Properties

Label 1083.6.a.b.1.1
Level $1083$
Weight $6$
Character 1083.1
Self dual yes
Analytic conductor $173.696$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,6,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(173.695676857\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -9.00000 q^{3} -28.0000 q^{4} -98.0000 q^{5} -18.0000 q^{6} +240.000 q^{7} -120.000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -9.00000 q^{3} -28.0000 q^{4} -98.0000 q^{5} -18.0000 q^{6} +240.000 q^{7} -120.000 q^{8} +81.0000 q^{9} -196.000 q^{10} +336.000 q^{11} +252.000 q^{12} -342.000 q^{13} +480.000 q^{14} +882.000 q^{15} +656.000 q^{16} -6.00000 q^{17} +162.000 q^{18} +2744.00 q^{20} -2160.00 q^{21} +672.000 q^{22} +2836.00 q^{23} +1080.00 q^{24} +6479.00 q^{25} -684.000 q^{26} -729.000 q^{27} -6720.00 q^{28} +5902.00 q^{29} +1764.00 q^{30} -2744.00 q^{31} +5152.00 q^{32} -3024.00 q^{33} -12.0000 q^{34} -23520.0 q^{35} -2268.00 q^{36} -13670.0 q^{37} +3078.00 q^{39} +11760.0 q^{40} -10990.0 q^{41} -4320.00 q^{42} -4996.00 q^{43} -9408.00 q^{44} -7938.00 q^{45} +5672.00 q^{46} -17124.0 q^{47} -5904.00 q^{48} +40793.0 q^{49} +12958.0 q^{50} +54.0000 q^{51} +9576.00 q^{52} +4470.00 q^{53} -1458.00 q^{54} -32928.0 q^{55} -28800.0 q^{56} +11804.0 q^{58} -26292.0 q^{59} -24696.0 q^{60} +29134.0 q^{61} -5488.00 q^{62} +19440.0 q^{63} -10688.0 q^{64} +33516.0 q^{65} -6048.00 q^{66} +42052.0 q^{67} +168.000 q^{68} -25524.0 q^{69} -47040.0 q^{70} +26112.0 q^{71} -9720.00 q^{72} -49046.0 q^{73} -27340.0 q^{74} -58311.0 q^{75} +80640.0 q^{77} +6156.00 q^{78} -79056.0 q^{79} -64288.0 q^{80} +6561.00 q^{81} -21980.0 q^{82} +9472.00 q^{83} +60480.0 q^{84} +588.000 q^{85} -9992.00 q^{86} -53118.0 q^{87} -40320.0 q^{88} -82894.0 q^{89} -15876.0 q^{90} -82080.0 q^{91} -79408.0 q^{92} +24696.0 q^{93} -34248.0 q^{94} -46368.0 q^{96} -39850.0 q^{97} +81586.0 q^{98} +27216.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) −9.00000 −0.577350
\(4\) −28.0000 −0.875000
\(5\) −98.0000 −1.75308 −0.876539 0.481331i \(-0.840153\pi\)
−0.876539 + 0.481331i \(0.840153\pi\)
\(6\) −18.0000 −0.204124
\(7\) 240.000 1.85125 0.925627 0.378436i \(-0.123538\pi\)
0.925627 + 0.378436i \(0.123538\pi\)
\(8\) −120.000 −0.662913
\(9\) 81.0000 0.333333
\(10\) −196.000 −0.619806
\(11\) 336.000 0.837255 0.418627 0.908158i \(-0.362511\pi\)
0.418627 + 0.908158i \(0.362511\pi\)
\(12\) 252.000 0.505181
\(13\) −342.000 −0.561265 −0.280632 0.959815i \(-0.590544\pi\)
−0.280632 + 0.959815i \(0.590544\pi\)
\(14\) 480.000 0.654517
\(15\) 882.000 1.01214
\(16\) 656.000 0.640625
\(17\) −6.00000 −0.00503534 −0.00251767 0.999997i \(-0.500801\pi\)
−0.00251767 + 0.999997i \(0.500801\pi\)
\(18\) 162.000 0.117851
\(19\) 0 0
\(20\) 2744.00 1.53394
\(21\) −2160.00 −1.06882
\(22\) 672.000 0.296014
\(23\) 2836.00 1.11786 0.558929 0.829216i \(-0.311212\pi\)
0.558929 + 0.829216i \(0.311212\pi\)
\(24\) 1080.00 0.382733
\(25\) 6479.00 2.07328
\(26\) −684.000 −0.198437
\(27\) −729.000 −0.192450
\(28\) −6720.00 −1.61985
\(29\) 5902.00 1.30318 0.651590 0.758572i \(-0.274102\pi\)
0.651590 + 0.758572i \(0.274102\pi\)
\(30\) 1764.00 0.357845
\(31\) −2744.00 −0.512838 −0.256419 0.966566i \(-0.582543\pi\)
−0.256419 + 0.966566i \(0.582543\pi\)
\(32\) 5152.00 0.889408
\(33\) −3024.00 −0.483389
\(34\) −12.0000 −0.00178026
\(35\) −23520.0 −3.24539
\(36\) −2268.00 −0.291667
\(37\) −13670.0 −1.64159 −0.820794 0.571224i \(-0.806469\pi\)
−0.820794 + 0.571224i \(0.806469\pi\)
\(38\) 0 0
\(39\) 3078.00 0.324046
\(40\) 11760.0 1.16214
\(41\) −10990.0 −1.02103 −0.510514 0.859869i \(-0.670545\pi\)
−0.510514 + 0.859869i \(0.670545\pi\)
\(42\) −4320.00 −0.377886
\(43\) −4996.00 −0.412051 −0.206026 0.978547i \(-0.566053\pi\)
−0.206026 + 0.978547i \(0.566053\pi\)
\(44\) −9408.00 −0.732598
\(45\) −7938.00 −0.584359
\(46\) 5672.00 0.395222
\(47\) −17124.0 −1.13073 −0.565367 0.824839i \(-0.691266\pi\)
−0.565367 + 0.824839i \(0.691266\pi\)
\(48\) −5904.00 −0.369865
\(49\) 40793.0 2.42714
\(50\) 12958.0 0.733015
\(51\) 54.0000 0.00290716
\(52\) 9576.00 0.491107
\(53\) 4470.00 0.218584 0.109292 0.994010i \(-0.465142\pi\)
0.109292 + 0.994010i \(0.465142\pi\)
\(54\) −1458.00 −0.0680414
\(55\) −32928.0 −1.46777
\(56\) −28800.0 −1.22722
\(57\) 0 0
\(58\) 11804.0 0.460743
\(59\) −26292.0 −0.983317 −0.491659 0.870788i \(-0.663609\pi\)
−0.491659 + 0.870788i \(0.663609\pi\)
\(60\) −24696.0 −0.885622
\(61\) 29134.0 1.00248 0.501240 0.865308i \(-0.332877\pi\)
0.501240 + 0.865308i \(0.332877\pi\)
\(62\) −5488.00 −0.181315
\(63\) 19440.0 0.617085
\(64\) −10688.0 −0.326172
\(65\) 33516.0 0.983940
\(66\) −6048.00 −0.170904
\(67\) 42052.0 1.14446 0.572229 0.820094i \(-0.306079\pi\)
0.572229 + 0.820094i \(0.306079\pi\)
\(68\) 168.000 0.00440592
\(69\) −25524.0 −0.645396
\(70\) −47040.0 −1.14742
\(71\) 26112.0 0.614744 0.307372 0.951589i \(-0.400550\pi\)
0.307372 + 0.951589i \(0.400550\pi\)
\(72\) −9720.00 −0.220971
\(73\) −49046.0 −1.07720 −0.538600 0.842562i \(-0.681047\pi\)
−0.538600 + 0.842562i \(0.681047\pi\)
\(74\) −27340.0 −0.580389
\(75\) −58311.0 −1.19701
\(76\) 0 0
\(77\) 80640.0 1.54997
