Properties

Label 1089.2.a.c.1.1
Level $1089$
Weight $2$
Character 1089.1
Self dual yes
Analytic conductor $8.696$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.69570878012\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 121)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +3.00000 q^{8} +1.00000 q^{10} +1.00000 q^{13} +2.00000 q^{14} -1.00000 q^{16} +5.00000 q^{17} +6.00000 q^{19} +1.00000 q^{20} -2.00000 q^{23} -4.00000 q^{25} -1.00000 q^{26} +2.00000 q^{28} -9.00000 q^{29} -2.00000 q^{31} -5.00000 q^{32} -5.00000 q^{34} +2.00000 q^{35} -3.00000 q^{37} -6.00000 q^{38} -3.00000 q^{40} +5.00000 q^{41} +2.00000 q^{46} -2.00000 q^{47} -3.00000 q^{49} +4.00000 q^{50} -1.00000 q^{52} -9.00000 q^{53} -6.00000 q^{56} +9.00000 q^{58} -8.00000 q^{59} +6.00000 q^{61} +2.00000 q^{62} +7.00000 q^{64} -1.00000 q^{65} +2.00000 q^{67} -5.00000 q^{68} -2.00000 q^{70} -12.0000 q^{71} -2.00000 q^{73} +3.00000 q^{74} -6.00000 q^{76} -10.0000 q^{79} +1.00000 q^{80} -5.00000 q^{82} -6.00000 q^{83} -5.00000 q^{85} +9.00000 q^{89} -2.00000 q^{91} +2.00000 q^{92} +2.00000 q^{94} -6.00000 q^{95} -13.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 0 0
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.00000 −0.801784
\(57\) 0 0
\(58\) 9.00000 1.18176
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −5.00000 −0.606339
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −5.00000 −0.552158
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 2.00000 0.208514
\(93\) 0 0
\(94\) 2.00000 0.206284
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 3.00000 0.294174
\(105\) 0 0
\(106\) 9.00000 0.874157
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) 9.00000 0.846649 0.423324 0.905978i \(-0.360863\pi\)
0.423324 + 0.905978i \(0.360863\pi\)
\(114\) 0 0
\(115\) 2.00000 0.186501
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) −10.0000 −0.916698
\(120\) 0 0
\(121\) 0 0
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) 1.00000 0.0877058
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 15.0000 1.28624
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 3.00000 0.246598
\(149\) −17.0000 −1.39269 −0.696347 0.717705i \(-0.745193\pi\)
−0.696347 + 0.717705i \(0.745193\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 18.0000 1.45999
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) −2.00000 −0.156652 −0.0783260 0.996928i \(-0.524958\pi\)
−0.0783260 + 0.996928i \(0.524958\pi\)
\(164\) −5.00000 −0.390434
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 5.00000 0.383482
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 0 0
\(178\) −9.00000 −0.674579
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 1.00000 0.0743294 0.0371647 0.999309i \(-0.488167\pi\)
0.0371647 + 0.999309i \(0.488167\pi\)
\(182\) 2.00000 0.148250
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 0 0
\(188\) 2.00000 0.145865
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 13.0000 0.933346
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 11.0000 0.783718 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) −12.0000 −0.848528
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) 18.0000 1.26335
\(204\) 0 0
\(205\) −5.00000 −0.349215
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) 6.00000 0.410152
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 11.0000 0.745014
\(219\) 0 0
\(220\) 0 0
\(221\) 5.00000 0.336336
\(222\) 0 0
\(223\) −20.0000 −1.33930 −0.669650 0.742677i \(-0.733556\pi\)
−0.669650 + 0.742677i \(0.733556\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) −9.00000 −0.598671
