Properties

Label 1083.6.a.a.1.1
Level $1083$
Weight $6$
Character 1083.1
Self dual yes
Analytic conductor $173.696$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,6,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(173.695676857\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.0000 q^{2} -9.00000 q^{3} +89.0000 q^{4} +6.00000 q^{5} +99.0000 q^{6} -176.000 q^{7} -627.000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-11.0000 q^{2} -9.00000 q^{3} +89.0000 q^{4} +6.00000 q^{5} +99.0000 q^{6} -176.000 q^{7} -627.000 q^{8} +81.0000 q^{9} -66.0000 q^{10} -496.000 q^{11} -801.000 q^{12} +178.000 q^{13} +1936.00 q^{14} -54.0000 q^{15} +4049.00 q^{16} +202.000 q^{17} -891.000 q^{18} +534.000 q^{20} +1584.00 q^{21} +5456.00 q^{22} +4396.00 q^{23} +5643.00 q^{24} -3089.00 q^{25} -1958.00 q^{26} -729.000 q^{27} -15664.0 q^{28} +5902.00 q^{29} +594.000 q^{30} -5760.00 q^{31} -24475.0 q^{32} +4464.00 q^{33} -2222.00 q^{34} -1056.00 q^{35} +7209.00 q^{36} +3906.00 q^{37} -1602.00 q^{39} -3762.00 q^{40} -15774.0 q^{41} -17424.0 q^{42} -7492.00 q^{43} -44144.0 q^{44} +486.000 q^{45} -48356.0 q^{46} -7452.00 q^{47} -36441.0 q^{48} +14169.0 q^{49} +33979.0 q^{50} -1818.00 q^{51} +15842.0 q^{52} +29014.0 q^{53} +8019.00 q^{54} -2976.00 q^{55} +110352. q^{56} -64922.0 q^{58} -13604.0 q^{59} -4806.00 q^{60} -12466.0 q^{61} +63360.0 q^{62} -14256.0 q^{63} +139657. q^{64} +1068.00 q^{65} -49104.0 q^{66} -43436.0 q^{67} +17978.0 q^{68} -39564.0 q^{69} +11616.0 q^{70} -28800.0 q^{71} -50787.0 q^{72} +80746.0 q^{73} -42966.0 q^{74} +27801.0 q^{75} +87296.0 q^{77} +17622.0 q^{78} -76456.0 q^{79} +24294.0 q^{80} +6561.00 q^{81} +173514. q^{82} -56880.0 q^{83} +140976. q^{84} +1212.00 q^{85} +82412.0 q^{86} -53118.0 q^{87} +310992. q^{88} +103266. q^{89} -5346.00 q^{90} -31328.0 q^{91} +391244. q^{92} +51840.0 q^{93} +81972.0 q^{94} +220275. q^{96} -82490.0 q^{97} -155859. q^{98} -40176.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −11.0000 −1.94454 −0.972272 0.233854i \(-0.924866\pi\)
−0.972272 + 0.233854i \(0.924866\pi\)
\(3\) −9.00000 −0.577350
\(4\) 89.0000 2.78125
\(5\) 6.00000 0.107331 0.0536656 0.998559i \(-0.482909\pi\)
0.0536656 + 0.998559i \(0.482909\pi\)
\(6\) 99.0000 1.12268
\(7\) −176.000 −1.35759 −0.678793 0.734329i \(-0.737497\pi\)
−0.678793 + 0.734329i \(0.737497\pi\)
\(8\) −627.000 −3.46372
\(9\) 81.0000 0.333333
\(10\) −66.0000 −0.208710
\(11\) −496.000 −1.23595 −0.617974 0.786199i \(-0.712046\pi\)
−0.617974 + 0.786199i \(0.712046\pi\)
\(12\) −801.000 −1.60576
\(13\) 178.000 0.292120 0.146060 0.989276i \(-0.453341\pi\)
0.146060 + 0.989276i \(0.453341\pi\)
\(14\) 1936.00 2.63989
\(15\) −54.0000 −0.0619677
\(16\) 4049.00 3.95410
\(17\) 202.000 0.169523 0.0847616 0.996401i \(-0.472987\pi\)
0.0847616 + 0.996401i \(0.472987\pi\)
\(18\) −891.000 −0.648181
\(19\) 0 0
\(20\) 534.000 0.298515
\(21\) 1584.00 0.783803
\(22\) 5456.00 2.40335
\(23\) 4396.00 1.73276 0.866379 0.499386i \(-0.166441\pi\)
0.866379 + 0.499386i \(0.166441\pi\)
\(24\) 5643.00 1.99978
\(25\) −3089.00 −0.988480
\(26\) −1958.00 −0.568041
\(27\) −729.000 −0.192450
\(28\) −15664.0 −3.77579
\(29\) 5902.00 1.30318 0.651590 0.758572i \(-0.274102\pi\)
0.651590 + 0.758572i \(0.274102\pi\)
\(30\) 594.000 0.120499
\(31\) −5760.00 −1.07651 −0.538255 0.842782i \(-0.680916\pi\)
−0.538255 + 0.842782i \(0.680916\pi\)
\(32\) −24475.0 −4.22520
\(33\) 4464.00 0.713575
\(34\) −2222.00 −0.329645
\(35\) −1056.00 −0.145711
\(36\) 7209.00 0.927083
\(37\) 3906.00 0.469059 0.234530 0.972109i \(-0.424645\pi\)
0.234530 + 0.972109i \(0.424645\pi\)
\(38\) 0 0
\(39\) −1602.00 −0.168656
\(40\) −3762.00 −0.371765
\(41\) −15774.0 −1.46549 −0.732744 0.680505i \(-0.761761\pi\)
−0.732744 + 0.680505i \(0.761761\pi\)
\(42\) −17424.0 −1.52414
\(43\) −7492.00 −0.617912 −0.308956 0.951076i \(-0.599980\pi\)
−0.308956 + 0.951076i \(0.599980\pi\)
\(44\) −44144.0 −3.43748
\(45\) 486.000 0.0357771
\(46\) −48356.0 −3.36942
\(47\) −7452.00 −0.492071 −0.246036 0.969261i \(-0.579128\pi\)
−0.246036 + 0.969261i \(0.579128\pi\)
\(48\) −36441.0 −2.28290
\(49\) 14169.0 0.843042
\(50\) 33979.0 1.92214
\(51\) −1818.00 −0.0978742
\(52\) 15842.0 0.812459
\(53\) 29014.0 1.41879 0.709395 0.704811i \(-0.248968\pi\)
0.709395 + 0.704811i \(0.248968\pi\)
\(54\) 8019.00 0.374228
\(55\) −2976.00 −0.132656
\(56\) 110352. 4.70230
\(57\) 0 0
\(58\) −64922.0 −2.53409
\(59\) −13604.0 −0.508788 −0.254394 0.967101i \(-0.581876\pi\)
−0.254394 + 0.967101i \(0.581876\pi\)
\(60\) −4806.00 −0.172348
\(61\) −12466.0 −0.428946 −0.214473 0.976730i \(-0.568803\pi\)
−0.214473 + 0.976730i \(0.568803\pi\)
\(62\) 63360.0 2.09332
\(63\) −14256.0 −0.452529
\(64\) 139657. 4.26199
\(65\) 1068.00 0.0313536
\(66\) −49104.0 −1.38758
\(67\) −43436.0 −1.18212 −0.591062 0.806626i \(-0.701291\pi\)
−0.591062 + 0.806626i \(0.701291\pi\)
\(68\) 17978.0 0.471486
\(69\) −39564.0 −1.00041
\(70\) 11616.0 0.283342
\(71\) −28800.0 −0.678026 −0.339013 0.940782i \(-0.610093\pi\)
−0.339013 + 0.940782i \(0.610093\pi\)
\(72\) −50787.0 −1.15457
\(73\) 80746.0 1.77343 0.886715 0.462317i \(-0.152982\pi\)
