Properties

Label 1083.6.a.b
Level $1083$
Weight $6$
Character orbit 1083.a
Self dual yes
Analytic conductor $173.696$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,6,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(173.695676857\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 9 q^{3} - 28 q^{4} - 98 q^{5} - 18 q^{6} + 240 q^{7} - 120 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} - 9 q^{3} - 28 q^{4} - 98 q^{5} - 18 q^{6} + 240 q^{7} - 120 q^{8} + 81 q^{9} - 196 q^{10} + 336 q^{11} + 252 q^{12} - 342 q^{13} + 480 q^{14} + 882 q^{15} + 656 q^{16} - 6 q^{17} + 162 q^{18} + 2744 q^{20} - 2160 q^{21} + 672 q^{22} + 2836 q^{23} + 1080 q^{24} + 6479 q^{25} - 684 q^{26} - 729 q^{27} - 6720 q^{28} + 5902 q^{29} + 1764 q^{30} - 2744 q^{31} + 5152 q^{32} - 3024 q^{33} - 12 q^{34} - 23520 q^{35} - 2268 q^{36} - 13670 q^{37} + 3078 q^{39} + 11760 q^{40} - 10990 q^{41} - 4320 q^{42} - 4996 q^{43} - 9408 q^{44} - 7938 q^{45} + 5672 q^{46} - 17124 q^{47} - 5904 q^{48} + 40793 q^{49} + 12958 q^{50} + 54 q^{51} + 9576 q^{52} + 4470 q^{53} - 1458 q^{54} - 32928 q^{55} - 28800 q^{56} + 11804 q^{58} - 26292 q^{59} - 24696 q^{60} + 29134 q^{61} - 5488 q^{62} + 19440 q^{63} - 10688 q^{64} + 33516 q^{65} - 6048 q^{66} + 42052 q^{67} + 168 q^{68} - 25524 q^{69} - 47040 q^{70} + 26112 q^{71} - 9720 q^{72} - 49046 q^{73} - 27340 q^{74} - 58311 q^{75} + 80640 q^{77} + 6156 q^{78} - 79056 q^{79} - 64288 q^{80} + 6561 q^{81} - 21980 q^{82} + 9472 q^{83} + 60480 q^{84} + 588 q^{85} - 9992 q^{86} - 53118 q^{87} - 40320 q^{88} - 82894 q^{89} - 15876 q^{90} - 82080 q^{91} - 79408 q^{92} + 24696 q^{93} - 34248 q^{94} - 46368 q^{96} - 39850 q^{97} + 81586 q^{98} + 27216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −9.00000 −28.0000 −98.0000 −18.0000 240.000 −120.000 81.0000 −196.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1083.6.a.b 1
19.b odd 2 1 57.6.a.a 1
57.d even 2 1 171.6.a.c 1
76.d even 2 1 912.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.6.a.a 1 19.b odd 2 1
171.6.a.c 1 57.d even 2 1
912.6.a.a 1 76.d even 2 1
1083.6.a.b 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 2 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1083))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T + 98 \) Copy content Toggle raw display
$7$ \( T - 240 \) Copy content Toggle raw display
$11$ \( T - 336 \) Copy content Toggle raw display
$13$ \( T + 342 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 2836 \) Copy content Toggle raw display
$29$ \( T - 5902 \) Copy content Toggle raw display
$31$ \( T + 2744 \) Copy content Toggle raw display
$37$ \( T + 13670 \) Copy content Toggle raw display
$41$ \( T + 10990 \) Copy content Toggle raw display
$43$ \( T + 4996 \) Copy content Toggle raw display
$47$ \( T + 17124 \) Copy content Toggle raw display
$53$ \( T - 4470 \) Copy content Toggle raw display
$59$ \( T + 26292 \) Copy content Toggle raw display
$61$ \( T - 29134 \) Copy content Toggle raw display
$67$ \( T - 42052 \) Copy content Toggle raw display
$71$ \( T - 26112 \) Copy content Toggle raw display
$73$ \( T + 49046 \) Copy content Toggle raw display
$79$ \( T + 79056 \) Copy content Toggle raw display
$83$ \( T - 9472 \) Copy content Toggle raw display
$89$ \( T + 82894 \) Copy content Toggle raw display
$97$ \( T + 39850 \) Copy content Toggle raw display
show more
show less