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) 9.00000 0.594737 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(230\) −2.00000 −0.131876
\(231\) 0 0
\(232\) −27.0000 −1.77264
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 10.0000 0.648204
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) −6.00000 −0.381000
\(249\) 0 0
\(250\) −9.00000 −0.569210
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −19.0000 −1.18519 −0.592594 0.805502i \(-0.701896\pi\)
−0.592594 + 0.805502i \(0.701896\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 1.00000 0.0620174
\(261\) 0 0
\(262\) 0 0
\(263\) 22.0000 1.35658 0.678289 0.734795i \(-0.262722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 12.0000 0.735767
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) −1.00000 −0.0609711 −0.0304855 0.999535i \(-0.509705\pi\)
−0.0304855 + 0.999535i \(0.509705\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 0.0600842 0.0300421 0.999549i \(-0.490436\pi\)
0.0300421 + 0.999549i \(0.490436\pi\)
\(278\) 2.00000 0.119952
\(279\) 0 0
\(280\) 6.00000 0.358569
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) −9.00000 −0.523114
\(297\) 0 0
\(298\) 17.0000 0.984784
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 −0.113592
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −7.00000 −0.391312
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) 30.0000 1.66924
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 2.00000 0.110770
\(327\) 0 0
\(328\) 15.0000 0.828236
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) 5.00000 0.271163
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) −8.00000 −0.427618
\(351\) 0 0
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) 24.0000 1.26844
\(359\) 2.00000 0.105556 0.0527780 0.998606i \(-0.483192\pi\)
0.0527780 + 0.998606i \(0.483192\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −1.00000 −0.0525588
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −14.0000 −0.730794 −0.365397 0.930852i \(-0.619067\pi\)
−0.365397 + 0.930852i \(0.619067\pi\)
\(368\) 2.00000 0.104257
\(369\) 0 0
\(370\) −3.00000 −0.155963
\(371\) 18.0000 0.934513
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) −9.00000 −0.463524
\(378\) 0 0
\(379\) −32.0000 −1.64373 −0.821865 0.569683i \(-0.807066\pi\)
−0.821865 + 0.569683i \(0.807066\pi\)
\(380\) 6.00000 0.307794
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.00000 0.254493
\(387\) 0 0
\(388\) 13.0000 0.659975
\(389\) 3.00000 0.152106 0.0760530 0.997104i \(-0.475768\pi\)
0.0760530 + 0.997104i \(0.475768\pi\)
\(390\) 0 0
\(391\) −10.0000 −0.505722
\(392\) −9.00000 −0.454569
\(393\) 0 0
\(394\) −11.0000 −0.554172
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −23.0000 −1.14857 −0.574283 0.818657i \(-0.694719\pi\)
−0.574283 + 0.818657i \(0.694719\pi\)
\(402\) 0 0
\(403\) −2.00000 −0.0996271
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) −18.0000 −0.893325
\(407\) 0 0
\(408\) 0 0
\(409\) −21.0000 −1.03838 −0.519192 0.854658i \(-0.673767\pi\)
−0.519192 + 0.854658i \(0.673767\pi\)
\(410\) 5.00000 0.246932
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 16.0000 0.787309
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) −5.00000 −0.245145
\(417\) 0 0
\(418\) 0 0
\(419\) −2.00000 −0.0977064 −0.0488532 0.998806i \(-0.515557\pi\)
−0.0488532 + 0.998806i \(0.515557\pi\)
\(420\) 0 0
\(421\) 13.0000 0.633581 0.316791 0.948495i \(-0.397395\pi\)
0.316791 + 0.948495i \(0.397395\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) −27.0000 −1.31124