0.886715 + 0.462317i \(0.152982\pi\)
\(74\) −42966.0 −0.912107
\(75\) 27801.0 0.570699
\(76\) 0 0
\(77\) 87296.0 1.67791
\(78\) 17622.0 0.327958
\(79\) −76456.0 −1.37830 −0.689150 0.724619i \(-0.742016\pi\)
−0.689150 + 0.724619i \(0.742016\pi\)
\(80\) 24294.0 0.424399
\(81\) 6561.00 0.111111
\(82\) 173514. 2.84970
\(83\) −56880.0 −0.906284 −0.453142 0.891438i \(-0.649697\pi\)
−0.453142 + 0.891438i \(0.649697\pi\)
\(84\) 140976. 2.17995
\(85\) 1212.00 0.0181951
\(86\) 82412.0 1.20156
\(87\) −53118.0 −0.752391
\(88\) 310992. 4.28097
\(89\) 103266. 1.38192 0.690959 0.722894i \(-0.257188\pi\)
0.690959 + 0.722894i \(0.257188\pi\)
\(90\) −5346.00 −0.0695701
\(91\) −31328.0 −0.396579
\(92\) 391244. 4.81924
\(93\) 51840.0 0.621524
\(94\) 81972.0 0.956854
\(95\) 0 0
\(96\) 220275. 2.43942
\(97\) −82490.0 −0.890168 −0.445084 0.895489i \(-0.646826\pi\)
−0.445084 + 0.895489i \(0.646826\pi\)
\(98\) −155859. −1.63933
\(99\) −40176.0 −0.411982
\(100\) −274921. −2.74921
\(101\) 47230.0 0.460696 0.230348 0.973108i \(-0.426014\pi\)
0.230348 + 0.973108i \(0.426014\pi\)
\(102\) 19998.0 0.190321
\(103\) −157456. −1.46240 −0.731200 0.682163i \(-0.761039\pi\)
−0.731200 + 0.682163i \(0.761039\pi\)
\(104\) −111606. −1.01182
\(105\) 9504.00 0.0841266
\(106\) −319154. −2.75890
\(107\) 62988.0 0.531861 0.265931 0.963992i \(-0.414321\pi\)
0.265931 + 0.963992i \(0.414321\pi\)
\(108\) −64881.0 −0.535252
\(109\) −38158.0 −0.307623 −0.153812 0.988100i \(-0.549155\pi\)
−0.153812 + 0.988100i \(0.549155\pi\)
\(110\) 32736.0 0.257955
\(111\) −35154.0 −0.270812
\(112\) −712624. −5.36804
\(113\) −9190.00 −0.0677048 −0.0338524 0.999427i \(-0.510778\pi\)
−0.0338524 + 0.999427i \(0.510778\pi\)
\(114\) 0 0
\(115\) 26376.0 0.185979
\(116\) 525278. 3.62447
\(117\) 14418.0 0.0973734
\(118\) 149644. 0.989360
\(119\) −35552.0 −0.230142
\(120\) 33858.0 0.214639
\(121\) 84965.0 0.527566
\(122\) 137126. 0.834104
\(123\) 141966. 0.846100
\(124\) −512640. −2.99404
\(125\) −37284.0 −0.213426
\(126\) 156816. 0.879962
\(127\) 70448.0 0.387578 0.193789 0.981043i \(-0.437922\pi\)
0.193789 + 0.981043i \(0.437922\pi\)
\(128\) −753027. −4.06243
\(129\) 67428.0 0.356752
\(130\) −11748.0 −0.0609685
\(131\) 101864. 0.518612 0.259306 0.965795i \(-0.416506\pi\)
0.259306 + 0.965795i \(0.416506\pi\)
\(132\) 397296. 1.98463
\(133\) 0 0
\(134\) 477796. 2.29869
\(135\) −4374.00 −0.0206559
\(136\) −126654. −0.587181
\(137\) −432126. −1.96702 −0.983510 0.180851i \(-0.942115\pi\)
−0.983510 + 0.180851i \(0.942115\pi\)
\(138\) 435204. 1.94534
\(139\) −376684. −1.65364 −0.826818 0.562469i \(-0.809852\pi\)
−0.826818 + 0.562469i \(0.809852\pi\)
\(140\) −93984.0 −0.405260
\(141\) 67068.0 0.284098
\(142\) 316800. 1.31845
\(143\) −88288.0 −0.361045
\(144\) 327969. 1.31803
\(145\) 35412.0 0.139872
\(146\) −888206. −3.44851
\(147\) −127521. −0.486730
\(148\) 347634. 1.30457
\(149\) −283554. −1.04633 −0.523167 0.852230i \(-0.675249\pi\)
−0.523167 + 0.852230i \(0.675249\pi\)
\(150\) −305811. −1.10975
\(151\) 79200.0 0.282672 0.141336 0.989962i \(-0.454860\pi\)
0.141336 + 0.989962i \(0.454860\pi\)
\(152\) 0 0
\(153\) 16362.0 0.0565077
\(154\) −960256. −3.26276
\(155\) −34560.0 −0.115543
\(156\) −142578. −0.469074
\(157\) −129858. −0.420455 −0.210228 0.977652i \(-0.567420\pi\)
−0.210228 + 0.977652i \(0.567420\pi\)
\(158\) 841016. 2.68017
\(159\) −261126. −0.819138
\(160\) −146850. −0.453497
\(161\) −773696. −2.35237
\(162\) −72171.0 −0.216060
\(163\) 57420.0 0.169276 0.0846378 0.996412i \(-0.473027\pi\)
0.0846378 + 0.996412i \(0.473027\pi\)
\(164\) −1.40389e6 −4.07589
\(165\) 26784.0 0.0765889
\(166\) 625680. 1.76231
\(167\) 254008. 0.704784 0.352392 0.935852i \(-0.385368\pi\)
0.352392 + 0.935852i \(0.385368\pi\)
\(168\) −993168. −2.71487
\(169\) −339609. −0.914666
\(170\) −13332.0 −0.0353812
\(171\) 0 0
\(172\) −666788. −1.71857
\(173\) 177366. 0.450563 0.225281 0.974294i \(-0.427670\pi\)
0.225281 + 0.974294i \(0.427670\pi\)
\(174\) 584298. 1.46306
\(175\) 543664. 1.34195
\(176\) −2.00830e6 −4.88706
\(177\) 122436. 0.293749
\(178\) −1.13593e6 −2.68720
\(179\) 25188.0 0.0587572 0.0293786 0.999568i \(-0.490647\pi\)
0.0293786 + 0.999568i \(0.490647\pi\)
\(180\) 43254.0 0.0995050
\(181\) −729382. −1.65485 −0.827425 0.561576i \(-0.810195\pi\)
−0.827425 + 0.561576i \(0.810195\pi\)
\(182\) 344608. 0.771164
\(183\) 112194. 0.247652
\(184\) −2.75629e6 −6.00179
\(185\) 23436.0 0.0503447
\(186\) −570240. −1.20858
\(187\) −100192. −0.209522
\(188\) −663228. −1.36857
\(189\) 128304. 0.261268
\(190\) 0 0
\(191\) −285060. −0.565396 −0.282698 0.959209i \(-0.591229\pi\)
−0.282698 + 0.959209i \(0.591229\pi\)
\(192\) −1.25691e6 −2.46066
\(193\) 457598. 0.884282 0.442141 0.896946i \(-0.354219\pi\)
0.442141 + 0.896946i \(0.354219\pi\)
\(194\) 907390. 1.73097
\(195\) −9612.00 −0.0181020
\(196\) 1.26104e6 2.34471
\(197\) −291178. −0.534556 −0.267278 0.963620i \(-0.586124\pi\)
−0.267278 + 0.963620i \(0.586124\pi\)
\(198\) 441936. 0.801118
\(199\) 364680. 0.652799 0.326399 0.945232i \(-0.394165\pi\)
0.326399 + 0.945232i \(0.394165\pi\)
\(200\) 1.93680e6 3.42382
\(201\) 390924. 0.682499
\(202\) −519530. −0.895844
