\) 25.6525 0.846197 0.423099 0.906084i \(-0.360942\pi\)
0.423099 + 0.906084i \(0.360942\pi\)
\(920\) −1.09017 −0.0359418
\(921\) 0 0
\(922\) −24.2705 −0.799307
\(923\) −2.43769 −0.0802377
\(924\) 0 0
\(925\) 28.7984 0.946885
\(926\) 4.52786 0.148795
\(927\) 0 0
\(928\) 65.1246 2.13782
\(929\) 12.7082 0.416943 0.208471 0.978028i \(-0.433151\pi\)
0.208471 + 0.978028i \(0.433151\pi\)
\(930\) 0 0
\(931\) −35.1246 −1.15116
\(932\) 20.1246 0.659204
\(933\) 0 0
\(934\) −54.6869 −1.78941
\(935\) 0 0
\(936\) 0 0
\(937\) 41.6525 1.36073 0.680364 0.732875i \(-0.261822\pi\)
0.680364 + 0.732875i \(0.261822\pi\)
\(938\) −4.85410 −0.158492
\(939\) 0 0
\(940\) 30.2705 0.987315
\(941\) 14.4508 0.471084 0.235542 0.971864i \(-0.424313\pi\)
0.235542 + 0.971864i \(0.424313\pi\)
\(942\) 0 0
\(943\) 0.0557281 0.00181476
\(944\) −72.7426 −2.36757
\(945\) 0 0
\(946\) 0 0
\(947\) 32.3951 1.05270 0.526350 0.850268i \(-0.323560\pi\)
0.526350 + 0.850268i \(0.323560\pi\)
\(948\) 0 0
\(949\) −1.34752 −0.0437425
\(950\) −70.7771 −2.29631
\(951\) 0 0
\(952\) −8.56231 −0.277506
\(953\) −11.3475 −0.367582 −0.183791 0.982965i \(-0.558837\pi\)
−0.183791 + 0.982965i \(0.558837\pi\)
\(954\) 0 0
\(955\) 0.506578 0.0163925
\(956\) −1.85410 −0.0599659
\(957\) 0 0
\(958\) 74.3050 2.40068
\(959\) 9.76393 0.315294
\(960\) 0 0
\(961\) 6.09017 0.196457
\(962\) −3.85410 −0.124261
\(963\) 0 0
\(964\) 40.2492 1.29634
\(965\) −1.94427 −0.0625883
\(966\) 0 0
\(967\) 43.9230 1.41247 0.706234 0.707978i \(-0.250393\pi\)
0.706234 + 0.707978i \(0.250393\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 12.7082 0.408036
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) −14.5623 −0.466846
\(974\) −33.2705 −1.06606
\(975\) 0 0
\(976\) −113.936 −3.64701
\(977\) 0.596748 0.0190917 0.00954583 0.999954i \(-0.496961\pi\)
0.00954583 + 0.999954i \(0.496961\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) 46.8885 1.49627
\(983\) 8.11146 0.258715 0.129358 0.991598i \(-0.458708\pi\)
0.129358 + 0.991598i \(0.458708\pi\)
\(984\) 0 0
\(985\) −8.05573 −0.256677
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) 6.70820 0.213416
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −66.1033 −2.09878
\(993\) 0 0
\(994\) 27.0344 0.857480
\(995\) 4.14590 0.131434
\(996\) 0 0
\(997\) −21.2016 −0.671462 −0.335731 0.941958i \(-0.608983\pi\)
−0.335731 + 0.941958i \(0.608983\pi\)
\(998\) −47.5066 −1.50379
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.a.t.1.2 2
3.2 odd 2 363.2.a.d.1.1 2
11.3 even 5 99.2.f.a.64.1 4
11.4 even 5 99.2.f.a.82.1 4
11.10 odd 2 1089.2.a.l.1.1 2
12.11 even 2 5808.2.a.cj.1.1 2
15.14 odd 2 9075.2.a.cb.1.2 2
33.2 even 10 363.2.e.b.202.1 4
33.5 odd 10 363.2.e.k.124.1 4
33.8 even 10 363.2.e.f.130.1 4
33.14 odd 10 33.2.e.b.31.1 yes 4
33.17 even 10 363.2.e.b.124.1 4
33.20 odd 10 363.2.e.k.202.1 4
33.26 odd 10 33.2.e.b.16.1 4
33.29 even 10 363.2.e.f.148.1 4
33.32 even 2 363.2.a.i.1.2 2
99.4 even 15 891.2.n.b.379.1 8
99.14 odd 30 891.2.n.c.460.1 8
99.25 even 15 891.2.n.b.757.1 8
99.47 odd 30 891.2.n.c.757.1 8
99.58 even 15 891.2.n.b.460.1 8
99.59 odd 30 891.2.n.c.379.1 8
99.70 even 15 891.2.n.b.676.1 8
99.92 odd 30 891.2.n.c.676.1 8
132.47 even 10 528.2.y.b.97.1 4
132.59 even 10 528.2.y.b.49.1 4
132.131 odd 2 5808.2.a.ci.1.1 2
165.14 odd 10 825.2.n.c.526.1 4
165.47 even 20 825.2.bx.d.724.1 8
165.59 odd 10 825.2.n.c.676.1 4
165.92 even 20 825.2.bx.d.49.2 8
165.113 even 20 825.2.bx.d.724.2 8
165.158 even 20 825.2.bx.d.49.1 8
165.164 even 2 9075.2.a.u.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 33.26 odd 10
33.2.e.b.31.1 yes 4 33.14 odd 10
99.2.f.a.64.1 4 11.3 even 5
99.2.f.a.82.1 4 11.4 even 5
363.2.a.d.1.1 2 3.2 odd 2
363.2.a.i.1.2 2 33.32 even 2
363.2.e.b.124.1 4 33.17 even 10
363.2.e.b.202.1 4 33.2 even 10
363.2.e.f.130.1 4 33.8 even 10
363.2.e.f.148.1 4 33.29 even 10
363.2.e.k.124.1 4 33.5 odd 10
363.2.e.k.202.1 4 33.20 odd 10
528.2.y.b.49.1 4 132.59 even 10
528.2.y.b.97.1 4 132.47 even 10
825.2.n.c.526.1 4 165.14 odd 10
825.2.n.c.676.1 4 165.59 odd 10
825.2.bx.d.49.1 8 165.158 even 20
825.2.bx.d.49.2 8 165.92 even 20
825.2.bx.d.724.1 8 165.47 even 20
825.2.bx.d.724.2 8 165.113 even 20
891.2.n.b.379.1 8 99.4 even 15
891.2.n.b.460.1 8 99.58 even 15
891.2.n.b.676.1 8 99.70 even 15
891.2.n.b.757.1 8 99.25 even 15
891.2.n.c.379.1 8 99.59 odd 30
891.2.n.c.460.1 8 99.14 odd 30
891.2.n.c.676.1 8 99.92 odd 30
891.2.n.c.757.1 8 99.47 odd 30
1089.2.a.l.1.1 2 11.10 odd 2
1089.2.a.t.1.2 2 1.1 even 1 trivial
5808.2.a.ci.1.1 2 132.131 odd 2
5808.2.a.cj.1.1 2 12.11 even 2
9075.2.a.u.1.1 2 165.164 even 2
9075.2.a.cb.1.2 2 15.14 odd 2