\(78\) 6156.00 0.114568
\(79\) −79056.0 −1.42517 −0.712586 0.701585i \(-0.752476\pi\)
−0.712586 + 0.701585i \(0.752476\pi\)
\(80\) −64288.0 −1.12307
\(81\) 6561.00 0.111111
\(82\) −21980.0 −0.360988
\(83\) 9472.00 0.150920 0.0754599 0.997149i \(-0.475958\pi\)
0.0754599 + 0.997149i \(0.475958\pi\)
\(84\) 60480.0 0.935220
\(85\) 588.000 0.00882734
\(86\) −9992.00 −0.145682
\(87\) −53118.0 −0.752391
\(88\) −40320.0 −0.555027
\(89\) −82894.0 −1.10930 −0.554649 0.832085i \(-0.687147\pi\)
−0.554649 + 0.832085i \(0.687147\pi\)
\(90\) −15876.0 −0.206602
\(91\) −82080.0 −1.03904
\(92\) −79408.0 −0.978126
\(93\) 24696.0 0.296087
\(94\) −34248.0 −0.399775
\(95\) 0 0
\(96\) −46368.0 −0.513500
\(97\) −39850.0 −0.430030 −0.215015 0.976611i \(-0.568980\pi\)
−0.215015 + 0.976611i \(0.568980\pi\)
\(98\) 81586.0 0.858125
\(99\) 27216.0 0.279085
\(100\) −181412. −1.81412
\(101\) 99542.0 0.970964 0.485482 0.874247i \(-0.338644\pi\)
0.485482 + 0.874247i \(0.338644\pi\)
\(102\) 108.000 0.00102783
\(103\) −69368.0 −0.644267 −0.322134 0.946694i \(-0.604400\pi\)
−0.322134 + 0.946694i \(0.604400\pi\)
\(104\) 41040.0 0.372069
\(105\) 211680. 1.87373
\(106\) 8940.00 0.0772810
\(107\) 110204. 0.930546 0.465273 0.885167i \(-0.345956\pi\)
0.465273 + 0.885167i \(0.345956\pi\)
\(108\) 20412.0 0.168394
\(109\) 217786. 1.75575 0.877877 0.478886i \(-0.158959\pi\)
0.877877 + 0.478886i \(0.158959\pi\)
\(110\) −65856.0 −0.518936
\(111\) 123030. 0.947771
\(112\) 157440. 1.18596
\(113\) 84618.0 0.623400 0.311700 0.950181i \(-0.399102\pi\)
0.311700 + 0.950181i \(0.399102\pi\)
\(114\) 0 0
\(115\) −277928. −1.95969
\(116\) −165256. −1.14028
\(117\) −27702.0 −0.187088
\(118\) −52584.0 −0.347655
\(119\) −1440.00 −0.00932170
\(120\) −105840. −0.670960
\(121\) −48155.0 −0.299005
\(122\) 58268.0 0.354430
\(123\) 98910.0 0.589491
\(124\) 76832.0 0.448733
\(125\) −328692. −1.88154
\(126\) 38880.0 0.218172
\(127\) −89608.0 −0.492989 −0.246495 0.969144i \(-0.579279\pi\)
−0.246495 + 0.969144i \(0.579279\pi\)
\(128\) −186240. −1.00473
\(129\) 44964.0 0.237898
\(130\) 67032.0 0.347875
\(131\) 255992. 1.30331 0.651656 0.758515i \(-0.274075\pi\)
0.651656 + 0.758515i \(0.274075\pi\)
\(132\) 84672.0 0.422966
\(133\) 0 0
\(134\) 84104.0 0.404627
\(135\) 71442.0 0.337380
\(136\) 720.000 0.00333799
\(137\) 50226.0 0.228627 0.114313 0.993445i \(-0.463533\pi\)
0.114313 + 0.993445i \(0.463533\pi\)
\(138\) −51048.0 −0.228182
\(139\) −242108. −1.06285 −0.531425 0.847105i \(-0.678343\pi\)
−0.531425 + 0.847105i \(0.678343\pi\)
\(140\) 658560. 2.83972
\(141\) 154116. 0.652830
\(142\) 52224.0 0.217345
\(143\) −114912. −0.469921
\(144\) 53136.0 0.213542
\(145\) −578396. −2.28457
\(146\) −98092.0 −0.380848
\(147\) −367137. −1.40131
\(148\) 382760. 1.43639
\(149\) −352506. −1.30077 −0.650385 0.759604i \(-0.725393\pi\)
−0.650385 + 0.759604i \(0.725393\pi\)
\(150\) −116622. −0.423207
\(151\) 272120. 0.971221 0.485611 0.874175i \(-0.338597\pi\)
0.485611 + 0.874175i \(0.338597\pi\)
\(152\) 0 0
\(153\) −486.000 −0.00167845
\(154\) 161280. 0.547998
\(155\) 268912. 0.899044
\(156\) −86184.0 −0.283541
\(157\) 124942. 0.404538 0.202269 0.979330i \(-0.435168\pi\)
0.202269 + 0.979330i \(0.435168\pi\)
\(158\) −158112. −0.503874
\(159\) −40230.0 −0.126199
\(160\) −504896. −1.55920
\(161\) 680640. 2.06944
\(162\) 13122.0 0.0392837
\(163\) −28900.0 −0.0851979 −0.0425989 0.999092i \(-0.513564\pi\)
−0.0425989 + 0.999092i \(0.513564\pi\)
\(164\) 307720. 0.893400
\(165\) 296352. 0.847419
\(166\) 18944.0 0.0533582
\(167\) −370200. −1.02718 −0.513588 0.858037i \(-0.671684\pi\)
−0.513588 + 0.858037i \(0.671684\pi\)
\(168\) 259200. 0.708536
\(169\) −254329. −0.684982
\(170\) 1176.00 0.00312094
\(171\) 0 0
\(172\) 139888. 0.360545
\(173\) 277414. 0.704714 0.352357 0.935866i \(-0.385380\pi\)
0.352357 + 0.935866i \(0.385380\pi\)
\(174\) −106236. −0.266010
\(175\) 1.55496e6 3.83817
\(176\) 220416. 0.536366
\(177\) 236628. 0.567718
\(178\) −165788. −0.392196
\(179\) 439108. 1.02433 0.512164 0.858888i \(-0.328844\pi\)
0.512164 + 0.858888i \(0.328844\pi\)
\(180\) 222264. 0.511314
\(181\) −25406.0 −0.0576421 −0.0288211 0.999585i \(-0.509175\pi\)
−0.0288211 + 0.999585i \(0.509175\pi\)
\(182\) −164160. −0.367357
\(183\) −262206. −0.578782
\(184\) −340320. −0.741042
\(185\) 1.33966e6 2.87783
\(186\) 49392.0 0.104683
\(187\) −2016.00 −0.00421586
\(188\) 479472. 0.989393
\(189\) −174960. −0.356274
\(190\) 0 0
\(191\) 640644. 1.27067 0.635336 0.772236i \(-0.280862\pi\)
0.635336 + 0.772236i \(0.280862\pi\)
\(192\) 96192.0 0.188315
\(193\) 224846. 0.434502 0.217251 0.976116i \(-0.430291\pi\)
0.217251 + 0.976116i \(0.430291\pi\)
\(194\) −79700.0 −0.152039
\(195\) −301644. −0.568078
\(196\) −1.14220e6 −2.12375
\(197\) 325438. 0.597452 0.298726 0.954339i \(-0.403438\pi\)
0.298726 + 0.954339i \(0.403438\pi\)
\(198\) 54432.0 0.0986714
\(199\) −983576. −1.76066 −0.880329 0.474363i \(-0.842679\pi\)
−0.880329 + 0.474363i \(0.842679\pi\)
\(200\) −777480. −1.37440
\(201\) −378468. −0.660753
\(202\) 199084. 0.343287
\(203\) 1.41648e6 2.41252
\(204\) −1512.00 −0.00254376
\(205\) 1.07702e6 1.78994
