Defining parameters
Level: | \( N \) | = | \( 1088 = 2^{6} \cdot 17 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(73728\) | ||
Trace bound: | \(25\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1088))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1280 | 367 | 913 |
Cusp forms | 128 | 37 | 91 |
Eisenstein series | 1152 | 330 | 822 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 37 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1088))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1088))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(1088)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(272))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1088))\)\(^{\oplus 1}\)