\(203\) −1.03875e6 −1.76918
\(204\) −161802. −0.272213
\(205\) −94644.0 −0.157293
\(206\) 1.73202e6 2.84370
\(207\) 356076. 0.577586
\(208\) 720722. 1.15507
\(209\) 0 0
\(210\) −104544. −0.163588
\(211\) 452388. 0.699528 0.349764 0.936838i \(-0.386262\pi\)
0.349764 + 0.936838i \(0.386262\pi\)
\(212\) 2.58225e6 3.94601
\(213\) 259200. 0.391459
\(214\) −692868. −1.03423
\(215\) −44952.0 −0.0663213
\(216\) 457083. 0.666593
\(217\) 1.01376e6 1.46146
\(218\) 419738. 0.598187
\(219\) −726714. −1.02389
\(220\) −264864. −0.368949
\(221\) 35956.0 0.0495211
\(222\) 386694. 0.526605
\(223\) −940296. −1.26620 −0.633100 0.774070i \(-0.718218\pi\)
−0.633100 + 0.774070i \(0.718218\pi\)
\(224\) 4.30760e6 5.73608
\(225\) −250209. −0.329493
\(226\) 101090. 0.131655
\(227\) −796308. −1.02569 −0.512845 0.858481i \(-0.671409\pi\)
−0.512845 + 0.858481i \(0.671409\pi\)
\(228\) 0 0
\(229\) 153334. 0.193219 0.0966095 0.995322i \(-0.469200\pi\)
0.0966095 + 0.995322i \(0.469200\pi\)
\(230\) −290136. −0.361645
\(231\) −785664. −0.968739
\(232\) −3.70055e6 −4.51385
\(233\) 246858. 0.297891 0.148946 0.988845i \(-0.452412\pi\)
0.148946 + 0.988845i \(0.452412\pi\)
\(234\) −158598. −0.189347
\(235\) −44712.0 −0.0528147
\(236\) −1.21076e6 −1.41507
\(237\) 688104. 0.795762
\(238\) 391072. 0.447522
\(239\) 105516. 0.119488 0.0597439 0.998214i \(-0.480972\pi\)
0.0597439 + 0.998214i \(0.480972\pi\)
\(240\) −218646. −0.245027
\(241\) −41738.0 −0.0462902 −0.0231451 0.999732i \(-0.507368\pi\)
−0.0231451 + 0.999732i \(0.507368\pi\)
\(242\) −934615. −1.02587
\(243\) −59049.0 −0.0641500
\(244\) −1.10947e6 −1.19301
\(245\) 85014.0 0.0904847
\(246\) −1.56163e6 −1.64528
\(247\) 0 0
\(248\) 3.61152e6 3.72873
\(249\) 511920. 0.523243
\(250\) 410124. 0.415016
\(251\) −362392. −0.363073 −0.181537 0.983384i \(-0.558107\pi\)
−0.181537 + 0.983384i \(0.558107\pi\)
\(252\) −1.26878e6 −1.25860
\(253\) −2.18042e6 −2.14160
\(254\) −774928. −0.753663
\(255\) −10908.0 −0.0105050
\(256\) 3.81427e6 3.63757
\(257\) 1.16120e6 1.09667 0.548334 0.836260i \(-0.315262\pi\)
0.548334 + 0.836260i \(0.315262\pi\)
\(258\) −741708. −0.693719
\(259\) −687456. −0.636789
\(260\) 95052.0 0.0872023
\(261\) 478062. 0.434393
\(262\) −1.12050e6 −1.00846
\(263\) 1.35860e6 1.21116 0.605579 0.795785i \(-0.292941\pi\)
0.605579 + 0.795785i \(0.292941\pi\)
\(264\) −2.79893e6 −2.47162
\(265\) 174084. 0.152280
\(266\) 0 0
\(267\) −929394. −0.797851
\(268\) −3.86580e6 −3.28778
\(269\) −2.19871e6 −1.85263 −0.926314 0.376753i \(-0.877040\pi\)
−0.926314 + 0.376753i \(0.877040\pi\)
\(270\) 48114.0 0.0401663
\(271\) −512016. −0.423507 −0.211753 0.977323i \(-0.567917\pi\)
−0.211753 + 0.977323i \(0.567917\pi\)
\(272\) 817898. 0.670312
\(273\) 281952. 0.228965
\(274\) 4.75339e6 3.82496
\(275\) 1.53214e6 1.22171
\(276\) −3.52120e6 −2.78239
\(277\) 857542. 0.671515 0.335758 0.941948i \(-0.391008\pi\)
0.335758 + 0.941948i \(0.391008\pi\)
\(278\) 4.14352e6 3.21557
\(279\) −466560. −0.358837
\(280\) 662112. 0.504704
\(281\) 375370. 0.283592 0.141796 0.989896i \(-0.454712\pi\)
0.141796 + 0.989896i \(0.454712\pi\)
\(282\) −737748. −0.552440
\(283\) 2204.00 0.00163586 0.000817929 1.00000i \(-0.499740\pi\)
0.000817929 1.00000i \(0.499740\pi\)
\(284\) −2.56320e6 −1.88576
\(285\) 0 0
\(286\) 971168. 0.702068
\(287\) 2.77622e6 1.98953
\(288\) −1.98248e6 −1.40840
\(289\) −1.37905e6 −0.971262
\(290\) −389532. −0.271987
\(291\) 742410. 0.513939
\(292\) 7.18639e6 4.93235
\(293\) 605198. 0.411840 0.205920 0.978569i \(-0.433981\pi\)
0.205920 + 0.978569i \(0.433981\pi\)
\(294\) 1.40273e6 0.946468
\(295\) −81624.0 −0.0546088
\(296\) −2.44906e6 −1.62469
\(297\) 361584. 0.237858
\(298\) 3.11909e6 2.03464
\(299\) 782488. 0.506174
\(300\) 2.47429e6 1.58726
\(301\) 1.31859e6 0.838869
\(302\) −871200. −0.549668
\(303\) −425070. −0.265983
\(304\) 0 0
\(305\) −74796.0 −0.0460393
\(306\) −179982. −0.109882
\(307\) 1.25593e6 0.760537 0.380268 0.924876i \(-0.375832\pi\)
0.380268 + 0.924876i \(0.375832\pi\)
\(308\) 7.76934e6 4.66668
\(309\) 1.41710e6 0.844317
\(310\) 380160. 0.224679
\(311\) −824580. −0.483428 −0.241714 0.970348i \(-0.577710\pi\)
−0.241714 + 0.970348i \(0.577710\pi\)
\(312\) 1.00445e6 0.584176
\(313\) −1.23455e6 −0.712275 −0.356138 0.934434i \(-0.615907\pi\)
−0.356138 + 0.934434i \(0.615907\pi\)
\(314\) 1.42844e6 0.817593
\(315\) −85536.0 −0.0485705
\(316\) −6.80458e6 −3.83340
\(317\) 1.19428e6 0.667509 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(318\) 2.87239e6 1.59285
\(319\) −2.92739e6 −1.61066
\(320\) 837942. 0.457445
\(321\) −566892. −0.307070
\(322\) 8.51066e6 4.57429
\(323\) 0 0
\(324\) 583929. 0.309028
\(325\) −549842. −0.288755
\(326\) −631620. −0.329164
\(327\) 343422. 0.177606
\(328\) 9.89030e6 5.07604
\(329\) 1.31155e6 0.668030
\(330\) −294624. −0.148930
\(331\) −1.99113e6 −0.998919 −0.499459 0.866337i \(-0.666468\pi\)
−0.499459 + 0.866337i \(0.666468\pi\)
\(332\) −5.06232e6 −2.52060
\(333\) 316386. 0.156353
\(334\) −2.79409e6 −1.37048
\(335\) −260616. −0.126879
\(336\) 6.41362e6 3.09924
\(337\) −6442.00 −0.00308991 −0.00154496 0.999999i \(-0.500492\pi\)