\(206\) −138736. −0.227783
\(207\) 229716. 0.372619
\(208\) −224352. −0.359560
\(209\) 0 0
\(210\) 423360. 0.662463
\(211\) 866308. 1.33957 0.669786 0.742554i \(-0.266386\pi\)
0.669786 + 0.742554i \(0.266386\pi\)
\(212\) −125160. −0.191261
\(213\) −235008. −0.354923
\(214\) 220408. 0.328998
\(215\) 489608. 0.722358
\(216\) 87480.0 0.127578
\(217\) −658560. −0.949393
\(218\) 435572. 0.620753
\(219\) 441414. 0.621922
\(220\) 921984. 1.28430
\(221\) 2052.00 0.00282616
\(222\) 246060. 0.335088
\(223\) 76928.0 0.103591 0.0517955 0.998658i \(-0.483506\pi\)
0.0517955 + 0.998658i \(0.483506\pi\)
\(224\) 1.23648e6 1.64652
\(225\) 524799. 0.691093
\(226\) 169236. 0.220405
\(227\) 969612. 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(228\) 0 0
\(229\) 840150. 1.05869 0.529344 0.848407i \(-0.322438\pi\)
0.529344 + 0.848407i \(0.322438\pi\)
\(230\) −555856. −0.692856
\(231\) −725760. −0.894876
\(232\) −708240. −0.863894
\(233\) 575914. 0.694973 0.347486 0.937685i \(-0.387035\pi\)
0.347486 + 0.937685i \(0.387035\pi\)
\(234\) −55404.0 −0.0661457
\(235\) 1.67815e6 1.98226
\(236\) 736176. 0.860402
\(237\) 711504. 0.822823
\(238\) −2880.00 −0.00329572
\(239\) −352188. −0.398823 −0.199411 0.979916i \(-0.563903\pi\)
−0.199411 + 0.979916i \(0.563903\pi\)
\(240\) 578592. 0.648402
\(241\) −451290. −0.500510 −0.250255 0.968180i \(-0.580515\pi\)
−0.250255 + 0.968180i \(0.580515\pi\)
\(242\) −96310.0 −0.105714
\(243\) −59049.0 −0.0641500
\(244\) −815752. −0.877170
\(245\) −3.99771e6 −4.25497
\(246\) 197820. 0.208417
\(247\) 0 0
\(248\) 329280. 0.339967
\(249\) −85248.0 −0.0871336
\(250\) −657384. −0.665226
\(251\) 145752. 0.146026 0.0730130 0.997331i \(-0.476739\pi\)
0.0730130 + 0.997331i \(0.476739\pi\)
\(252\) −544320. −0.539949
\(253\) 952896. 0.935932
\(254\) −179216. −0.174298
\(255\) −5292.00 −0.00509647
\(256\) −30464.0 −0.0290527
\(257\) 1.87818e6 1.77380 0.886899 0.461964i \(-0.152855\pi\)
0.886899 + 0.461964i \(0.152855\pi\)
\(258\) 89928.0 0.0841096
\(259\) −3.28080e6 −3.03900
\(260\) −938448. −0.860948
\(261\) 478062. 0.434393
\(262\) 511984. 0.460790
\(263\) 895068. 0.797933 0.398967 0.916965i \(-0.369369\pi\)
0.398967 + 0.916965i \(0.369369\pi\)
\(264\) 362880. 0.320445
\(265\) −438060. −0.383194
\(266\) 0 0
\(267\) 746046. 0.640453
\(268\) −1.17746e6 −1.00140
\(269\) −1.27291e6 −1.07255 −0.536273 0.844045i \(-0.680168\pi\)
−0.536273 + 0.844045i \(0.680168\pi\)
\(270\) 142884. 0.119282
\(271\) 306672. 0.253659 0.126830 0.991925i \(-0.459520\pi\)
0.126830 + 0.991925i \(0.459520\pi\)
\(272\) −3936.00 −0.00322577
\(273\) 738720. 0.599892
\(274\) 100452. 0.0808318
\(275\) 2.17694e6 1.73586
\(276\) 714672. 0.564721
\(277\) −192026. −0.150370 −0.0751849 0.997170i \(-0.523955\pi\)
−0.0751849 + 0.997170i \(0.523955\pi\)
\(278\) −484216. −0.375774
\(279\) −222264. −0.170946
\(280\) 2.82240e6 2.15141
\(281\) −1.00055e6 −0.755915 −0.377958 0.925823i \(-0.623373\pi\)
−0.377958 + 0.925823i \(0.623373\pi\)
\(282\) 308232. 0.230810
\(283\) −1.26847e6 −0.941485 −0.470743 0.882271i \(-0.656014\pi\)
−0.470743 + 0.882271i \(0.656014\pi\)
\(284\) −731136. −0.537901
\(285\) 0 0
\(286\) −229824. −0.166142
\(287\) −2.63760e6 −1.89018
\(288\) 417312. 0.296469
\(289\) −1.41982e6 −0.999975
\(290\) −1.15679e6 −0.807719
\(291\) 358650. 0.248278
\(292\) 1.37329e6 0.942550
\(293\) 1.52560e6 1.03818 0.519088 0.854721i \(-0.326272\pi\)
0.519088 + 0.854721i \(0.326272\pi\)
\(294\) −734274. −0.495439
\(295\) 2.57662e6 1.72383
\(296\) 1.64040e6 1.08823
\(297\) −244944. −0.161130
\(298\) −705012. −0.459892
\(299\) −969912. −0.627414
\(300\) 1.63271e6 1.04738
\(301\) −1.19904e6 −0.762812
\(302\) 544240. 0.343379
\(303\) −895878. −0.560586
\(304\) 0 0
\(305\) −2.85513e6 −1.75742
\(306\) −972.000 −0.000593421 0
\(307\) 1.19665e6 0.724639 0.362320 0.932054i \(-0.381985\pi\)
0.362320 + 0.932054i \(0.381985\pi\)
\(308\) −2.25792e6 −1.35623
\(309\) 624312. 0.371968
\(310\) 537824. 0.317860
\(311\) 2.37144e6 1.39031 0.695155 0.718859i \(-0.255336\pi\)
0.695155 + 0.718859i \(0.255336\pi\)
\(312\) −369360. −0.214814
\(313\) 353738. 0.204090 0.102045 0.994780i \(-0.467461\pi\)
0.102045 + 0.994780i \(0.467461\pi\)
\(314\) 249884. 0.143026
\(315\) −1.90512e6 −1.08180
\(316\) 2.21357e6 1.24703
\(317\) −2.70427e6 −1.51148 −0.755738 0.654874i \(-0.772722\pi\)
−0.755738 + 0.654874i \(0.772722\pi\)
\(318\) −80460.0 −0.0446182
\(319\) 1.98307e6 1.09109
\(320\) 1.04742e6 0.571805
\(321\) −991836. −0.537251
\(322\) 1.36128e6 0.731657
\(323\) 0 0
\(324\) −183708. −0.0972222
\(325\) −2.21582e6 −1.16366
\(326\) −57800.0 −0.0301220
\(327\) −1.96007e6 −1.01369
\(328\) 1.31880e6 0.676853
\(329\) −4.10976e6 −2.09328
\(330\) 592704. 0.299608
\(331\) 327444. 0.164273 0.0821367 0.996621i \(-0.473826\pi\)
0.0821367 + 0.996621i \(0.473826\pi\)
\(332\) −265216. −0.132055
\(333\) −1.10727e6 −0.547196
\(334\) −740400. −0.363162
\(335\) −4.12110e6 −2.00632
\(336\) −1.41696e6 −0.684714
\(337\) −367946. −0.176486 −0.0882428 0.996099i \(-0.528125\pi\)
−0.0882428 + 0.996099i \(0.528125\pi\)
\(338\) −508658. −0.242178
\(339\) −761562. −0.359920
\(340\) −16464.0 −0.00772393