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) 0 0
\(433\) 19.0000 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 11.0000 0.526804
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5.00000 −0.237826
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) −9.00000 −0.426641
\(446\) 20.0000 0.947027
\(447\) 0 0
\(448\) −14.0000 −0.661438
\(449\) 13.0000 0.613508 0.306754 0.951789i \(-0.400757\pi\)
0.306754 + 0.951789i \(0.400757\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −9.00000 −0.423324
\(453\) 0 0
\(454\) −24.0000 −1.12638
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) 39.0000 1.82434 0.912172 0.409809i \(-0.134405\pi\)
0.912172 + 0.409809i \(0.134405\pi\)
\(458\) −9.00000 −0.420542
\(459\) 0 0
\(460\) −2.00000 −0.0932505
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 9.00000 0.417815
\(465\) 0 0
\(466\) −21.0000 −0.972806
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −2.00000 −0.0922531
\(471\) 0 0
\(472\) −24.0000 −1.10469
\(473\) 0 0
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 10.0000 0.458349
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) −22.0000 −1.00207
\(483\) 0 0
\(484\) 0 0
\(485\) 13.0000 0.590300
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 18.0000 0.814822
\(489\) 0 0
\(490\) −3.00000 −0.135526
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) −45.0000 −2.02670
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) −9.00000 −0.402492
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) 38.0000 1.69434 0.847168 0.531325i \(-0.178306\pi\)
0.847168 + 0.531325i \(0.178306\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) 0 0
\(508\) 16.0000 0.709885
\(509\) 42.0000 1.86162 0.930809 0.365507i \(-0.119104\pi\)
0.930809 + 0.365507i \(0.119104\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 19.0000 0.838054
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) −6.00000 −0.263625
\(519\) 0 0
\(520\) −3.00000 −0.131559
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −22.0000 −0.959246
\(527\) −10.0000 −0.435607
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 12.0000 0.520266
\(533\) 5.00000 0.216574
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 6.00000 0.259161
\(537\) 0 0
\(538\) 1.00000 0.0431131
\(539\) 0 0
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) −20.0000 −0.859074
\(543\) 0 0
\(544\) −25.0000 −1.07187
\(545\) 11.0000 0.471188
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) −10.0000 −0.427179
\(549\) 0 0
\(550\) 0 0
\(551\) −54.0000 −2.30048
\(552\) 0 0
\(553\) 20.0000 0.850487
\(554\) −1.00000 −0.0424859
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −34.0000 −1.43293 −0.716465 0.697623i \(-0.754241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(564\) 0 0
\(565\) −9.00000 −0.378633
\(566\) −28.0000 −1.17693
\(567\) 0 0
\(568\) −36.0000 −1.51053
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 10.0000 0.417392
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) −21.0000 −0.874241 −0.437121 0.899403i \(-0.644002\pi\)
−0.437121 + 0.899403i \(0.644002\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) −9.00000 −0.373705
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) 14.0000 0.577842 0.288921 0.957353i \(-0.406704\pi\)
0.288921 + 0.957353i \(0.406704\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) −8.00000 −0.329355
\(591\) 0 0
\(592\) 3.00000 0.123299
\(593\) −11.0000 −0.451716 −0.225858 0.974160i \(-0.572519\pi\)
−0.225858 + 0.974160i \(0.572519\pi\)
\(594\) 0 0
\(595\) 10.0000 0.409960
\(596\) 17.0000 0.696347