−0.00154496 + 0.999999i \(0.500492\pi\)
\(338\) 3.73570e6 1.77861
\(339\) 82710.0 0.0390894
\(340\) 107868. 0.0506052
\(341\) 2.85696e6 1.33051
\(342\) 0 0
\(343\) 464288. 0.213085
\(344\) 4.69748e6 2.14027
\(345\) −237384. −0.107375
\(346\) −1.95103e6 −0.876139
\(347\) −1.66693e6 −0.743179 −0.371589 0.928397i \(-0.621187\pi\)
−0.371589 + 0.928397i \(0.621187\pi\)
\(348\) −4.72750e6 −2.09259
\(349\) −3.89805e6 −1.71310 −0.856552 0.516060i \(-0.827398\pi\)
−0.856552 + 0.516060i \(0.827398\pi\)
\(350\) −5.98030e6 −2.60948
\(351\) −129762. −0.0562186
\(352\) 1.21396e7 5.22213
\(353\) 407306. 0.173974 0.0869869 0.996209i \(-0.472276\pi\)
0.0869869 + 0.996209i \(0.472276\pi\)
\(354\) −1.34680e6 −0.571207
\(355\) −172800. −0.0727734
\(356\) 9.19067e6 3.84346
\(357\) 319968. 0.132873
\(358\) −277068. −0.114256
\(359\) 2.59413e6 1.06232 0.531161 0.847271i \(-0.321756\pi\)
0.531161 + 0.847271i \(0.321756\pi\)
\(360\) −304722. −0.123922
\(361\) 0 0
\(362\) 8.02320e6 3.21793
\(363\) −764685. −0.304590
\(364\) −2.78819e6 −1.10298
\(365\) 484476. 0.190344
\(366\) −1.23413e6 −0.481570
\(367\) −761840. −0.295256 −0.147628 0.989043i \(-0.547164\pi\)
−0.147628 + 0.989043i \(0.547164\pi\)
\(368\) 1.77994e7 6.85150
\(369\) −1.27769e6 −0.488496
\(370\) −257796. −0.0978976
\(371\) −5.10646e6 −1.92613
\(372\) 4.61376e6 1.72861
\(373\) 837506. 0.311685 0.155842 0.987782i \(-0.450191\pi\)
0.155842 + 0.987782i \(0.450191\pi\)
\(374\) 1.10211e6 0.407424
\(375\) 335556. 0.123222
\(376\) 4.67240e6 1.70440
\(377\) 1.05056e6 0.380685
\(378\) −1.41134e6 −0.508046
\(379\) 623876. 0.223100 0.111550 0.993759i \(-0.464418\pi\)
0.111550 + 0.993759i \(0.464418\pi\)
\(380\) 0 0
\(381\) −634032. −0.223768
\(382\) 3.13566e6 1.09944
\(383\) −97672.0 −0.0340230 −0.0170115 0.999855i \(-0.505415\pi\)
−0.0170115 + 0.999855i \(0.505415\pi\)
\(384\) 6.77724e6 2.34544
\(385\) 523776. 0.180092
\(386\) −5.03358e6 −1.71953
\(387\) −606852. −0.205971
\(388\) −7.34161e6 −2.47578
\(389\) −2.23487e6 −0.748823 −0.374411 0.927263i \(-0.622155\pi\)
−0.374411 + 0.927263i \(0.622155\pi\)
\(390\) 105732. 0.0352002
\(391\) 887992. 0.293743
\(392\) −8.88396e6 −2.92006
\(393\) −916776. −0.299421
\(394\) 3.20296e6 1.03947
\(395\) −458736. −0.147935
\(396\) −3.57566e6 −1.14583
\(397\) 4.93416e6 1.57122 0.785610 0.618723i \(-0.212349\pi\)
0.785610 + 0.618723i \(0.212349\pi\)
\(398\) −4.01148e6 −1.26940
\(399\) 0 0
\(400\) −1.25074e7 −3.90855
\(401\) 3.73411e6 1.15965 0.579823 0.814742i \(-0.303122\pi\)
0.579823 + 0.814742i \(0.303122\pi\)
\(402\) −4.30016e6 −1.32715
\(403\) −1.02528e6 −0.314470
\(404\) 4.20347e6 1.28131
\(405\) 39366.0 0.0119257
\(406\) 1.14263e7 3.44025
\(407\) −1.93738e6 −0.579733
\(408\) 1.13989e6 0.339009
\(409\) 2.46083e6 0.727400 0.363700 0.931516i \(-0.381513\pi\)
0.363700 + 0.931516i \(0.381513\pi\)
\(410\) 1.04108e6 0.305862
\(411\) 3.88913e6 1.13566
\(412\) −1.40136e7 −4.06730
\(413\) 2.39430e6 0.690723
\(414\) −3.91684e6 −1.12314
\(415\) −341280. −0.0972726
\(416\) −4.35655e6 −1.23427
\(417\) 3.39016e6 0.954728
\(418\) 0 0
\(419\) −437512. −0.121746 −0.0608730 0.998146i \(-0.519388\pi\)
−0.0608730 + 0.998146i \(0.519388\pi\)
\(420\) 845856. 0.233977
\(421\) −2.91013e6 −0.800217 −0.400108 0.916468i \(-0.631028\pi\)
−0.400108 + 0.916468i \(0.631028\pi\)
\(422\) −4.97627e6 −1.36026
\(423\) −603612. −0.164024
\(424\) −1.81918e7 −4.91429
\(425\) −623978. −0.167570
\(426\) −2.85120e6 −0.761209
\(427\) 2.19402e6 0.582331
\(428\) 5.60593e6 1.47924
\(429\) 794592. 0.208450
\(430\) 494472. 0.128965
\(431\) 4.64881e6 1.20545 0.602724 0.797950i \(-0.294082\pi\)
0.602724 + 0.797950i \(0.294082\pi\)
\(432\) −2.95172e6 −0.760967
\(433\) −6.90871e6 −1.77083 −0.885415 0.464801i \(-0.846126\pi\)
−0.885415 + 0.464801i \(0.846126\pi\)
\(434\) −1.11514e7 −2.84187
\(435\) −318708. −0.0807551
\(436\) −3.39606e6 −0.855578
\(437\) 0 0
\(438\) 7.99385e6 1.99100
\(439\) −6.25621e6 −1.54935 −0.774676 0.632359i \(-0.782087\pi\)
−0.774676 + 0.632359i \(0.782087\pi\)
\(440\) 1.86595e6 0.459482
\(441\) 1.14769e6 0.281014
\(442\) −395516. −0.0962960
\(443\) 2.14088e6 0.518302 0.259151 0.965837i \(-0.416557\pi\)
0.259151 + 0.965837i \(0.416557\pi\)
\(444\) −3.12871e6 −0.753195
\(445\) 619596. 0.148323
\(446\) 1.03433e7 2.46218
\(447\) 2.55199e6 0.604101
\(448\) −2.45796e7 −5.78603
\(449\) −4.92089e6 −1.15194 −0.575968 0.817472i \(-0.695375\pi\)
−0.575968 + 0.817472i \(0.695375\pi\)
\(450\) 2.75230e6 0.640714
\(451\) 7.82390e6 1.81127
\(452\) −817910. −0.188304
\(453\) −712800. −0.163201
\(454\) 8.75939e6 1.99450
\(455\) −187968. −0.0425653
\(456\) 0 0
\(457\) 3.94009e6 0.882502 0.441251 0.897384i \(-0.354535\pi\)
0.441251 + 0.897384i \(0.354535\pi\)
\(458\) −1.68667e6 −0.375723
\(459\) −147258. −0.0326247
\(460\) 2.34746e6 0.517255
\(461\) −2.25945e6 −0.495166 −0.247583 0.968867i \(-0.579636\pi\)
−0.247583 + 0.968867i \(0.579636\pi\)
\(462\) 8.64230e6 1.88376
\(463\) −3.31806e6 −0.719337 −0.359668 0.933080i \(-0.617110\pi\)
−0.359668 + 0.933080i \(0.617110\pi\)
\(464\) 2.38972e7 5.15290
\(465\) 311040. 0.0667089
\(466\) −2.71544e6 −0.579262