\(341\) −921984. −0.429376
\(342\) 0 0
\(343\) 5.75664e6 2.64201
\(344\) 599520. 0.273154
\(345\) 2.50135e6 1.13143
\(346\) 554828. 0.249154
\(347\) 566160. 0.252415 0.126208 0.992004i \(-0.459719\pi\)
0.126208 + 0.992004i \(0.459719\pi\)
\(348\) 1.48730e6 0.658342
\(349\) −4.50687e6 −1.98067 −0.990333 0.138713i \(-0.955703\pi\)
−0.990333 + 0.138713i \(0.955703\pi\)
\(350\) 3.10992e6 1.35700
\(351\) 249318. 0.108015
\(352\) 1.73107e6 0.744661
\(353\) −1.09778e6 −0.468899 −0.234450 0.972128i \(-0.575329\pi\)
−0.234450 + 0.972128i \(0.575329\pi\)
\(354\) 473256. 0.200719
\(355\) −2.55898e6 −1.07769
\(356\) 2.32103e6 0.970635
\(357\) 12960.0 0.00538189
\(358\) 878216. 0.362154
\(359\) −1.95223e6 −0.799456 −0.399728 0.916634i \(-0.630895\pi\)
−0.399728 + 0.916634i \(0.630895\pi\)
\(360\) 952560. 0.387379
\(361\) 0 0
\(362\) −50812.0 −0.0203796
\(363\) 433395. 0.172630
\(364\) 2.29824e6 0.909163
\(365\) 4.80651e6 1.88842
\(366\) −524412. −0.204630
\(367\) 1.49163e6 0.578091 0.289046 0.957315i \(-0.406662\pi\)
0.289046 + 0.957315i \(0.406662\pi\)
\(368\) 1.86042e6 0.716128
\(369\) −890190. −0.340343
\(370\) 2.67932e6 1.01747
\(371\) 1.07280e6 0.404654
\(372\) −691488. −0.259076
\(373\) −1.48305e6 −0.551928 −0.275964 0.961168i \(-0.588997\pi\)
−0.275964 + 0.961168i \(0.588997\pi\)
\(374\) −4032.00 −0.00149053
\(375\) 2.95823e6 1.08631
\(376\) 2.05488e6 0.749578
\(377\) −2.01848e6 −0.731429
\(378\) −349920. −0.125962
\(379\) 2.79436e6 0.999272 0.499636 0.866235i \(-0.333467\pi\)
0.499636 + 0.866235i \(0.333467\pi\)
\(380\) 0 0
\(381\) 806472. 0.284627
\(382\) 1.28129e6 0.449250
\(383\) −2.06910e6 −0.720748 −0.360374 0.932808i \(-0.617351\pi\)
−0.360374 + 0.932808i \(0.617351\pi\)
\(384\) 1.67616e6 0.580079
\(385\) −7.90272e6 −2.71722
\(386\) 449692. 0.153620
\(387\) −404676. −0.137350
\(388\) 1.11580e6 0.376276
\(389\) 4.61696e6 1.54697 0.773485 0.633815i \(-0.218512\pi\)
0.773485 + 0.633815i \(0.218512\pi\)
\(390\) −603288. −0.200846
\(391\) −17016.0 −0.00562880
\(392\) −4.89516e6 −1.60898
\(393\) −2.30393e6 −0.752467
\(394\) 650876. 0.211231
\(395\) 7.74749e6 2.49844
\(396\) −762048. −0.244199
\(397\) 875870. 0.278910 0.139455 0.990228i \(-0.455465\pi\)
0.139455 + 0.990228i \(0.455465\pi\)
\(398\) −1.96715e6 −0.622487
\(399\) 0 0
\(400\) 4.25022e6 1.32820
\(401\) 3.36615e6 1.04538 0.522689 0.852524i \(-0.324929\pi\)
0.522689 + 0.852524i \(0.324929\pi\)
\(402\) −756936. −0.233611
\(403\) 938448. 0.287838
\(404\) −2.78718e6 −0.849593
\(405\) −642978. −0.194786
\(406\) 2.83296e6 0.852954
\(407\) −4.59312e6 −1.37443
\(408\) −6480.00 −0.00192719
\(409\) −6.58655e6 −1.94693 −0.973463 0.228844i \(-0.926505\pi\)
−0.973463 + 0.228844i \(0.926505\pi\)
\(410\) 2.15404e6 0.632840
\(411\) −452034. −0.131998
\(412\) 1.94230e6 0.563734
\(413\) −6.31008e6 −1.82037
\(414\) 459432. 0.131741
\(415\) −928256. −0.264574
\(416\) −1.76198e6 −0.499193
\(417\) 2.17897e6 0.613637
\(418\) 0 0
\(419\) −1.06775e6 −0.297122 −0.148561 0.988903i \(-0.547464\pi\)
−0.148561 + 0.988903i \(0.547464\pi\)
\(420\) −5.92704e6 −1.63951
\(421\) −3.60621e6 −0.991620 −0.495810 0.868431i \(-0.665129\pi\)
−0.495810 + 0.868431i \(0.665129\pi\)
\(422\) 1.73262e6 0.473610
\(423\) −1.38704e6 −0.376911
\(424\) −536400. −0.144902
\(425\) −38874.0 −0.0104397
\(426\) −470016. −0.125484
\(427\) 6.99216e6 1.85584
\(428\) −3.08571e6 −0.814228
\(429\) 1.03421e6 0.271309
\(430\) 979216. 0.255392
\(431\) −1.05310e6 −0.273071 −0.136535 0.990635i \(-0.543597\pi\)
−0.136535 + 0.990635i \(0.543597\pi\)
\(432\) −478224. −0.123288
\(433\) 3.45697e6 0.886087 0.443044 0.896500i \(-0.353899\pi\)
0.443044 + 0.896500i \(0.353899\pi\)
\(434\) −1.31712e6 −0.335661
\(435\) 5.20556e6 1.31900
\(436\) −6.09801e6 −1.53628
\(437\) 0 0
\(438\) 882828. 0.219883
\(439\) 5.88610e6 1.45769 0.728847 0.684676i \(-0.240056\pi\)
0.728847 + 0.684676i \(0.240056\pi\)
\(440\) 3.95136e6 0.973005
\(441\) 3.30423e6 0.809048
\(442\) 4104.00 0.000999198 0
\(443\) −4.80216e6 −1.16259 −0.581296 0.813692i \(-0.697454\pi\)
−0.581296 + 0.813692i \(0.697454\pi\)
\(444\) −3.44484e6 −0.829300
\(445\) 8.12361e6 1.94468
\(446\) 153856. 0.0366250
\(447\) 3.17255e6 0.751000
\(448\) −2.56512e6 −0.603827
\(449\) 3.17967e6 0.744330 0.372165 0.928167i \(-0.378616\pi\)
0.372165 + 0.928167i \(0.378616\pi\)
\(450\) 1.04960e6 0.244338
\(451\) −3.69264e6 −0.854861
\(452\) −2.36930e6 −0.545475
\(453\) −2.44908e6 −0.560735
\(454\) 1.93922e6 0.441559
\(455\) 8.04384e6 1.82152
\(456\) 0 0
\(457\) 483546. 0.108305 0.0541523 0.998533i \(-0.482754\pi\)
0.0541523 + 0.998533i \(0.482754\pi\)
\(458\) 1.68030e6 0.374303
\(459\) 4374.00 0.000969052 0
\(460\) 7.78198e6 1.71473
\(461\) 707982. 0.155156 0.0775782 0.996986i \(-0.475281\pi\)
0.0775782 + 0.996986i \(0.475281\pi\)
\(462\) −1.45152e6 −0.316387
\(463\) 8.24091e6 1.78658 0.893291 0.449479i \(-0.148390\pi\)
0.893291 + 0.449479i \(0.148390\pi\)
\(464\) 3.87171e6 0.834849
\(465\) −2.42021e6 −0.519063
\(466\) 1.15183e6 0.245710
\(467\) 2.13640e6 0.453305 0.226652 0.973976i \(-0.427222\pi\)
0.226652 + 0.973976i \(0.427222\pi\)
\(468\) 775656. 0.163702
