Properties

Label 1089.2.a.b
Level $1089$
Weight $2$
Character orbit 1089.a
Self dual yes
Analytic conductor $8.696$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.69570878012\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{2} + 2q^{4} - q^{5} + 2q^{7} + O(q^{10}) \) \( q - 2q^{2} + 2q^{4} - q^{5} + 2q^{7} + 2q^{10} - 4q^{13} - 4q^{14} - 4q^{16} - 2q^{17} - 2q^{20} + q^{23} - 4q^{25} + 8q^{26} + 4q^{28} + 7q^{31} + 8q^{32} + 4q^{34} - 2q^{35} + 3q^{37} - 8q^{41} + 6q^{43} - 2q^{46} - 8q^{47} - 3q^{49} + 8q^{50} - 8q^{52} + 6q^{53} - 5q^{59} - 12q^{61} - 14q^{62} - 8q^{64} + 4q^{65} - 7q^{67} - 4q^{68} + 4q^{70} + 3q^{71} - 4q^{73} - 6q^{74} + 10q^{79} + 4q^{80} + 16q^{82} - 6q^{83} + 2q^{85} - 12q^{86} - 15q^{89} - 8q^{91} + 2q^{92} + 16q^{94} - 7q^{97} + 6q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 2.00000 −1.00000 0 2.00000 0 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.2.a.b 1
3.b odd 2 1 121.2.a.d 1
11.b odd 2 1 99.2.a.d 1
12.b even 2 1 1936.2.a.i 1
15.d odd 2 1 3025.2.a.a 1
21.c even 2 1 5929.2.a.h 1
24.f even 2 1 7744.2.a.k 1
24.h odd 2 1 7744.2.a.x 1
33.d even 2 1 11.2.a.a 1
33.f even 10 4 121.2.c.e 4
33.h odd 10 4 121.2.c.a 4
44.c even 2 1 1584.2.a.g 1
55.d odd 2 1 2475.2.a.a 1
55.e even 4 2 2475.2.c.a 2
77.b even 2 1 4851.2.a.t 1
88.b odd 2 1 6336.2.a.br 1
88.g even 2 1 6336.2.a.bu 1
99.g even 6 2 891.2.e.k 2
99.h odd 6 2 891.2.e.b 2
132.d odd 2 1 176.2.a.b 1
165.d even 2 1 275.2.a.b 1
165.l odd 4 2 275.2.b.a 2
231.h odd 2 1 539.2.a.a 1
231.k odd 6 2 539.2.e.g 2
231.l even 6 2 539.2.e.h 2
264.m even 2 1 704.2.a.h 1
264.p odd 2 1 704.2.a.c 1
429.e even 2 1 1859.2.a.b 1
528.s odd 4 2 2816.2.c.f 2
528.x even 4 2 2816.2.c.j 2
561.h even 2 1 3179.2.a.a 1
627.b odd 2 1 3971.2.a.b 1
660.g odd 2 1 4400.2.a.i 1
660.q even 4 2 4400.2.b.h 2
759.h odd 2 1 5819.2.a.a 1
924.n even 2 1 8624.2.a.j 1
957.b even 2 1 9251.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.2.a.a 1 33.d even 2 1
99.2.a.d 1 11.b odd 2 1
121.2.a.d 1 3.b odd 2 1
121.2.c.a 4 33.h odd 10 4
121.2.c.e 4 33.f even 10 4
176.2.a.b 1 132.d odd 2 1
275.2.a.b 1 165.d even 2 1
275.2.b.a 2 165.l odd 4 2
539.2.a.a 1 231.h odd 2 1
539.2.e.g 2 231.k odd 6 2
539.2.e.h 2 231.l even 6 2
704.2.a.c 1 264.p odd 2 1
704.2.a.h 1 264.m even 2 1
891.2.e.b 2 99.h odd 6 2
891.2.e.k 2 99.g even 6 2
1089.2.a.b 1 1.a even 1 1 trivial
1584.2.a.g 1 44.c even 2 1
1859.2.a.b 1 429.e even 2 1
1936.2.a.i 1 12.b even 2 1
2475.2.a.a 1 55.d odd 2 1
2475.2.c.a 2 55.e even 4 2
2816.2.c.f 2 528.s odd 4 2
2816.2.c.j 2 528.x even 4 2
3025.2.a.a 1 15.d odd 2 1
3179.2.a.a 1 561.h even 2 1
3971.2.a.b 1 627.b odd 2 1
4400.2.a.i 1 660.g odd 2 1
4400.2.b.h 2 660.q even 4 2
4851.2.a.t 1 77.b even 2 1
5819.2.a.a 1 759.h odd 2 1
5929.2.a.h 1 21.c even 2 1
6336.2.a.br 1 88.b odd 2 1
6336.2.a.bu 1 88.g even 2 1
7744.2.a.k 1 24.f even 2 1
7744.2.a.x 1 24.h odd 2 1
8624.2.a.j 1 924.n even 2 1
9251.2.a.d 1 957.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2} + 2 \)
\( T_{5} + 1 \)
\( T_{7} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 + T \)
$3$ \( T \)
$5$ \( 1 + T \)
$7$ \( -2 + T \)
$11$ \( T \)
$13$ \( 4 + T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( -1 + T \)
$29$ \( T \)
$31$ \( -7 + T \)
$37$ \( -3 + T \)
$41$ \( 8 + T \)
$43$ \( -6 + T \)
$47$ \( 8 + T \)
$53$ \( -6 + T \)
$59$ \( 5 + T \)
$61$ \( 12 + T \)
$67$ \( 7 + T \)
$71$ \( -3 + T \)
$73$ \( 4 + T \)
$79$ \( -10 + T \)
$83$ \( 6 + T \)
$89$ \( 15 + T \)
$97$ \( 7 + T \)
show more
show less