\(467\) 3.63171e6 0.770583 0.385291 0.922795i \(-0.374101\pi\)
0.385291 + 0.922795i \(0.374101\pi\)
\(468\) 1.28320e6 0.270820
\(469\) 7.64474e6 1.60483
\(470\) 491832. 0.102700
\(471\) 1.16872e6 0.242750
\(472\) 8.52971e6 1.76230
\(473\) 3.71603e6 0.763707
\(474\) −7.56914e6 −1.54739
\(475\) 0 0
\(476\) −3.16413e6 −0.640084
\(477\) 2.35013e6 0.472930
\(478\) −1.16068e6 −0.232349
\(479\) −1.45764e6 −0.290275 −0.145138 0.989411i \(-0.546363\pi\)
−0.145138 + 0.989411i \(0.546363\pi\)
\(480\) 1.32165e6 0.261826
\(481\) 695268. 0.137022
\(482\) 459118. 0.0900133
\(483\) 6.96326e6 1.35814
\(484\) 7.56188e6 1.46729
\(485\) −494940. −0.0955429
\(486\) 649539. 0.124743
\(487\) −6.73825e6 −1.28743 −0.643716 0.765264i \(-0.722608\pi\)
−0.643716 + 0.765264i \(0.722608\pi\)
\(488\) 7.81618e6 1.48575
\(489\) −516780. −0.0977313
\(490\) −935154. −0.175951
\(491\) 3.47875e6 0.651208 0.325604 0.945506i \(-0.394432\pi\)
0.325604 + 0.945506i \(0.394432\pi\)
\(492\) 1.26350e7 2.35321
\(493\) 1.19220e6 0.220919
\(494\) 0 0
\(495\) −241056. −0.0442186
\(496\) −2.33222e7 −4.25663
\(497\) 5.06880e6 0.920480
\(498\) −5.63112e6 −1.01747
\(499\) −9.39514e6 −1.68909 −0.844543 0.535487i \(-0.820128\pi\)
−0.844543 + 0.535487i \(0.820128\pi\)
\(500\) −3.31828e6 −0.593591
\(501\) −2.28607e6 −0.406907
\(502\) 3.98631e6 0.706012
\(503\) 9.43514e6 1.66276 0.831378 0.555708i \(-0.187553\pi\)
0.831378 + 0.555708i \(0.187553\pi\)
\(504\) 8.93851e6 1.56743
\(505\) 283380. 0.0494471
\(506\) 2.39846e7 4.16443
\(507\) 3.05648e6 0.528083
\(508\) 6.26987e6 1.07795
\(509\) −6.92644e6 −1.18499 −0.592496 0.805573i \(-0.701858\pi\)
−0.592496 + 0.805573i \(0.701858\pi\)
\(510\) 119988. 0.0204274
\(511\) −1.42113e7 −2.40758
\(512\) −1.78601e7 −3.01099
\(513\) 0 0
\(514\) −1.27732e7 −2.13252
\(515\) −944736. −0.156961
\(516\) 6.00109e6 0.992216
\(517\) 3.69619e6 0.608174
\(518\) 7.56202e6 1.23826
\(519\) −1.59629e6 −0.260132
\(520\) −669636. −0.108600
\(521\) 6.53061e6 1.05405 0.527023 0.849851i \(-0.323308\pi\)
0.527023 + 0.849851i \(0.323308\pi\)
\(522\) −5.25868e6 −0.844696
\(523\) 1.80276e6 0.288194 0.144097 0.989564i \(-0.453972\pi\)
0.144097 + 0.989564i \(0.453972\pi\)
\(524\) 9.06590e6 1.44239
\(525\) −4.89298e6 −0.774774
\(526\) −1.49446e7 −2.35515
\(527\) −1.16352e6 −0.182493
\(528\) 1.80747e7 2.82155
\(529\) 1.28885e7 2.00245
\(530\) −1.91492e6 −0.296116
\(531\) −1.10192e6 −0.169596
\(532\) 0 0
\(533\) −2.80777e6 −0.428099
\(534\) 1.02233e7 1.55146
\(535\) 377928. 0.0570853
\(536\) 2.72344e7 4.09454
\(537\) −226692. −0.0339235
\(538\) 2.41859e7 3.60251
\(539\) −7.02782e6 −1.04196
\(540\) −389286. −0.0574493
\(541\) 1.03740e7 1.52389 0.761946 0.647640i \(-0.224244\pi\)
0.761946 + 0.647640i \(0.224244\pi\)
\(542\) 5.63218e6 0.823527
\(543\) 6.56444e6 0.955428
\(544\) −4.94395e6 −0.716270
\(545\) −228948. −0.0330176
\(546\) −3.10147e6 −0.445232
\(547\) 8.14488e6 1.16390 0.581951 0.813224i \(-0.302290\pi\)
0.581951 + 0.813224i \(0.302290\pi\)
\(548\) −3.84592e7 −5.47078
\(549\) −1.00975e6 −0.142982
\(550\) −1.68536e7 −2.37567
\(551\) 0 0
\(552\) 2.48066e7 3.46513
\(553\) 1.34563e7 1.87116
\(554\) −9.43296e6 −1.30579
\(555\) −210924. −0.0290666
\(556\) −3.35249e7 −4.59918
\(557\) −5.47163e6 −0.747271 −0.373636 0.927576i \(-0.621889\pi\)
−0.373636 + 0.927576i \(0.621889\pi\)
\(558\) 5.13216e6 0.697774
\(559\) −1.33358e6 −0.180505
\(560\) −4.27574e6 −0.576158
\(561\) 901728. 0.120967
\(562\) −4.12907e6 −0.551457
\(563\) −6.41428e6 −0.852858 −0.426429 0.904521i \(-0.640229\pi\)
−0.426429 + 0.904521i \(0.640229\pi\)
\(564\) 5.96905e6 0.790146
\(565\) −55140.0 −0.00726684
\(566\) −24244.0 −0.00318100
\(567\) −1.15474e6 −0.150843
\(568\) 1.80576e7 2.34849
\(569\) 1.25705e7 1.62769 0.813847 0.581080i \(-0.197369\pi\)
0.813847 + 0.581080i \(0.197369\pi\)
\(570\) 0 0
\(571\) −7.51477e6 −0.964552 −0.482276 0.876019i \(-0.660190\pi\)
−0.482276 + 0.876019i \(0.660190\pi\)
\(572\) −7.85763e6 −1.00416
\(573\) 2.56554e6 0.326432
\(574\) −3.05385e7 −3.86872
\(575\) −1.35792e7 −1.71280
\(576\) 1.13122e7 1.42066
\(577\) 1.96226e6 0.245367 0.122684 0.992446i \(-0.460850\pi\)
0.122684 + 0.992446i \(0.460850\pi\)
\(578\) 1.51696e7 1.88866
\(579\) −4.11838e6 −0.510541
\(580\) 3.15167e6 0.389019
\(581\) 1.00109e7 1.23036
\(582\) −8.16651e6 −0.999376
\(583\) −1.43909e7 −1.75355
\(584\) −5.06277e7 −6.14266
\(585\) 86508.0 0.0104512
\(586\) −6.65718e6 −0.800841
\(587\) 7.03206e6 0.842339 0.421170 0.906982i \(-0.361620\pi\)
0.421170 + 0.906982i \(0.361620\pi\)
\(588\) −1.13494e7 −1.35372
\(589\) 0 0
\(590\) 897864. 0.106189
\(591\) 2.62060e6 0.308626
\(592\) 1.58154e7 1.85471
\(593\) −4.68493e6 −0.547099 −0.273550 0.961858i \(-0.588198\pi\)
−0.273550 + 0.961858i \(0.588198\pi\)
\(594\) −3.97742e6 −0.462526
\(595\) −213312. −0.0247015
\(596\) −2.52363e7 −2.91011
\(597\) −3.28212e6 −0.376893
\(598\) −8.60737e6 −0.984277
\(599\) −5.00460e6 −0.569905 −0.284952 0.958542i \(-0.591978\pi\)
−0.284952 + 0.958542i \(0.591978\pi\)
\(600\) −1.74312e7 −1.97674
\(601\) 1.20527e7 1.36112 0.680561 0.732692i \(-0.261736\pi\)
0.680561 + 0.732692i \(0.261736\pi\)
\(602\) −1.45045e7 −1.63122