\(469\) 1.00925e7 2.11868
\(470\) 3.35630e6 0.700836
\(471\) −1.12448e6 −0.233560
\(472\) 3.15504e6 0.651853
\(473\) −1.67866e6 −0.344992
\(474\) 1.42301e6 0.290912
\(475\) 0 0
\(476\) 40320.0 0.00815649
\(477\) 362070. 0.0728612
\(478\) −704376. −0.141005
\(479\) 1.20736e6 0.240436 0.120218 0.992748i \(-0.461641\pi\)
0.120218 + 0.992748i \(0.461641\pi\)
\(480\) 4.54406e6 0.900205
\(481\) 4.67514e6 0.921365
\(482\) −902580. −0.176957
\(483\) −6.12576e6 −1.19479
\(484\) 1.34834e6 0.261629
\(485\) 3.90530e6 0.753876
\(486\) −118098. −0.0226805
\(487\) 8.77970e6 1.67748 0.838739 0.544533i \(-0.183293\pi\)
0.838739 + 0.544533i \(0.183293\pi\)
\(488\) −3.49608e6 −0.664556
\(489\) 260100. 0.0491890
\(490\) −7.99543e6 −1.50436
\(491\) 4.23400e6 0.792587 0.396294 0.918124i \(-0.370296\pi\)
0.396294 + 0.918124i \(0.370296\pi\)
\(492\) −2.76948e6 −0.515805
\(493\) −35412.0 −0.00656195
\(494\) 0 0
\(495\) −2.66717e6 −0.489257
\(496\) −1.80006e6 −0.328537
\(497\) 6.26688e6 1.13805
\(498\) −170496. −0.0308064
\(499\) −1.73450e6 −0.311834 −0.155917 0.987770i \(-0.549833\pi\)
−0.155917 + 0.987770i \(0.549833\pi\)
\(500\) 9.20338e6 1.64635
\(501\) 3.33180e6 0.593041
\(502\) 291504. 0.0516280
\(503\) −4.72352e6 −0.832427 −0.416214 0.909267i \(-0.636643\pi\)
−0.416214 + 0.909267i \(0.636643\pi\)
\(504\) −2.33280e6 −0.409073
\(505\) −9.75512e6 −1.70217
\(506\) 1.90579e6 0.330902
\(507\) 2.28896e6 0.395475
\(508\) 2.50902e6 0.431366
\(509\) 2.49741e6 0.427264 0.213632 0.976914i \(-0.431471\pi\)
0.213632 + 0.976914i \(0.431471\pi\)
\(510\) −10584.0 −0.00180187
\(511\) −1.17710e7 −1.99417
\(512\) 5.89875e6 0.994455
\(513\) 0 0
\(514\) 3.75636e6 0.627132
\(515\) 6.79806e6 1.12945
\(516\) −1.25899e6 −0.208161
\(517\) −5.75366e6 −0.946713
\(518\) −6.56160e6 −1.07445
\(519\) −2.49673e6 −0.406867
\(520\) −4.02192e6 −0.652266
\(521\) −2.86413e6 −0.462272 −0.231136 0.972921i \(-0.574244\pi\)
−0.231136 + 0.972921i \(0.574244\pi\)
\(522\) 956124. 0.153581
\(523\) −2.46228e6 −0.393625 −0.196812 0.980441i \(-0.563059\pi\)
−0.196812 + 0.980441i \(0.563059\pi\)
\(524\) −7.16778e6 −1.14040
\(525\) −1.39946e7 −2.21597
\(526\) 1.79014e6 0.282112
\(527\) 16464.0 0.00258231
\(528\) −1.98374e6 −0.309671
\(529\) 1.60655e6 0.249606
\(530\) −876120. −0.135480
\(531\) −2.12965e6 −0.327772
\(532\) 0 0
\(533\) 3.75858e6 0.573067
\(534\) 1.49209e6 0.226434
\(535\) −1.08000e7 −1.63132
\(536\) −5.04624e6 −0.758675
\(537\) −3.95197e6 −0.591396
\(538\) −2.54581e6 −0.379202
\(539\) 1.37064e7 2.03214
\(540\) −2.00038e6 −0.295207
\(541\) 6.88192e6 1.01092 0.505459 0.862850i \(-0.331323\pi\)
0.505459 + 0.862850i \(0.331323\pi\)
\(542\) 613344. 0.0896821
\(543\) 228654. 0.0332797
\(544\) −30912.0 −0.00447847
\(545\) −2.13430e7 −3.07797
\(546\) 1.47744e6 0.212094
\(547\) 4.99680e6 0.714041 0.357021 0.934097i \(-0.383793\pi\)
0.357021 + 0.934097i \(0.383793\pi\)
\(548\) −1.40633e6 −0.200048
\(549\) 2.35985e6 0.334160
\(550\) 4.35389e6 0.613720
\(551\) 0 0
\(552\) 3.06288e6 0.427841
\(553\) −1.89734e7 −2.63836
\(554\) −384052. −0.0531638
\(555\) −1.20569e7 −1.66152
\(556\) 6.77902e6 0.929994
\(557\) −8.42887e6 −1.15115 −0.575574 0.817750i \(-0.695221\pi\)
−0.575574 + 0.817750i \(0.695221\pi\)
\(558\) −444528. −0.0604385
\(559\) 1.70863e6 0.231270
\(560\) −1.54291e7 −2.07908
\(561\) 18144.0 0.00243403
\(562\) −2.00110e6 −0.267256
\(563\) 1.01781e7 1.35330 0.676652 0.736303i \(-0.263430\pi\)
0.676652 + 0.736303i \(0.263430\pi\)
\(564\) −4.31525e6 −0.571226
\(565\) −8.29256e6 −1.09287
\(566\) −2.53694e6 −0.332865
\(567\) 1.57464e6 0.205695
\(568\) −3.13344e6 −0.407522
\(569\) −1.13792e7 −1.47344 −0.736719 0.676199i \(-0.763626\pi\)
−0.736719 + 0.676199i \(0.763626\pi\)
\(570\) 0 0
\(571\) −7.57426e6 −0.972187 −0.486094 0.873907i \(-0.661579\pi\)
−0.486094 + 0.873907i \(0.661579\pi\)
\(572\) 3.21754e6 0.411181
\(573\) −5.76580e6 −0.733623
\(574\) −5.27520e6 −0.668281
\(575\) 1.83744e7 2.31763
\(576\) −865728. −0.108724
\(577\) −6.06488e6 −0.758372 −0.379186 0.925320i \(-0.623796\pi\)
−0.379186 + 0.925320i \(0.623796\pi\)
\(578\) −2.83964e6 −0.353544
\(579\) −2.02361e6 −0.250860
\(580\) 1.61951e7 1.99900
\(581\) 2.27328e6 0.279391
\(582\) 717300. 0.0877796
\(583\) 1.50192e6 0.183010
\(584\) 5.88552e6 0.714090
\(585\) 2.71480e6 0.327980
\(586\) 3.05120e6 0.367051
\(587\) 1.62011e7 1.94066 0.970330 0.241783i \(-0.0777323\pi\)
0.970330 + 0.241783i \(0.0777323\pi\)
\(588\) 1.02798e7 1.22615
\(589\) 0 0
\(590\) 5.15323e6 0.609466
\(591\) −2.92894e6 −0.344939
\(592\) −8.96752e6 −1.05164
\(593\) 9.92291e6 1.15878 0.579392 0.815049i \(-0.303290\pi\)
0.579392 + 0.815049i \(0.303290\pi\)
\(594\) −489888. −0.0569680
\(595\) 141120. 0.0163417
\(596\) 9.87017e6 1.13817
\(597\) 8.85218e6 1.01652
\(598\) −1.93982e6 −0.221824
\(599\) 9.55020e6 1.08754 0.543770 0.839234i \(-0.316996\pi\)
0.543770 + 0.839234i \(0.316996\pi\)
\(600\) 6.99732e6 0.793512
\(601\) −1.57009e6 −0.177312 −0.0886560 0.996062i \(-0.528257\pi\)
−0.0886560 + 0.996062i \(0.528257\pi\)
\(602\) −2.39808e6 −0.269695
\(603\) 3.40621e6 0.381486
\(604\) −7.61936e6 −0.849818
\(605\) 4.71919e6 0.524178
