Properties

Label 1088.2.a.c
Level $1088$
Weight $2$
Character orbit 1088.a
Self dual yes
Analytic conductor $8.688$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1088.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.68772373992\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2 q^{3} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{3} + q^{9} - 2 q^{11} + 6 q^{13} - q^{17} - 4 q^{19} + 4 q^{23} - 5 q^{25} + 4 q^{27} - 8 q^{31} + 4 q^{33} + 4 q^{37} - 12 q^{39} + 6 q^{41} - 8 q^{43} - 8 q^{47} - 7 q^{49} + 2 q^{51} - 10 q^{53} + 8 q^{57} - 12 q^{61} - 8 q^{67} - 8 q^{69} + 12 q^{71} + 2 q^{73} + 10 q^{75} - 4 q^{79} - 11 q^{81} - 16 q^{83} + 10 q^{89} + 16 q^{93} - 18 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −2.00000 0 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1088.2.a.c 1
3.b odd 2 1 9792.2.a.be 1
4.b odd 2 1 1088.2.a.m 1
8.b even 2 1 136.2.a.b 1
8.d odd 2 1 272.2.a.a 1
12.b even 2 1 9792.2.a.bd 1
24.f even 2 1 2448.2.a.j 1
24.h odd 2 1 1224.2.a.d 1
40.e odd 2 1 6800.2.a.w 1
40.f even 2 1 3400.2.a.b 1
40.i odd 4 2 3400.2.e.c 2
56.h odd 2 1 6664.2.a.b 1
136.e odd 2 1 4624.2.a.f 1
136.h even 2 1 2312.2.a.a 1
136.i even 4 2 2312.2.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.a.b 1 8.b even 2 1
272.2.a.a 1 8.d odd 2 1
1088.2.a.c 1 1.a even 1 1 trivial
1088.2.a.m 1 4.b odd 2 1
1224.2.a.d 1 24.h odd 2 1
2312.2.a.a 1 136.h even 2 1
2312.2.b.b 2 136.i even 4 2
2448.2.a.j 1 24.f even 2 1
3400.2.a.b 1 40.f even 2 1
3400.2.e.c 2 40.i odd 4 2
4624.2.a.f 1 136.e odd 2 1
6664.2.a.b 1 56.h odd 2 1
6800.2.a.w 1 40.e odd 2 1
9792.2.a.bd 1 12.b even 2 1
9792.2.a.be 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1088))\):

\( T_{3} + 2 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T - 6 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T - 4 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 12 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T + 16 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 18 \) Copy content Toggle raw display
show more
show less