\(603\) −3.51832e6 −0.394041
\(604\) 7.04880e6 0.786182
\(605\) 509790. 0.0566243
\(606\) 4.67577e6 0.517216
\(607\) 9.62474e6 1.06027 0.530136 0.847913i \(-0.322141\pi\)
0.530136 + 0.847913i \(0.322141\pi\)
\(608\) 0 0
\(609\) 9.34877e6 1.02144
\(610\) 822756. 0.0895254
\(611\) −1.32646e6 −0.143744
\(612\) 1.45622e6 0.157162
\(613\) 2.45060e6 0.263403 0.131702 0.991289i \(-0.457956\pi\)
0.131702 + 0.991289i \(0.457956\pi\)
\(614\) −1.38153e7 −1.47890
\(615\) 851796. 0.0908130
\(616\) −5.47346e7 −5.81179
\(617\) 4.17808e6 0.441839 0.220920 0.975292i \(-0.429094\pi\)
0.220920 + 0.975292i \(0.429094\pi\)
\(618\) −1.55881e7 −1.64181
\(619\) 1.80615e7 1.89465 0.947323 0.320279i \(-0.103777\pi\)
0.947323 + 0.320279i \(0.103777\pi\)
\(620\) −3.07584e6 −0.321355
\(621\) −3.20468e6 −0.333470
\(622\) 9.07038e6 0.940047
\(623\) −1.81748e7 −1.87607
\(624\) −6.48650e6 −0.666882
\(625\) 9.42942e6 0.965573
\(626\) 1.35800e7 1.38505
\(627\) 0 0
\(628\) −1.15574e7 −1.16939
\(629\) 789012. 0.0795165
\(630\) 940896. 0.0944475
\(631\) 1.35029e7 1.35006 0.675030 0.737790i \(-0.264131\pi\)
0.675030 + 0.737790i \(0.264131\pi\)
\(632\) 4.79379e7 4.77404
\(633\) −4.07149e6 −0.403873
\(634\) −1.31371e7 −1.29800
\(635\) 422688. 0.0415993
\(636\) −2.32402e7 −2.27823
\(637\) 2.52208e6 0.246269
\(638\) 3.22013e7 3.13200
\(639\) −2.33280e6 −0.226009
\(640\) −4.51816e6 −0.436025
\(641\) 8.29497e6 0.797388 0.398694 0.917084i \(-0.369464\pi\)
0.398694 + 0.917084i \(0.369464\pi\)
\(642\) 6.23581e6 0.597112
\(643\) −7.22854e6 −0.689482 −0.344741 0.938698i \(-0.612033\pi\)
−0.344741 + 0.938698i \(0.612033\pi\)
\(644\) −6.88589e7 −6.54253
\(645\) 404568. 0.0382906
\(646\) 0 0
\(647\) 6.59915e6 0.619765 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(648\) −4.11375e6 −0.384858
\(649\) 6.74758e6 0.628835
\(650\) 6.04826e6 0.561497
\(651\) −9.12384e6 −0.843772
\(652\) 5.11038e6 0.470798
\(653\) 1.68576e7 1.54708 0.773540 0.633747i \(-0.218484\pi\)
0.773540 + 0.633747i \(0.218484\pi\)
\(654\) −3.77764e6 −0.345363
\(655\) 611184. 0.0556633
\(656\) −6.38689e7 −5.79469
\(657\) 6.54043e6 0.591143
\(658\) −1.44271e7 −1.29901
\(659\) 2.13425e6 0.191440 0.0957199 0.995408i \(-0.469485\pi\)
0.0957199 + 0.995408i \(0.469485\pi\)
\(660\) 2.38378e6 0.213013
\(661\) −1.65547e7 −1.47373 −0.736865 0.676040i \(-0.763695\pi\)
−0.736865 + 0.676040i \(0.763695\pi\)
\(662\) 2.19025e7 1.94244
\(663\) −323604. −0.0285910
\(664\) 3.56638e7 3.13911
\(665\) 0 0
\(666\) −3.48025e6 −0.304036
\(667\) 2.59452e7 2.25810
\(668\) 2.26067e7 1.96018
\(669\) 8.46266e6 0.731041
\(670\) 2.86678e6 0.246721
\(671\) 6.18314e6 0.530155
\(672\) −3.87684e7 −3.31173
\(673\) 704670. 0.0599719 0.0299860 0.999550i \(-0.490454\pi\)
0.0299860 + 0.999550i \(0.490454\pi\)
\(674\) 70862.0 0.00600847
\(675\) 2.25188e6 0.190233
\(676\) −3.02252e7 −2.54391
\(677\) −6.83619e6 −0.573248 −0.286624 0.958043i \(-0.592533\pi\)
−0.286624 + 0.958043i \(0.592533\pi\)
\(678\) −909810. −0.0760110
\(679\) 1.45182e7 1.20848
\(680\) −759924. −0.0630228
\(681\) 7.16677e6 0.592183
\(682\) −3.14266e7 −2.58724
\(683\) −1.24211e7 −1.01884 −0.509422 0.860517i \(-0.670141\pi\)
−0.509422 + 0.860517i \(0.670141\pi\)
\(684\) 0 0
\(685\) −2.59276e6 −0.211123
\(686\) −5.10717e6 −0.414352
\(687\) −1.38001e6 −0.111555
\(688\) −3.03351e7 −2.44329
\(689\) 5.16449e6 0.414457
\(690\) 2.61122e6 0.208796
\(691\) −8.00772e6 −0.637990 −0.318995 0.947756i \(-0.603345\pi\)
−0.318995 + 0.947756i \(0.603345\pi\)
\(692\) 1.57856e7 1.25313
\(693\) 7.07098e6 0.559302
\(694\) 1.83362e7 1.44514
\(695\) −2.26010e6 −0.177487
\(696\) 3.33050e7 2.60607
\(697\) −3.18635e6 −0.248434
\(698\) 4.28786e7 3.33121
\(699\) −2.22172e6 −0.171987
\(700\) 4.83861e7 3.73229
\(701\) −1.18657e7 −0.912005 −0.456003 0.889978i \(-0.650719\pi\)
−0.456003 + 0.889978i \(0.650719\pi\)
\(702\) 1.42738e6 0.109319
\(703\) 0 0
\(704\) −6.92699e7 −5.26760
\(705\) 402408. 0.0304926
\(706\) −4.48037e6 −0.338300
\(707\) −8.31248e6 −0.625435
\(708\) 1.08968e7 0.816989
\(709\) 8.30329e6 0.620347 0.310173 0.950680i \(-0.399613\pi\)
0.310173 + 0.950680i \(0.399613\pi\)
\(710\) 1.90080e6 0.141511
\(711\) −6.19294e6 −0.459433
\(712\) −6.47478e7 −4.78658
\(713\) −2.53210e7 −1.86533
\(714\) −3.51965e6 −0.258377
\(715\) −529728. −0.0387514
\(716\) 2.24173e6 0.163418
\(717\) −949644. −0.0689863
\(718\) −2.85355e7 −2.06573
\(719\) −1.18495e7 −0.854828 −0.427414 0.904056i \(-0.640575\pi\)
−0.427414 + 0.904056i \(0.640575\pi\)
\(720\) 1.96781e6 0.141466
\(721\) 2.77123e7 1.98533
\(722\) 0 0
\(723\) 375642. 0.0267257
\(724\) −6.49150e7 −4.60255
\(725\) −1.82313e7 −1.28817
\(726\) 8.41154e6 0.592289
\(727\) 4.81482e6 0.337866 0.168933 0.985628i \(-0.445968\pi\)
0.168933 + 0.985628i \(0.445968\pi\)
\(728\) 1.96427e7 1.37364
\(729\) 531441. 0.0370370
\(730\) −5.32924e6 −0.370133
\(731\) −1.51338e6 −0.104750
\(732\) 9.98527e6 0.688782
\(733\) 1.10193e6 0.0757523 0.0378761 0.999282i \(-0.487941\pi\)
0.0378761 + 0.999282i \(0.487941\pi\)
\(734\) 8.38024e6 0.574138
\(735\) −765126. −0.0522414
\(736\) −1.07592e8 −7.32126
\(737\) 2.15443e7 1.46104
\(738\) 1.40546e7 0.949902