\(597\) 0 0
\(598\) 2.00000 0.0817861
\(599\) −34.0000 −1.38920 −0.694601 0.719395i \(-0.744419\pi\)
−0.694601 + 0.719395i \(0.744419\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) −10.0000 −0.405887 −0.202944 0.979190i \(-0.565051\pi\)
−0.202944 + 0.979190i \(0.565051\pi\)
\(608\) −30.0000 −1.21666
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) 22.0000 0.887848
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 0 0
\(619\) 2.00000 0.0803868 0.0401934 0.999192i \(-0.487203\pi\)
0.0401934 + 0.999192i \(0.487203\pi\)
\(620\) −2.00000 −0.0803219
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −23.0000 −0.919265
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −15.0000 −0.598089
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) −30.0000 −1.19334
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 9.00000 0.355479 0.177739 0.984078i \(-0.443122\pi\)
0.177739 + 0.984078i \(0.443122\pi\)
\(642\) 0 0
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) −30.0000 −1.18033
\(647\) −20.0000 −0.786281 −0.393141 0.919478i \(-0.628611\pi\)
−0.393141 + 0.919478i \(0.628611\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) 2.00000 0.0783260
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −5.00000 −0.195217
\(657\) 0 0
\(658\) −4.00000 −0.155936
\(659\) −22.0000 −0.856998 −0.428499 0.903542i \(-0.640958\pi\)
−0.428499 + 0.903542i \(0.640958\pi\)
\(660\) 0 0
\(661\) 13.0000 0.505641 0.252821 0.967513i \(-0.418642\pi\)
0.252821 + 0.967513i \(0.418642\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) −18.0000 −0.698535
\(665\) 12.0000 0.465340
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) 2.00000 0.0772667
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 13.0000 0.500741
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 27.0000 1.03769 0.518847 0.854867i \(-0.326361\pi\)
0.518847 + 0.854867i \(0.326361\pi\)
\(678\) 0 0
\(679\) 26.0000 0.997788
\(680\) −15.0000 −0.575224
\(681\) 0 0
\(682\) 0 0
\(683\) −2.00000 −0.0765279 −0.0382639 0.999268i \(-0.512183\pi\)
−0.0382639 + 0.999268i \(0.512183\pi\)
\(684\) 0 0
\(685\) −10.0000 −0.382080
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) 0 0
\(689\) −9.00000 −0.342873
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 2.00000 0.0758643
\(696\) 0 0
\(697\) 25.0000 0.946943
\(698\) 27.0000 1.02197
\(699\) 0 0
\(700\) −8.00000 −0.302372
\(701\) −17.0000 −0.642081 −0.321041 0.947065i \(-0.604033\pi\)
−0.321041 + 0.947065i \(0.604033\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) 0 0
\(706\) −9.00000 −0.338719
\(707\) −20.0000 −0.752177
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −12.0000 −0.450352
\(711\) 0 0
\(712\) 27.0000 1.01187
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 0 0
\(718\) −2.00000 −0.0746393
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) −1.00000 −0.0371647
\(725\) 36.0000 1.33701
\(726\) 0 0
\(727\) −42.0000 −1.55769 −0.778847 0.627214i \(-0.784195\pi\)
−0.778847 + 0.627214i \(0.784195\pi\)
\(728\) −6.00000 −0.222375
\(729\) 0 0
\(730\) −2.00000 −0.0740233
\(731\) 0 0
\(732\) 0 0
\(733\) 9.00000 0.332423 0.166211 0.986090i \(-0.446847\pi\)
0.166211 + 0.986090i \(0.446847\pi\)
\(734\) 14.0000 0.516749
\(735\) 0 0
\(736\) 10.0000 0.368605
\(737\) 0 0
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) −3.00000 −0.110282
\(741\) 0 0
\(742\) −18.0000 −0.660801
\(743\) 38.0000 1.39408 0.697042 0.717030i \(-0.254499\pi\)
0.697042 + 0.717030i \(0.254499\pi\)
\(744\) 0 0
\(745\) 17.0000 0.622832
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 2.00000 0.0729325