\(606\) −1.79176e6 −0.198197
\(607\) −8.83870e6 −0.973680 −0.486840 0.873491i \(-0.661851\pi\)
−0.486840 + 0.873491i \(0.661851\pi\)
\(608\) 0 0
\(609\) −1.27483e7 −1.39287
\(610\) −5.71026e6 −0.621343
\(611\) 5.85641e6 0.634641
\(612\) 13608.0 0.00146864
\(613\) −4.94068e6 −0.531050 −0.265525 0.964104i \(-0.585545\pi\)
−0.265525 + 0.964104i \(0.585545\pi\)
\(614\) 2.39330e6 0.256199
\(615\) −9.69318e6 −1.03342
\(616\) −9.67680e6 −1.02750
\(617\) −5.44608e6 −0.575932 −0.287966 0.957641i \(-0.592979\pi\)
−0.287966 + 0.957641i \(0.592979\pi\)
\(618\) 1.24862e6 0.131511
\(619\) 9.25648e6 0.971000 0.485500 0.874237i \(-0.338637\pi\)
0.485500 + 0.874237i \(0.338637\pi\)
\(620\) −7.52954e6 −0.786663
\(621\) −2.06744e6 −0.215132
\(622\) 4.74289e6 0.491549
\(623\) −1.98946e7 −2.05359
\(624\) 2.01917e6 0.207592
\(625\) 1.19649e7 1.22521
\(626\) 707476. 0.0721566
\(627\) 0 0
\(628\) −3.49838e6 −0.353971
\(629\) 82020.0 0.00826596
\(630\) −3.81024e6 −0.382473
\(631\) −1.84220e7 −1.84189 −0.920944 0.389694i \(-0.872581\pi\)
−0.920944 + 0.389694i \(0.872581\pi\)
\(632\) 9.48672e6 0.944764
\(633\) −7.79677e6 −0.773402
\(634\) −5.40853e6 −0.534387
\(635\) 8.78158e6 0.864248
\(636\) 1.12644e6 0.110424
\(637\) −1.39512e7 −1.36227
\(638\) 3.96614e6 0.385760
\(639\) 2.11507e6 0.204915
\(640\) 1.82515e7 1.76136
\(641\) 1.83640e7 1.76532 0.882660 0.470013i \(-0.155751\pi\)
0.882660 + 0.470013i \(0.155751\pi\)
\(642\) −1.98367e6 −0.189947
\(643\) 5.30824e6 0.506318 0.253159 0.967425i \(-0.418530\pi\)
0.253159 + 0.967425i \(0.418530\pi\)
\(644\) −1.90579e7 −1.81076
\(645\) −4.40647e6 −0.417053
\(646\) 0 0
\(647\) −3.32276e6 −0.312060 −0.156030 0.987752i \(-0.549870\pi\)
−0.156030 + 0.987752i \(0.549870\pi\)
\(648\) −787320. −0.0736570
\(649\) −8.83411e6 −0.823287
\(650\) −4.43164e6 −0.411416
\(651\) 5.92704e6 0.548132
\(652\) 809200. 0.0745482
\(653\) −5.81096e6 −0.533292 −0.266646 0.963795i \(-0.585915\pi\)
−0.266646 + 0.963795i \(0.585915\pi\)
\(654\) −3.92015e6 −0.358392
\(655\) −2.50872e7 −2.28481
\(656\) −7.20944e6 −0.654097
\(657\) −3.97273e6 −0.359067
\(658\) −8.21952e6 −0.740085
\(659\) 1.60066e7 1.43577 0.717886 0.696160i \(-0.245110\pi\)
0.717886 + 0.696160i \(0.245110\pi\)
\(660\) −8.29786e6 −0.741491
\(661\) 1.27998e7 1.13946 0.569731 0.821831i \(-0.307047\pi\)
0.569731 + 0.821831i \(0.307047\pi\)
\(662\) 654888. 0.0580794
\(663\) −18468.0 −0.00163168
\(664\) −1.13664e6 −0.100047
\(665\) 0 0
\(666\) −2.21454e6 −0.193463
\(667\) 1.67381e7 1.45677
\(668\) 1.03656e7 0.898780
\(669\) −692352. −0.0598083
\(670\) −8.24219e6 −0.709342
\(671\) 9.78902e6 0.839331
\(672\) −1.11283e7 −0.950619
\(673\) −9.83823e6 −0.837296 −0.418648 0.908149i \(-0.637496\pi\)
−0.418648 + 0.908149i \(0.637496\pi\)
\(674\) −735892. −0.0623971
\(675\) −4.72319e6 −0.399003
\(676\) 7.12121e6 0.599359
\(677\) 8.54417e6 0.716470 0.358235 0.933631i \(-0.383379\pi\)
0.358235 + 0.933631i \(0.383379\pi\)
\(678\) −1.52312e6 −0.127251
\(679\) −9.56400e6 −0.796095
\(680\) −70560.0 −0.00585176
\(681\) −8.72651e6 −0.721062
\(682\) −1.84397e6 −0.151807
\(683\) 1.00816e7 0.826947 0.413473 0.910516i \(-0.364315\pi\)
0.413473 + 0.910516i \(0.364315\pi\)
\(684\) 0 0
\(685\) −4.92215e6 −0.400800
\(686\) 1.15133e7 0.934090
\(687\) −7.56135e6 −0.611234
\(688\) −3.27738e6 −0.263970
\(689\) −1.52874e6 −0.122683
\(690\) 5.00270e6 0.400020
\(691\) −7.71320e6 −0.614525 −0.307262 0.951625i \(-0.599413\pi\)
−0.307262 + 0.951625i \(0.599413\pi\)
\(692\) −7.76759e6 −0.616625
\(693\) 6.53184e6 0.516657
\(694\) 1.13232e6 0.0892422
\(695\) 2.37266e7 1.86326
\(696\) 6.37416e6 0.498769
\(697\) 65940.0 0.00514123
\(698\) −9.01373e6 −0.700271
\(699\) −5.18323e6 −0.401243
\(700\) −4.35389e7 −3.35840
\(701\) 4.92440e6 0.378493 0.189247 0.981930i \(-0.439395\pi\)
0.189247 + 0.981930i \(0.439395\pi\)
\(702\) 498636. 0.0381892
\(703\) 0 0
\(704\) −3.59117e6 −0.273089
\(705\) −1.51034e7 −1.14446
\(706\) −2.19556e6 −0.165781
\(707\) 2.38901e7 1.79750
\(708\) −6.62558e6 −0.496754
\(709\) 5.35468e6 0.400053 0.200027 0.979790i \(-0.435897\pi\)
0.200027 + 0.979790i \(0.435897\pi\)
\(710\) −5.11795e6 −0.381022
\(711\) −6.40354e6 −0.475057
\(712\) 9.94728e6 0.735367
\(713\) −7.78198e6 −0.573280
\(714\) 25920.0 0.00190278
\(715\) 1.12614e7 0.823809
\(716\) −1.22950e7 −0.896286
\(717\) 3.16969e6 0.230260
\(718\) −3.90446e6 −0.282650
\(719\) 9.39507e6 0.677763 0.338881 0.940829i \(-0.389951\pi\)
0.338881 + 0.940829i \(0.389951\pi\)
\(720\) −5.20733e6 −0.374355
\(721\) −1.66483e7 −1.19270
\(722\) 0 0
\(723\) 4.06161e6 0.288970
\(724\) 711368. 0.0504368
\(725\) 3.82391e7 2.70186
\(726\) 866790. 0.0610341
\(727\) 6.83055e6 0.479314 0.239657 0.970858i \(-0.422965\pi\)
0.239657 + 0.970858i \(0.422965\pi\)
\(728\) 9.84960e6 0.688795
\(729\) 531441. 0.0370370
\(730\) 9.61302e6 0.667656
\(731\) 29976.0 0.00207482
\(732\) 7.34177e6 0.506434
\(733\) 1.29536e7 0.890491 0.445245 0.895409i \(-0.353116\pi\)
0.445245 + 0.895409i \(0.353116\pi\)
\(734\) 2.98326e6 0.204386
\(735\) 3.59794e7 2.45661
\(736\) 1.46111e7 0.994232
\(737\) 1.41295e7 0.958202
\(738\) −1.78038e6 −0.120329