\(739\) 2.45211e7 1.65169 0.825845 0.563898i \(-0.190699\pi\)
0.825845 + 0.563898i \(0.190699\pi\)
\(740\) 2.08580e6 0.140021
\(741\) 0 0
\(742\) 5.61711e7 3.74544
\(743\) 8.14072e6 0.540992 0.270496 0.962721i \(-0.412812\pi\)
0.270496 + 0.962721i \(0.412812\pi\)
\(744\) −3.25037e7 −2.15278
\(745\) −1.70132e6 −0.112304
\(746\) −9.21257e6 −0.606085
\(747\) −4.60728e6 −0.302095
\(748\) −8.91709e6 −0.582732
\(749\) −1.10859e7 −0.722048
\(750\) −3.69112e6 −0.239610
\(751\) −1.07734e6 −0.0697030 −0.0348515 0.999393i \(-0.511096\pi\)
−0.0348515 + 0.999393i \(0.511096\pi\)
\(752\) −3.01731e7 −1.94570
\(753\) 3.26153e6 0.209620
\(754\) −1.15561e7 −0.740259
\(755\) 475200. 0.0303395
\(756\) 1.14191e7 0.726651
\(757\) 1.90412e7 1.20769 0.603843 0.797103i \(-0.293635\pi\)
0.603843 + 0.797103i \(0.293635\pi\)
\(758\) −6.86264e6 −0.433828
\(759\) 1.96237e7 1.23645
\(760\) 0 0
\(761\) 2.74948e7 1.72103 0.860515 0.509426i \(-0.170142\pi\)
0.860515 + 0.509426i \(0.170142\pi\)
\(762\) 6.97435e6 0.435127
\(763\) 6.71581e6 0.417625
\(764\) −2.53703e7 −1.57251
\(765\) 98172.0 0.00606505
\(766\) 1.07439e6 0.0661593
\(767\) −2.42151e6 −0.148627
\(768\) −3.43285e7 −2.10015
\(769\) 2.51266e7 1.53221 0.766105 0.642716i \(-0.222192\pi\)
0.766105 + 0.642716i \(0.222192\pi\)
\(770\) −5.76154e6 −0.350196
\(771\) −1.04508e7 −0.633161
\(772\) 4.07262e7 2.45941
\(773\) 1.50927e7 0.908483 0.454242 0.890879i \(-0.349910\pi\)
0.454242 + 0.890879i \(0.349910\pi\)
\(774\) 6.67537e6 0.400519
\(775\) 1.77926e7 1.06411
\(776\) 5.17212e7 3.08329
\(777\) 6.18710e6 0.367650
\(778\) 2.45836e7 1.45612
\(779\) 0 0
\(780\) −855468. −0.0503463
\(781\) 1.42848e7 0.838005
\(782\) −9.76791e6 −0.571196
\(783\) −4.30256e6 −0.250797
\(784\) 5.73703e7 3.33347
\(785\) −779148. −0.0451280
\(786\) 1.00845e7 0.582237
\(787\) 2.71612e7 1.56319 0.781596 0.623785i \(-0.214406\pi\)
0.781596 + 0.623785i \(0.214406\pi\)
\(788\) −2.59148e7 −1.48673
\(789\) −1.22274e7 −0.699263
\(790\) 5.04610e6 0.287666
\(791\) 1.61744e6 0.0919151
\(792\) 2.51904e7 1.42699
\(793\) −2.21895e6 −0.125304
\(794\) −5.42757e7 −3.05530
\(795\) −1.56676e6 −0.0879192
\(796\) 3.24565e7 1.81560
\(797\) 2.12149e7 1.18303 0.591515 0.806294i \(-0.298530\pi\)
0.591515 + 0.806294i \(0.298530\pi\)
\(798\) 0 0
\(799\) −1.50530e6 −0.0834175
\(800\) 7.56033e7 4.17653
\(801\) 8.36455e6 0.460639
\(802\) −4.10752e7 −2.25498
\(803\) −4.00500e7 −2.19187
\(804\) 3.47922e7 1.89820
\(805\) −4.64218e6 −0.252483
\(806\) 1.12781e7 0.611502
\(807\) 1.97884e7 1.06961
\(808\) −2.96132e7 −1.59572
\(809\) −6.93973e6 −0.372796 −0.186398 0.982474i \(-0.559681\pi\)
−0.186398 + 0.982474i \(0.559681\pi\)
\(810\) −433026. −0.0231900
\(811\) −2.52867e6 −0.135002 −0.0675009 0.997719i \(-0.521503\pi\)
−0.0675009 + 0.997719i \(0.521503\pi\)
\(812\) −9.24489e7 −4.92053
\(813\) 4.60814e6 0.244512
\(814\) 2.13111e7 1.12732
\(815\) 344520. 0.0181686
\(816\) −7.36108e6 −0.387005
\(817\) 0 0
\(818\) −2.70691e7 −1.41446
\(819\) −2.53757e6 −0.132193
\(820\) −8.42332e6 −0.437470
\(821\) −2.31034e7 −1.19624 −0.598120 0.801406i \(-0.704085\pi\)
−0.598120 + 0.801406i \(0.704085\pi\)
\(822\) −4.27805e7 −2.20834
\(823\) 103360. 0.00531928 0.00265964 0.999996i \(-0.499153\pi\)
0.00265964 + 0.999996i \(0.499153\pi\)
\(824\) 9.87249e7 5.06534
\(825\) −1.37893e7 −0.705354
\(826\) −2.63373e7 −1.34314
\(827\) −3.23111e6 −0.164281 −0.0821406 0.996621i \(-0.526176\pi\)
−0.0821406 + 0.996621i \(0.526176\pi\)
\(828\) 3.16908e7 1.60641
\(829\) 1.24466e7 0.629022 0.314511 0.949254i \(-0.398159\pi\)
0.314511 + 0.949254i \(0.398159\pi\)
\(830\) 3.75408e6 0.189151
\(831\) −7.71788e6 −0.387700
\(832\) 2.48589e7 1.24501
\(833\) 2.86214e6 0.142915
\(834\) −3.72917e7 −1.85651
\(835\) 1.52405e6 0.0756454
\(836\) 0 0
\(837\) 4.19904e6 0.207175
\(838\) 4.81263e6 0.236741
\(839\) −1.20780e7 −0.592366 −0.296183 0.955131i \(-0.595714\pi\)
−0.296183 + 0.955131i \(0.595714\pi\)
\(840\) −5.95901e6 −0.291391
\(841\) 1.43225e7 0.698277
\(842\) 3.20115e7 1.55606
\(843\) −3.37833e6 −0.163732
\(844\) 4.02625e7 1.94556
\(845\) −2.03765e6 −0.0981722
\(846\) 6.63973e6 0.318951
\(847\) −1.49538e7 −0.716216
\(848\) 1.17478e8 5.61004
\(849\) −19836.0 −0.000944463 0
\(850\) 6.86376e6 0.325848
\(851\) 1.71708e7 0.812767
\(852\) 2.30688e7 1.08874
\(853\) −7.24764e6 −0.341055 −0.170527 0.985353i \(-0.554547\pi\)
−0.170527 + 0.985353i \(0.554547\pi\)
\(854\) −2.41342e7 −1.13237
\(855\) 0 0
\(856\) −3.94935e7 −1.84222
\(857\) −2.29801e6 −0.106881 −0.0534405 0.998571i \(-0.517019\pi\)
−0.0534405 + 0.998571i \(0.517019\pi\)
\(858\) −8.74051e6 −0.405339
\(859\) −1.60848e7 −0.743758 −0.371879 0.928281i \(-0.621286\pi\)
−0.371879 + 0.928281i \(0.621286\pi\)
\(860\) −4.00073e6 −0.184456
\(861\) −2.49860e7 −1.14865
\(862\) −5.11369e7 −2.34405
\(863\) −6.42193e6 −0.293521 −0.146760 0.989172i \(-0.546885\pi\)
−0.146760 + 0.989172i \(0.546885\pi\)
\(864\) 1.78423e7 0.813141
\(865\) 1.06420e6 0.0483595
\(866\) 7.59958e7 3.44346
\(867\) 1.24115e7 0.560758
\(868\) 9.02246e7 4.06468
\(869\) 3.79222e7 1.70351
\(870\) 3.50579e6 0.157032
\(871\) −7.73161e6 −0.345322