\(753\) 0 0
\(754\) 9.00000 0.327761
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 53.0000 1.92632 0.963159 0.268933i \(-0.0866710\pi\)
0.963159 + 0.268933i \(0.0866710\pi\)
\(758\) 32.0000 1.16229
\(759\) 0 0
\(760\) −18.0000 −0.652929
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) 22.0000 0.796453
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 20.0000 0.722629
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.00000 0.179954
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −39.0000 −1.40002
\(777\) 0 0
\(778\) −3.00000 −0.107555
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 0 0
\(782\) 10.0000 0.357599
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) −11.0000 −0.391859
\(789\) 0 0
\(790\) −10.0000 −0.355784
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) −13.0000 −0.461353
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 10.0000 0.354218 0.177109 0.984191i \(-0.443325\pi\)
0.177109 + 0.984191i \(0.443325\pi\)
\(798\) 0 0
\(799\) −10.0000 −0.353775
\(800\) 20.0000 0.707107
\(801\) 0 0
\(802\) 23.0000 0.812158
\(803\) 0 0
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 2.00000 0.0704470
\(807\) 0 0
\(808\) 30.0000 1.05540
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −18.0000 −0.631676
\(813\) 0 0
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) 0 0
\(818\) 21.0000 0.734248
\(819\) 0 0
\(820\) 5.00000 0.174608
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 24.0000 0.836080
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) 10.0000 0.347734 0.173867 0.984769i \(-0.444374\pi\)
0.173867 + 0.984769i \(0.444374\pi\)
\(828\) 0 0
\(829\) −47.0000 −1.63238 −0.816189 0.577785i \(-0.803917\pi\)
−0.816189 + 0.577785i \(0.803917\pi\)
\(830\) −6.00000 −0.208263
\(831\) 0 0
\(832\) 7.00000 0.242681
\(833\) −15.0000 −0.519719
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 0 0
\(838\) 2.00000 0.0690889
\(839\) −46.0000 −1.58810 −0.794048 0.607855i \(-0.792030\pi\)
−0.794048 + 0.607855i \(0.792030\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) −13.0000 −0.448010
\(843\) 0 0
\(844\) −12.0000 −0.413057
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 0 0
\(848\) 9.00000 0.309061
\(849\) 0 0
\(850\) 20.0000 0.685994
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 12.0000 0.410632
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) −19.0000 −0.645646
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) −33.0000 −1.11752
\(873\) 0 0
\(874\) 12.0000 0.405906
\(875\) −18.0000 −0.608511
\(876\) 0 0
\(877\) −27.0000 −0.911725 −0.455863 0.890050i \(-0.650669\pi\)
−0.455863 + 0.890050i \(0.650669\pi\)
\(878\) −22.0000 −0.742464
\(879\) 0 0
\(880\) 0 0
\(881\) −35.0000 −1.17918 −0.589590 0.807703i \(-0.700711\pi\)
−0.589590 + 0.807703i \(0.700711\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) −5.00000 −0.168168
\(885\) 0 0
\(886\) −20.0000 −0.671913
\(887\) 46.0000 1.54453 0.772264 0.635301i \(-0.219124\pi\)
0.772264 + 0.635301i \(0.219124\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 9.00000 0.301681
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) −6.00000 −0.200446
\(897\) 0 0
\(898\) −13.0000 −0.433816
\(899\) 18.0000 0.600334
\(900\) 0 0
\(901\) −45.0000 −1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) 27.0000 0.898007
\(905\) −1.00000 −0.0332411
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) −2.00000 −0.0662994
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −39.0000 −1.29001
\(915\) 0 0
\(916\) −9.00000 −0.297368
\(917\) 0 0
\(918\) 0 0