\(739\) 1.15292e7 0.776582 0.388291 0.921537i \(-0.373066\pi\)
0.388291 + 0.921537i \(0.373066\pi\)
\(740\) −3.75105e7 −2.51810
\(741\) 0 0
\(742\) 2.14560e6 0.143067
\(743\) −3.20131e6 −0.212743 −0.106372 0.994326i \(-0.533923\pi\)
−0.106372 + 0.994326i \(0.533923\pi\)
\(744\) −2.96352e6 −0.196280
\(745\) 3.45456e7 2.28035
\(746\) −2.96609e6 −0.195136
\(747\) 767232. 0.0503066
\(748\) 56448.0 0.00368888
\(749\) 2.64490e7 1.72268
\(750\) 5.91646e6 0.384068
\(751\) −5.52822e6 −0.357673 −0.178836 0.983879i \(-0.557233\pi\)
−0.178836 + 0.983879i \(0.557233\pi\)
\(752\) −1.12333e7 −0.724377
\(753\) −1.31177e6 −0.0843082
\(754\) −4.03697e6 −0.258599
\(755\) −2.66678e7 −1.70263
\(756\) 4.89888e6 0.311740
\(757\) 1.62708e7 1.03198 0.515989 0.856595i \(-0.327425\pi\)
0.515989 + 0.856595i \(0.327425\pi\)
\(758\) 5.58871e6 0.353296
\(759\) −8.57606e6 −0.540360
\(760\) 0 0
\(761\) −8.40043e6 −0.525823 −0.262912 0.964820i \(-0.584683\pi\)
−0.262912 + 0.964820i \(0.584683\pi\)
\(762\) 1.61294e6 0.100631
\(763\) 5.22686e7 3.25035
\(764\) −1.79380e7 −1.11184
\(765\) 47628.0 0.00294245
\(766\) −4.13819e6 −0.254823
\(767\) 8.99186e6 0.551901
\(768\) 274176. 0.0167736
\(769\) 7.66543e6 0.467434 0.233717 0.972305i \(-0.424911\pi\)
0.233717 + 0.972305i \(0.424911\pi\)
\(770\) −1.58054e7 −0.960682
\(771\) −1.69036e7 −1.02410
\(772\) −6.29569e6 −0.380189
\(773\) 2.59829e7 1.56401 0.782004 0.623273i \(-0.214198\pi\)
0.782004 + 0.623273i \(0.214198\pi\)
\(774\) −809352. −0.0485607
\(775\) −1.77784e7 −1.06326
\(776\) 4.78200e6 0.285072
\(777\) 2.95272e7 1.75457
\(778\) 9.23392e6 0.546937
\(779\) 0 0
\(780\) 8.44603e6 0.497068
\(781\) 8.77363e6 0.514697
\(782\) −34032.0 −0.00199008
\(783\) −4.30256e6 −0.250797
\(784\) 2.67602e7 1.55489
\(785\) −1.22443e7 −0.709186
\(786\) −4.60786e6 −0.266037
\(787\) −2.59845e7 −1.49547 −0.747734 0.663999i \(-0.768858\pi\)
−0.747734 + 0.663999i \(0.768858\pi\)
\(788\) −9.11226e6 −0.522770
\(789\) −8.05561e6 −0.460687
\(790\) 1.54950e7 0.883330
\(791\) 2.03083e7 1.15407
\(792\) −3.26592e6 −0.185009
\(793\) −9.96383e6 −0.562656
\(794\) 1.75174e6 0.0986094
\(795\) 3.94254e6 0.221237
\(796\) 2.75401e7 1.54058
\(797\) −2.12011e7 −1.18226 −0.591129 0.806577i \(-0.701317\pi\)
−0.591129 + 0.806577i \(0.701317\pi\)
\(798\) 0 0
\(799\) 102744. 0.00569363
\(800\) 3.33798e7 1.84399
\(801\) −6.71441e6 −0.369766
\(802\) 6.73231e6 0.369597
\(803\) −1.64795e7 −0.901891
\(804\) 1.05971e7 0.578159
\(805\) −6.67027e7 −3.62789
\(806\) 1.87690e6 0.101766
\(807\) 1.14562e7 0.619234
\(808\) −1.19450e7 −0.643664
\(809\) −1.06374e7 −0.571429 −0.285714 0.958315i \(-0.592231\pi\)
−0.285714 + 0.958315i \(0.592231\pi\)
\(810\) −1.28596e6 −0.0688674
\(811\) 1.19205e7 0.636416 0.318208 0.948021i \(-0.396919\pi\)
0.318208 + 0.948021i \(0.396919\pi\)
\(812\) −3.96614e7 −2.11095
\(813\) −2.76005e6 −0.146450
\(814\) −9.18624e6 −0.485933
\(815\) 2.83220e6 0.149358
\(816\) 35424.0 0.00186240
\(817\) 0 0
\(818\) −1.31731e7 −0.688342
\(819\) −6.64848e6 −0.346348
\(820\) −3.01566e7 −1.56620
\(821\) 8.14431e6 0.421693 0.210847 0.977519i \(-0.432378\pi\)
0.210847 + 0.977519i \(0.432378\pi\)
\(822\) −904068. −0.0466683
\(823\) −9.57675e6 −0.492854 −0.246427 0.969161i \(-0.579257\pi\)
−0.246427 + 0.969161i \(0.579257\pi\)
\(824\) 8.32416e6 0.427093
\(825\) −1.95925e7 −1.00220
\(826\) −1.26202e7 −0.643598
\(827\) 2.95107e6 0.150043 0.0750214 0.997182i \(-0.476097\pi\)
0.0750214 + 0.997182i \(0.476097\pi\)
\(828\) −6.43205e6 −0.326042
\(829\) −8.79546e6 −0.444501 −0.222250 0.974990i \(-0.571340\pi\)
−0.222250 + 0.974990i \(0.571340\pi\)
\(830\) −1.85651e6 −0.0935411
\(831\) 1.72823e6 0.0868160
\(832\) 3.65530e6 0.183069
\(833\) −244758. −0.0122215
\(834\) 4.35794e6 0.216953
\(835\) 3.62796e7 1.80072
\(836\) 0 0
\(837\) 2.00038e6 0.0986956
\(838\) −2.13550e6 −0.105049
\(839\) 1.46842e6 0.0720185 0.0360093 0.999351i \(-0.488535\pi\)
0.0360093 + 0.999351i \(0.488535\pi\)
\(840\) −2.54016e7 −1.24212
\(841\) 1.43225e7 0.698277
\(842\) −7.21241e6 −0.350591
\(843\) 9.00495e6 0.436428
\(844\) −2.42566e7 −1.17213
\(845\) 2.49242e7 1.20083
\(846\) −2.77409e6 −0.133258
\(847\) −1.15572e7 −0.553534
\(848\) 2.93232e6 0.140030
\(849\) 1.14162e7 0.543567
\(850\) −77748.0 −0.00369098
\(851\) −3.87681e7 −1.83506
\(852\) 6.58022e6 0.310557
\(853\) 2.37789e7 1.11897 0.559486 0.828840i \(-0.310999\pi\)
0.559486 + 0.828840i \(0.310999\pi\)
\(854\) 1.39843e7 0.656140
\(855\) 0 0
\(856\) −1.32245e7 −0.616871
\(857\) 4.09013e7 1.90233 0.951163 0.308688i \(-0.0998900\pi\)
0.951163 + 0.308688i \(0.0998900\pi\)
\(858\) 2.06842e6 0.0959223
\(859\) −7.99731e6 −0.369795 −0.184897 0.982758i \(-0.559195\pi\)
−0.184897 + 0.982758i \(0.559195\pi\)
\(860\) −1.37090e7 −0.632063
\(861\) 2.37384e7 1.09130
\(862\) −2.10619e6 −0.0965450
\(863\) 4.40634e6 0.201396 0.100698 0.994917i \(-0.467892\pi\)
0.100698 + 0.994917i \(0.467892\pi\)
\(864\) −3.75581e6 −0.171167
\(865\) −2.71866e7 −1.23542
\(866\) 6.91395e6 0.313279
\(867\) 1.27784e7 0.577336
\(868\) 1.84397e7 0.830719
\(869\) −2.65628e7 −1.19323
\(870\) 1.04111e7 0.466337
\(871\) −1.43818e7 −0.642344