\(872\) 2.39251e7 1.06552
\(873\) −6.68169e6 −0.296723
\(874\) 0 0
\(875\) 6.56198e6 0.289744
\(876\) −6.46775e7 −2.84769
\(877\) −2.82068e7 −1.23838 −0.619192 0.785240i \(-0.712540\pi\)
−0.619192 + 0.785240i \(0.712540\pi\)
\(878\) 6.88183e7 3.01278
\(879\) −5.44678e6 −0.237776
\(880\) −1.20498e7 −0.524534
\(881\) −3.93965e7 −1.71009 −0.855043 0.518557i \(-0.826470\pi\)
−0.855043 + 0.518557i \(0.826470\pi\)
\(882\) −1.26246e7 −0.546444
\(883\) 3.38638e7 1.46162 0.730809 0.682582i \(-0.239143\pi\)
0.730809 + 0.682582i \(0.239143\pi\)
\(884\) 3.20008e6 0.137731
\(885\) 734616. 0.0315284
\(886\) −2.35497e7 −1.00786
\(887\) −2.08861e7 −0.891351 −0.445675 0.895195i \(-0.647036\pi\)
−0.445675 + 0.895195i \(0.647036\pi\)
\(888\) 2.20416e7 0.938015
\(889\) −1.23988e7 −0.526171
\(890\) −6.81556e6 −0.288421
\(891\) −3.25426e6 −0.137327
\(892\) −8.36863e7 −3.52162
\(893\) 0 0
\(894\) −2.80718e7 −1.17470
\(895\) 151128. 0.00630648
\(896\) 1.32533e8 5.51510
\(897\) −7.04239e6 −0.292240
\(898\) 5.41298e7 2.23999
\(899\) −3.39955e7 −1.40289
\(900\) −2.22686e7 −0.916403
\(901\) 5.86083e6 0.240518
\(902\) −8.60629e7 −3.52209
\(903\) −1.18673e7 −0.484321
\(904\) 5.76213e6 0.234510
\(905\) −4.37629e6 −0.177617
\(906\) 7.84080e6 0.317351
\(907\) 3.63949e7 1.46900 0.734501 0.678608i \(-0.237416\pi\)
0.734501 + 0.678608i \(0.237416\pi\)
\(908\) −7.08714e7 −2.85270
\(909\) 3.82563e6 0.153565
\(910\) 2.06765e6 0.0827700
\(911\) −1.83331e6 −0.0731881 −0.0365940 0.999330i \(-0.511651\pi\)
−0.0365940 + 0.999330i \(0.511651\pi\)
\(912\) 0 0
\(913\) 2.82125e7 1.12012
\(914\) −4.33410e7 −1.71606
\(915\) 673164. 0.0265808
\(916\) 1.36467e7 0.537390
\(917\) −1.79281e7 −0.704061
\(918\) 1.61984e6 0.0634402
\(919\) −1.62178e7 −0.633436 −0.316718 0.948520i \(-0.602581\pi\)
−0.316718 + 0.948520i \(0.602581\pi\)
\(920\) −1.65378e7 −0.644180
\(921\) −1.13034e7 −0.439096
\(922\) 2.48540e7 0.962871
\(923\) −5.12640e6 −0.198065
\(924\) −6.99241e7 −2.69431
\(925\) −1.20656e7 −0.463656
\(926\) 3.64987e7 1.39878
\(927\) −1.27539e7 −0.487467
\(928\) −1.44451e8 −5.50620
\(929\) 2.06857e7 0.786379 0.393189 0.919457i \(-0.371372\pi\)
0.393189 + 0.919457i \(0.371372\pi\)
\(930\) −3.42144e6 −0.129718
\(931\) 0 0
\(932\) 2.19704e7 0.828509
\(933\) 7.42122e6 0.279107
\(934\) −3.99488e7 −1.49843
\(935\) −601152. −0.0224882
\(936\) −9.04009e6 −0.337274
\(937\) 7.79438e6 0.290023 0.145012 0.989430i \(-0.453678\pi\)
0.145012 + 0.989430i \(0.453678\pi\)
\(938\) −8.40921e7 −3.12067
\(939\) 1.11110e7 0.411232
\(940\) −3.97937e6 −0.146891
\(941\) 2.20151e7 0.810487 0.405243 0.914209i \(-0.367187\pi\)
0.405243 + 0.914209i \(0.367187\pi\)
\(942\) −1.28559e7 −0.472038
\(943\) −6.93425e7 −2.53934
\(944\) −5.50826e7 −2.01180
\(945\) 769824. 0.0280422
\(946\) −4.08764e7 −1.48506
\(947\) 3.67660e6 0.133221 0.0666103 0.997779i \(-0.478782\pi\)
0.0666103 + 0.997779i \(0.478782\pi\)
\(948\) 6.12413e7 2.21321
\(949\) 1.43728e7 0.518055
\(950\) 0 0
\(951\) −1.07485e7 −0.385387
\(952\) 2.22911e7 0.797148
\(953\) 6.27011e6 0.223636 0.111818 0.993729i \(-0.464333\pi\)
0.111818 + 0.993729i \(0.464333\pi\)
\(954\) −2.58515e7 −0.919633
\(955\) −1.71036e6 −0.0606847
\(956\) 9.39092e6 0.332325
\(957\) 2.63465e7 0.929916
\(958\) 1.60340e7 0.564453
\(959\) 7.60542e7 2.67040
\(960\) −7.54148e6 −0.264106
\(961\) 4.54845e6 0.158875
\(962\) −7.64795e6 −0.266445
\(963\) 5.10203e6 0.177287
\(964\) −3.71468e6 −0.128745
\(965\) 2.74559e6 0.0949111
\(966\) −7.65959e7 −2.64097
\(967\) 3.19646e7 1.09927 0.549633 0.835406i \(-0.314768\pi\)
0.549633 + 0.835406i \(0.314768\pi\)
\(968\) −5.32731e7 −1.82734
\(969\) 0 0
\(970\) 5.44434e6 0.185787
\(971\) 3.00150e7 1.02162 0.510811 0.859693i \(-0.329345\pi\)
0.510811 + 0.859693i \(0.329345\pi\)
\(972\) −5.25536e6 −0.178417
\(973\) 6.62964e7 2.24496
\(974\) 7.41207e7 2.50347
\(975\) 4.94858e6 0.166713
\(976\) −5.04748e7 −1.69610
\(977\) −2.19294e7 −0.735006 −0.367503 0.930022i \(-0.619787\pi\)
−0.367503 + 0.930022i \(0.619787\pi\)
\(978\) 5.68458e6 0.190043
\(979\) −5.12199e7 −1.70798
\(980\) 7.56625e6 0.251661
\(981\) −3.09080e6 −0.102541
\(982\) −3.82663e7 −1.26630
\(983\) −3.32485e7 −1.09746 −0.548730 0.836000i \(-0.684888\pi\)
−0.548730 + 0.836000i \(0.684888\pi\)
\(984\) −8.90127e7 −2.93065
\(985\) −1.74707e6 −0.0573745
\(986\) −1.31142e7 −0.429587
\(987\) −1.18040e7 −0.385687
\(988\) 0 0
\(989\) −3.29348e7 −1.07069
\(990\) 2.65162e6 0.0859850
\(991\) 5.46424e7 1.76744 0.883722 0.468012i \(-0.155030\pi\)
0.883722 + 0.468012i \(0.155030\pi\)
\(992\) 1.40976e8 4.54848
\(993\) 1.79202e7 0.576726
\(994\) −5.57568e7 −1.78991
\(995\) 2.18808e6 0.0700657
\(996\) 4.55609e7 1.45527
\(997\) −2.89095e7 −0.921090 −0.460545 0.887636i \(-0.652346\pi\)
−0.460545 + 0.887636i \(0.652346\pi\)
\(998\) 1.03347e8 3.28450
\(999\) −2.84747e6 −0.0902705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.6.a.a.1.1 1
19.18 odd 2 57.6.a.b.1.1 1
57.56 even 2 171.6.a.a.1.1 1
76.75 even 2 912.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.b.1.1 1 19.18 odd 2
171.6.a.a.1.1 1 57.56 even 2
912.6.a.d.1.1 1 76.75 even 2
1083.6.a.a.1.1 1 1.1 even 1 trivial