\(919\) 28.0000 0.923635 0.461817 0.886975i \(-0.347198\pi\)
0.461817 + 0.886975i \(0.347198\pi\)
\(920\) 6.00000 0.197814
\(921\) 0 0
\(922\) 33.0000 1.08680
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 20.0000 0.657241
\(927\) 0 0
\(928\) 45.0000 1.47720
\(929\) 21.0000 0.688988 0.344494 0.938789i \(-0.388051\pi\)
0.344494 + 0.938789i \(0.388051\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) −21.0000 −0.687878
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) 23.0000 0.751377 0.375689 0.926746i \(-0.377406\pi\)
0.375689 + 0.926746i \(0.377406\pi\)
\(938\) 4.00000 0.130605
\(939\) 0 0
\(940\) −2.00000 −0.0652328
\(941\) 27.0000 0.880175 0.440087 0.897955i \(-0.354947\pi\)
0.440087 + 0.897955i \(0.354947\pi\)
\(942\) 0 0
\(943\) −10.0000 −0.325645
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 0 0
\(947\) 42.0000 1.36482 0.682408 0.730971i \(-0.260933\pi\)
0.682408 + 0.730971i \(0.260933\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 24.0000 0.778663
\(951\) 0 0
\(952\) −30.0000 −0.972306
\(953\) −31.0000 −1.00419 −0.502094 0.864813i \(-0.667437\pi\)
−0.502094 + 0.864813i \(0.667437\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) −20.0000 −0.645834
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 3.00000 0.0967239
\(963\) 0 0
\(964\) −22.0000 −0.708572
\(965\) 5.00000 0.160956
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −13.0000 −0.417405
\(971\) −2.00000 −0.0641831 −0.0320915 0.999485i \(-0.510217\pi\)
−0.0320915 + 0.999485i \(0.510217\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) 57.0000 1.82359 0.911796 0.410644i \(-0.134696\pi\)
0.911796 + 0.410644i \(0.134696\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) −2.00000 −0.0638226
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) −11.0000 −0.350489
\(986\) 45.0000 1.43309
\(987\) 0 0
\(988\) −6.00000 −0.190885
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 10.0000 0.317500
\(993\) 0 0
\(994\) −24.0000 −0.761234
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) 53.0000 1.67853 0.839263 0.543725i \(-0.182987\pi\)
0.839263 + 0.543725i \(0.182987\pi\)
\(998\) −8.00000 −0.253236
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.a.c.1.1 1
3.2 odd 2 121.2.a.c.1.1 yes 1
11.10 odd 2 1089.2.a.i.1.1 1
12.11 even 2 1936.2.a.b.1.1 1
15.14 odd 2 3025.2.a.b.1.1 1
21.20 even 2 5929.2.a.g.1.1 1
24.5 odd 2 7744.2.a.c.1.1 1
24.11 even 2 7744.2.a.bf.1.1 1
33.2 even 10 121.2.c.d.81.1 4
33.5 odd 10 121.2.c.b.3.1 4
33.8 even 10 121.2.c.d.9.1 4
33.14 odd 10 121.2.c.b.9.1 4
33.17 even 10 121.2.c.d.3.1 4
33.20 odd 10 121.2.c.b.81.1 4
33.26 odd 10 121.2.c.b.27.1 4
33.29 even 10 121.2.c.d.27.1 4
33.32 even 2 121.2.a.a.1.1 1
132.131 odd 2 1936.2.a.a.1.1 1
165.164 even 2 3025.2.a.e.1.1 1
231.230 odd 2 5929.2.a.a.1.1 1
264.131 odd 2 7744.2.a.be.1.1 1
264.197 even 2 7744.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.2.a.a.1.1 1 33.32 even 2
121.2.a.c.1.1 yes 1 3.2 odd 2
121.2.c.b.3.1 4 33.5 odd 10
121.2.c.b.9.1 4 33.14 odd 10
121.2.c.b.27.1 4 33.26 odd 10
121.2.c.b.81.1 4 33.20 odd 10
121.2.c.d.3.1 4 33.17 even 10
121.2.c.d.9.1 4 33.8 even 10
121.2.c.d.27.1 4 33.29 even 10
121.2.c.d.81.1 4 33.2 even 10
1089.2.a.c.1.1 1 1.1 even 1 trivial
1089.2.a.i.1.1 1 11.10 odd 2
1936.2.a.a.1.1 1 132.131 odd 2
1936.2.a.b.1.1 1 12.11 even 2
3025.2.a.b.1.1 1 15.14 odd 2
3025.2.a.e.1.1 1 165.164 even 2
5929.2.a.a.1.1 1 231.230 odd 2
5929.2.a.g.1.1 1 21.20 even 2
7744.2.a.c.1.1 1 24.5 odd 2
7744.2.a.f.1.1 1 264.197 even 2
7744.2.a.be.1.1 1 264.131 odd 2
7744.2.a.bf.1.1 1 24.11 even 2