\(872\) −2.61343e7 −1.16391
\(873\) −3.22785e6 −0.143343
\(874\) 0 0
\(875\) −7.88861e7 −3.48321
\(876\) −1.23596e7 −0.544182
\(877\) 2.55057e7 1.11980 0.559898 0.828561i \(-0.310840\pi\)
0.559898 + 0.828561i \(0.310840\pi\)
\(878\) 1.17722e7 0.515373
\(879\) −1.37304e7 −0.599391
\(880\) −2.16008e7 −0.940292
\(881\) −3.50822e7 −1.52281 −0.761407 0.648274i \(-0.775491\pi\)
−0.761407 + 0.648274i \(0.775491\pi\)
\(882\) 6.60847e6 0.286042
\(883\) −2.47814e7 −1.06961 −0.534803 0.844977i \(-0.679614\pi\)
−0.534803 + 0.844977i \(0.679614\pi\)
\(884\) −57456.0 −0.00247289
\(885\) −2.31895e7 −0.995254
\(886\) −9.60432e6 −0.411038
\(887\) 6.85463e6 0.292533 0.146267 0.989245i \(-0.453274\pi\)
0.146267 + 0.989245i \(0.453274\pi\)
\(888\) −1.47636e7 −0.628290
\(889\) −2.15059e7 −0.912649
\(890\) 1.62472e7 0.687550
\(891\) 2.20450e6 0.0930283
\(892\) −2.15398e6 −0.0906422
\(893\) 0 0
\(894\) 6.34511e6 0.265519
\(895\) −4.30326e7 −1.79573
\(896\) −4.46976e7 −1.86001
\(897\) 8.72921e6 0.362238
\(898\) 6.35933e6 0.263160
\(899\) −1.61951e7 −0.668319
\(900\) −1.46944e7 −0.604707
\(901\) −26820.0 −0.00110064
\(902\) −7.38528e6 −0.302239
\(903\) 1.07914e7 0.440410
\(904\) −1.01542e7 −0.413260
\(905\) 2.48979e6 0.101051
\(906\) −4.89816e6 −0.198250
\(907\) 3.64392e7 1.47079 0.735395 0.677639i \(-0.236997\pi\)
0.735395 + 0.677639i \(0.236997\pi\)
\(908\) −2.71491e7 −1.09280
\(909\) 8.06290e6 0.323655
\(910\) 1.60877e7 0.644006
\(911\) 2.83123e7 1.13026 0.565132 0.825001i \(-0.308825\pi\)
0.565132 + 0.825001i \(0.308825\pi\)
\(912\) 0 0
\(913\) 3.18259e6 0.126358
\(914\) 967092. 0.0382915
\(915\) 2.56962e7 1.01465
\(916\) −2.35242e7 −0.926352
\(917\) 6.14381e7 2.41276
\(918\) 8748.00 0.000342612 0
\(919\) −3.75587e6 −0.146697 −0.0733486 0.997306i \(-0.523369\pi\)
−0.0733486 + 0.997306i \(0.523369\pi\)
\(920\) 3.33514e7 1.29910
\(921\) −1.07699e7 −0.418371
\(922\) 1.41596e6 0.0548561
\(923\) −8.93030e6 −0.345034
\(924\) 2.03213e7 0.783017
\(925\) −8.85679e7 −3.40347
\(926\) 1.64818e7 0.631652
\(927\) −5.61881e6 −0.214756
\(928\) 3.04071e7 1.15906
\(929\) −5.55366e6 −0.211125 −0.105563 0.994413i \(-0.533664\pi\)
−0.105563 + 0.994413i \(0.533664\pi\)
\(930\) −4.84042e6 −0.183517
\(931\) 0 0
\(932\) −1.61256e7 −0.608101
\(933\) −2.13430e7 −0.802696
\(934\) 4.27280e6 0.160267
\(935\) 197568. 0.00739073
\(936\) 3.32424e6 0.124023
\(937\) 2.46166e7 0.915965 0.457982 0.888961i \(-0.348572\pi\)
0.457982 + 0.888961i \(0.348572\pi\)
\(938\) 2.01850e7 0.749067
\(939\) −3.18364e6 −0.117831
\(940\) −4.69883e7 −1.73448
\(941\) 3.89956e7 1.43563 0.717813 0.696236i \(-0.245143\pi\)
0.717813 + 0.696236i \(0.245143\pi\)
\(942\) −2.24896e6 −0.0825760
\(943\) −3.11676e7 −1.14137
\(944\) −1.72476e7 −0.629938
\(945\) 1.71461e7 0.624576
\(946\) −3.35731e6 −0.121973
\(947\) 2.16559e7 0.784696 0.392348 0.919817i \(-0.371663\pi\)
0.392348 + 0.919817i \(0.371663\pi\)
\(948\) −1.99221e7 −0.719970
\(949\) 1.67737e7 0.604594
\(950\) 0 0
\(951\) 2.43384e7 0.872651
\(952\) 172800. 0.00617947
\(953\) 1.94047e7 0.692109 0.346054 0.938214i \(-0.387521\pi\)
0.346054 + 0.938214i \(0.387521\pi\)
\(954\) 724140. 0.0257603
\(955\) −6.27831e7 −2.22759
\(956\) 9.86126e6 0.348970
\(957\) −1.78476e7 −0.629943
\(958\) 2.41473e6 0.0850070
\(959\) 1.20542e7 0.423246
\(960\) −9.42682e6 −0.330131
\(961\) −2.10996e7 −0.736998
\(962\) 9.35028e6 0.325752
\(963\) 8.92652e6 0.310182
\(964\) 1.26361e7 0.437947
\(965\) −2.20349e7 −0.761716
\(966\) −1.22515e7 −0.422423
\(967\) 7.26789e6 0.249944 0.124972 0.992160i \(-0.460116\pi\)
0.124972 + 0.992160i \(0.460116\pi\)
\(968\) 5.77860e6 0.198214
\(969\) 0 0
\(970\) 7.81060e6 0.266536
\(971\) 2.43391e7 0.828431 0.414216 0.910179i \(-0.364056\pi\)
0.414216 + 0.910179i \(0.364056\pi\)
\(972\) 1.65337e6 0.0561313
\(973\) −5.81059e7 −1.96761
\(974\) 1.75594e7 0.593078
\(975\) 1.99424e7 0.671839
\(976\) 1.91119e7 0.642213
\(977\) 3.09415e7 1.03706 0.518531 0.855059i \(-0.326479\pi\)
0.518531 + 0.855059i \(0.326479\pi\)
\(978\) 520200. 0.0173909
\(979\) −2.78524e7 −0.928765
\(980\) 1.11936e8 3.72310
\(981\) 1.76407e7 0.585251
\(982\) 8.46800e6 0.280222
\(983\) −3.53169e7 −1.16573 −0.582865 0.812569i \(-0.698069\pi\)
−0.582865 + 0.812569i \(0.698069\pi\)
\(984\) −1.18692e7 −0.390781
\(985\) −3.18929e7 −1.04738
\(986\) −70824.0 −0.00232000
\(987\) 3.69878e7 1.20855
\(988\) 0 0
\(989\) −1.41687e7 −0.460615
\(990\) −5.33434e6 −0.172979
\(991\) −4.96000e7 −1.60434 −0.802172 0.597092i \(-0.796323\pi\)
−0.802172 + 0.597092i \(0.796323\pi\)
\(992\) −1.41371e7 −0.456122
\(993\) −2.94700e6 −0.0948432
\(994\) 1.25338e7 0.402361
\(995\) 9.63904e7 3.08657
\(996\) 2.38694e6 0.0762419
\(997\) −5.33551e7 −1.69996 −0.849978 0.526818i \(-0.823385\pi\)
−0.849978 + 0.526818i \(0.823385\pi\)
\(998\) −3.46900e6 −0.110250
\(999\) 9.96543e6 0.315924
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.6.a.b.1.1 1
19.18 odd 2 57.6.a.a.1.1 1
57.56 even 2 171.6.a.c.1.1 1
76.75 even 2 912.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.a.1.1 1 19.18 odd 2
171.6.a.c.1.1 1 57.56 even 2
912.6.a.a.1.1 1 76.75 even 2
1083.6.a.b.1.1 1 1.1 even 1 trivial